Large Sample Tools*

STA 312: Fall 2012

Background Reading: Davison's Statistical models

- For completeness, look at Section 2.1, which presents some basic applied statistics in an advanced way.
- Especially see Section 2.2 (Pages 28-37) on convergence.
- Section 3.3 (Pages 77-90) goes more deeply into simulation than we will. At least skim it.

Overview

Contents

1 Foundations 2
2 Law of Large Numbers 3
3 Consistency 7
4 Central Limit Theorem 8
5 Convergence of random vectors 10
6 Delta Method 11

[^0]
1 Foundations

Sample Space $\Omega, \omega \in \Omega$

- Observe whether a single individual is male or female: $\Omega=\{F, M\}$
- Pair of individuals; observe their genders in order: $\Omega=\{(F, F),(F, M),(M, F),(M, M)\}$
- Select n people and count the number of females: $\Omega=\{0, \ldots, n\}$

For limits problems, the points in Ω are infinite sequences.

Random variables are functions from Ω into the set of real numbers

$$
\operatorname{Pr}\{X \in B\}=\operatorname{Pr}(\{\omega \in \Omega: X(\omega) \in B\})
$$

Random Sample $X_{1}(\omega), \ldots, X_{n}(\omega)$

- $T=T\left(X_{1}, \ldots, X_{n}\right)$
- $T=T_{n}(\omega)$
- Let $n \rightarrow \infty$ to see what happens for large samples

Modes of Convergence

- Almost Sure Convergence
- Convergence in Probability
- Convergence in Distribution

Almost Sure Convergence

We say that T_{n} converges almost surely to T, and write $T_{n} \xrightarrow{\text { a.s. }}$ if

$$
\operatorname{Pr}\left\{\omega: \lim _{n \rightarrow \infty} T_{n}(\omega)=T(\omega)\right\}=1 .
$$

- Acts like an ordinary limit, except possibly on a set of probability zero.
- All the usual rules apply.
- Called convergence with probability one or sometimes strong convergence.

2 Law of Large Numbers

Strong Law of Large Numbers
Let X_{1}, \ldots, X_{n} be independent with common expected value μ.

$$
\bar{X}_{n} \xrightarrow{\text { a.s. }} E\left(X_{i}\right)=\mu
$$

The only condition required for this to hold is the existence of the expected value.

Probability is long run relative frequency

- Statistical experiment: Probability of "success" is p
- Carry out the experiment many times independently.
- Code the results $X_{i}=1$ if success, $X_{i}=0$ for failure, $i=1,2, \ldots$

Sample proportion of successes converges to the probability of success Recall $X_{i}=0$ or 1.

$$
\begin{aligned}
E\left(X_{i}\right) & =\sum_{x=0}^{1} x \operatorname{Pr}\left\{X_{i}=x\right\} \\
& =0 \cdot(1-p)+1 \cdot p \\
& =p
\end{aligned}
$$

Relative frequency is

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}_{n} \xrightarrow{\text { a.s. }} p
$$

Simulation

- Estimate almost any probability that's hard to figure out
- Power
- Weather model
- Performance of statistical methods
- Confidence intervals for the estimate

A hard elementary problem

- Roll a fair die 13 times and observe the number each time.
- What is the probability that the sum of the 13 numbers is divisible by 3 ?

Simulate from a multinomial

```
> nsim = 1000 # nsim is the Monte Carlo sample size
> set.seed(9999) # So I can reproduce the numbers if desired.
> kount = numeric(nsim)
> for(i in 1:nsim)
+ {
+ tot = sum(rmultinom(1,13,die)*(1:6))
+ kount[i] = (tot/3 == floor(tot/3))
+ # Logical will be converted to numeric
+ }
> kount[1:20]
    [1] 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
> xbar = mean(kount); xbar
[1] 0.329
```


Check if the sum is divisible by 3

```
> tot = sum(rmultinom(1,13,die)*(1:6))
> tot
[1] 42
> tot/3 == floor(tot/3)
[1] TRUE
> 42/3
[1] }1
```


Estimated Probability

```
> nsim = 1000 # nsim is the Monte Carlo sample size
> set.seed(9999) # So I can reproduce the numbers if desired.
> kount = numeric(nsim)
> for(i in 1:nsim)
+ {
+ tot = sum(rmultinom(1,13,die)*(1:6))
+ kount[i] = (tot/3 == floor(tot/3))
+ # Logical will be converted to numeric
+ }
> kount[1:20]
    [1] 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
> xbar = mean(kount); xbar
[1] 0.329
```

Confidence Interval $\bar{X} \pm z_{\alpha / 2} \sqrt{\frac{\bar{X}(1-\bar{X})}{n}}$
> z = qnorm(0.995); z
[1] 2.575829
> pnorm(z)-pnorm(-z) \# Just to check
[1] 0.99
> margerror99 = sqrt(xbar*(1-xbar)/nsim)*z; margerror99
[1] 0.03827157
> cat("Estimated probability is ", xbar," with 99% margin of error ",

+ margerror99,"\n")
Estimated probability is 0.329 with 99% margin of error 0.03827157
> cat("99\% Confidence interval from ", xbar-margerror99," to ",
+ xbar+margerror99,"\n")
99\% Confidence interval from 0.2907284 to 0.3672716

Recall the Change of Variables formula: Let $Y=g(X)$

$$
E(Y)=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Or, for discrete random variables

$$
E(Y)=\sum_{y} y p_{Y}(y)=\sum_{x} g(x) p_{X}(x)
$$

This is actually a big theorem, not a definition.
Applying the change of variables formula To approximate $E[g(X)]$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) & =\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{\text { a.s. }} E(Y) \\
& =E(g(X))
\end{aligned}
$$

So for example

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{\text { a.s. }} E\left(X^{k}\right) \\
\frac{1}{n} \sum_{i=1}^{n} U_{i}^{2} V_{i} W_{i}^{3} \xrightarrow{\text { a.s. }} E\left(U^{2} V W^{3}\right)
\end{gathered}
$$

That is, sample moments converge almost surely to population moments.
Approximate an integral: $\int_{-\infty}^{\infty} h(x) d x$ Where $h(x)$ is a nasty function. Let $f(x)$ be a density with $f(x)>0$ wherever $h(x) \neq 0$.

$$
\begin{aligned}
\int_{-\infty}^{\infty} h(x) d x & =\int_{-\infty}^{\infty} \frac{h(x)}{f(x)} f(x) d x \\
& =E\left[\frac{h(X)}{f(X)}\right] \\
& =E[g(X)]
\end{aligned}
$$

- Sample X_{1}, \ldots, X_{n} from the distribution with density $f(x)$
- Calculate $Y_{i}=g\left(X_{i}\right)=\frac{h\left(X_{i}\right)}{f\left(X_{i}\right)}$ for $i=1, \ldots, n$
- Calculate $\bar{Y}_{n} \xrightarrow{\text { a.s. }} E[Y]=E[g(X)]$

Convergence in Probability

We say that T_{n} converges in probability to T, and write $T_{n} \xrightarrow{P} T$ if for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left\{\left|T_{n}-T\right|<\epsilon\right\}=1
$$

Convergence in probability (say to a constant θ) means no matter how small the interval around θ, for large enough n (that is, for all $n>N_{1}$) the probability of getting that close to θ is as close to one as you like.

Weak Law of Large Numbers

$$
\bar{X}_{n} \xrightarrow{p} \mu
$$

- Almost Sure Convergence implies Convergence in Probability
- Strong Law of Large Numbers implies Weak Law of Large Numbers

3 Consistency

Consistency $T=T\left(X_{1}, \ldots, X_{n}\right)$ is a statistic estimating a parameter θ
The statistic T_{n} is said to be consistent for θ if $T_{n} \xrightarrow{P} \theta$.

$$
\lim _{n \rightarrow \infty} P\left\{\left|T_{n}-\theta\right|<\epsilon\right\}=1
$$

The statistic T_{n} is said to be strongly consistent for θ if $T_{n} \xrightarrow{\text { a.s. }} \theta$. Strong consistency implies ordinary consistency.

Consistency is great but it's not enough.

- It means that as the sample size becomes indefinitely large, you probably get as close as you like to the truth.
- It's the least we can ask. Estimators that are not consistent are completely unacceptable for most purposes.

$$
T_{n} \xrightarrow{\text { a.s. }} \theta \Rightarrow U_{n}=T_{n}+\frac{100,000,000}{n} \xrightarrow{\text { a.s. }} \theta
$$

Consistency of the Sample Variance

$$
\begin{aligned}
\widehat{\sigma}_{n}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}
\end{aligned}
$$

By SLLN, $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$ and $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow{\text { a.s. }} E\left(X^{2}\right)=\sigma^{2}+\mu^{2}$. Because the function $g(x, y)=x-y^{2}$ is continuous,

$$
\widehat{\sigma}_{n}^{2}=g\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \bar{X}_{n}\right) \stackrel{\text { a.s. }}{\rightarrow} g\left(\sigma^{2}+\mu^{2}, \mu\right)=\sigma^{2}+\mu^{2}-\mu^{2}=\sigma^{2}
$$

4 Central Limit Theorem

Convergence in Distribution Sometimes called Weak Convergence, or Convergence in Law

Denote the cumulative distribution functions of T_{1}, T_{2}, \ldots by $F_{1}(t), F_{2}(t), \ldots$ respectively, and denote the cumulative distribution function of T by $F(t)$.

We say that T_{n} converges in distribution to T, and write $T_{n} \xrightarrow{d} T$ if for every point t at which F is continuous,

$$
\lim _{n \rightarrow \infty} F_{n}(t)=F(t)
$$

Univariate Central Limit Theorem

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with expected value μ and variance σ^{2}. Then

$$
Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \stackrel{d}{\rightarrow} Z \sim N(0,1)
$$

Connections among the Modes of Convergence

- $T_{n} \xrightarrow{\text { a.s. }} T \Rightarrow T_{n} \xrightarrow{p} T \Rightarrow T_{n} \xrightarrow{d} T$.
- If a is a constant, $T_{n} \xrightarrow{d} a \Rightarrow T_{n} \xrightarrow{p} a$.

Sometimes we say the distribution of the sample mean is approximately normal, or asymptotically normal.

- This is justified by the Central Limit Theorem.
- But it does not mean that \bar{X}_{n} converges in distribution to a normal random variable.
- The Law of Large Numbers says that \bar{X}_{n} converges in distribution to a constant, μ.
- So \bar{X}_{n} converges to μ in distribution as well.

Why would we say that for large n, the sample mean is approximately $N\left(\mu, \frac{\sigma^{2}}{n}\right)$?
Have $Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \xrightarrow{d} Z \sim N(0,1)$.

$$
\begin{aligned}
\operatorname{Pr}\left\{\bar{X}_{n} \leq x\right\} & =\operatorname{Pr}\left\{\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} \\
& =\operatorname{Pr}\left\{Z_{n} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} \\
& \approx \Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)
\end{aligned}
$$

Suppose Y is exactly $N\left(\mu, \frac{\sigma^{2}}{n}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\{Y \leq x\} & =\operatorname{Pr}\left\{\frac{\sqrt{n}(Y-\mu)}{\sigma} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} \\
& =\operatorname{Pr}\left\{Z_{n} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} \\
& =\Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)
\end{aligned}
$$

5 Convergence of random vectors

Convergence of random vectors

1. Definitions (All quantities in boldface are vectors in \mathbb{R}^{m} unless otherwise stated)
$\star \mathbf{T}_{n} \xrightarrow{\text { a.s. }} \mathbf{T}$ means $P\left\{\omega: \lim _{n \rightarrow \infty} \mathbf{T}_{n}(\omega)=\mathbf{T}(\omega)\right\}=1$.
$\star \mathbf{T}_{n} \xrightarrow{P} \mathbf{T}$ means $\forall \epsilon>0, \lim _{n \rightarrow \infty} P\left\{\left\|\mathbf{T}_{n}-\mathbf{T}\right\|<\epsilon\right\}=1$.
$\star \mathbf{T}_{n} \xrightarrow{d} \mathbf{T}$ means for every continuity point \mathbf{t} of $F_{\mathbf{T}}, \lim _{n \rightarrow \infty} F_{\mathbf{T}_{n}}(\mathbf{t})=F_{\mathbf{T}}(\mathbf{t})$.
2. $\mathbf{T}_{n} \xrightarrow{\text { a.s. }} \mathbf{T} \Rightarrow \mathbf{T}_{n} \xrightarrow{P} \mathbf{T} \Rightarrow \mathbf{T}_{n} \xrightarrow{d} \mathbf{T}$.
3. If \mathbf{a} is a vector of constants, $\mathbf{T}_{n} \xrightarrow{d} \mathbf{a} \Rightarrow \mathbf{T}_{n} \xrightarrow{P} \mathbf{a}$.
4. Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_{1}, \ldots \mathbf{X}_{n}$ be independent and identically distributed random vectors with finite first moment, and let \mathbf{X} be a general random vector from the same distribution. Then $\overline{\mathbf{X}}_{n} \xrightarrow{\text { a.s. }} E(\mathbf{X})$.
5. Central Limit Theorem: Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right)$ converges in distribution to a multivariate normal with mean $\mathbf{0}$ and covariance matrix $\boldsymbol{\Sigma}$.
6. Slutsky Theorems for Convergence in Distribution:
(a) If $\mathbf{T}_{n} \in \mathbb{R}^{m}, \mathbf{T}_{n} \xrightarrow{d} \mathbf{T}$ and if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C)=0$, then $f\left(\mathbf{T}_{n}\right) \xrightarrow{d} f(\mathbf{T})$.
(b) If $\mathbf{T}_{n} \xrightarrow{d} \mathbf{T}$ and $\left(\mathbf{T}_{n}-\mathbf{Y}_{n}\right) \xrightarrow{P} 0$, then $\mathbf{Y}_{n} \xrightarrow{d} \mathbf{T}$.
(c) If $\mathbf{T}_{n} \in \mathbb{R}^{d}, \mathbf{Y}_{n} \in \mathbb{R}^{k}, \mathbf{T}_{n} \xrightarrow{d} \mathbf{T}$ and $\mathbf{Y}_{n} \xrightarrow{P} \mathbf{c}$, then

$$
\binom{\mathbf{T}_{n}}{\mathbf{Y}_{n}} \xrightarrow{d}\binom{\mathbf{T}}{\mathbf{c}}
$$

7. Slutsky Theorems for Convergence in Probability:
(a) If $\mathbf{T}_{n} \in \mathbb{R}^{m}, \mathbf{T}_{n} \xrightarrow{P} \mathbf{T}$ and if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C)=0$, then $f\left(\mathbf{T}_{n}\right) \xrightarrow{P} f(\mathbf{T})$.
(b) If $\mathbf{T}_{n} \xrightarrow{P} \mathbf{T}$ and $\left(\mathbf{T}_{n}-\mathbf{Y}_{n}\right) \xrightarrow{P} 0$, then $\mathbf{Y}_{n} \xrightarrow{P} \mathbf{T}$.
(c) If $\mathbf{T}_{n} \in \mathbb{R}^{d}, \mathbf{Y}_{n} \in \mathbb{R}^{k}, \mathbf{T}_{n} \xrightarrow{P} \mathbf{T}$ and $\mathbf{Y}_{n} \xrightarrow{P} \mathbf{Y}$, then

$$
\binom{\mathbf{T}_{n}}{\mathbf{Y}_{n}} \xrightarrow{P}\binom{\mathbf{T}}{\mathbf{Y}}
$$

8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be such that the elements of $\dot{\mathrm{g}}(\mathbf{x})=\left[\frac{\partial g_{i}}{\partial x_{j}}\right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^{d}$. If \mathbf{T}_{n} is a sequence of d-dimensional random vectors such that $\sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{T}$, then $\sqrt{n}\left(g\left(\mathbf{T}_{n}\right)-g(\boldsymbol{\theta})\right) \xrightarrow{d} \dot{\mathrm{~g}}(\boldsymbol{\theta}) \mathbf{T}$. In particular, if $\sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then $\sqrt{n}\left(g\left(\mathbf{T}_{n}\right)-g(\boldsymbol{\theta})\right) \xrightarrow{d} \mathbf{Y} \sim N\left(\mathbf{0}, \dot{\mathrm{~g}}(\boldsymbol{\theta}) \boldsymbol{\Sigma} \dot{\mathrm{g}}(\boldsymbol{\theta})^{\prime}\right)$.

An application of the Slutsky Theorems

- Let $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} ?\left(\mu, \sigma^{2}\right)$
- By CLT, $Y_{n}=\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} Y \sim N\left(0, \sigma^{2}\right)$
- Let $\widehat{\sigma}_{n}$ be any consistent estimator of σ.
- Then by $6.6 \mathrm{c}, \mathbf{T}_{n}=\binom{Y_{n}}{\widehat{\sigma}_{n}} \xrightarrow{d}\binom{Y}{\sigma}=\mathbf{T}$
- The function $f(x, y)=x / y$ is continuous except if $y=0$ so by 6.6 a ,

$$
f\left(\mathbf{T}_{n}\right)=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\widehat{\sigma}_{n}} \xrightarrow{d} f(\mathbf{T})=\frac{Y}{\sigma} \sim N(0,1)
$$

6 Delta Method

Univariate delta method

In the multivariate Delta Method 8, the matrix $\dot{\mathrm{g}}(\boldsymbol{\theta})$ is a Jacobian. The univariate version of the delta method says

$$
\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \xrightarrow{d} g^{\prime}(\theta) T .
$$

If $T \sim N\left(0, \sigma^{2}\right)$, it says

$$
\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \xrightarrow{d} Y \sim N\left(0, g^{\prime}(\theta)^{2} \sigma^{2}\right)
$$

A variance-stabilizing transformation An application of the delta method

- Because the Poisson process is such a good model, count data often have approximate Poisson distributions.
- Let $X_{1}, \ldots, X_{n} \stackrel{i . i . d}{\sim} \operatorname{Poisson}(\lambda)$
- $E\left(X_{i}\right)=\operatorname{Var}\left(X_{i}\right)=\lambda$
- $Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda\right)}{\sqrt{\bar{X}_{n}}} \xrightarrow{d} Z \sim N(0,1)$
- An approximate large-sample confidence interval for λ is

$$
\bar{X}_{n} \pm z_{\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}
$$

- Can we do better?

Variance-stabilizing transformation continued

- CLT says $\sqrt{n}\left(\bar{X}_{n}-\lambda\right) \xrightarrow{d} T \sim N(0, \lambda)$.
- Delta method says $\sqrt{n}\left(g\left(\bar{X}_{n}\right)-g(\lambda)\right) \xrightarrow{d} g^{\prime}(\lambda) T=Y \sim N\left(0, g^{\prime}(\lambda)^{2} \lambda\right)$
- If $g^{\prime}(\lambda)=\frac{1}{\sqrt{\lambda}}$, then $Y \sim N(0,1)$.

An elementary differential equation: $g^{\prime}(x)=\frac{1}{\sqrt{x}}$ Solve by separation of variables

$$
\begin{aligned}
& \frac{d g}{d x}=x^{-1 / 2} \\
\Rightarrow & d g=x^{-1 / 2} d x \\
\Rightarrow & \int d g=\int x^{-1 / 2} d x \\
\Rightarrow & g(x)=\frac{x^{1 / 2}}{1 / 2}+c=2 x^{1 / 2}+c
\end{aligned}
$$

We have found

$$
\begin{aligned}
\sqrt{n}\left(g\left(\bar{X}_{n}\right)-g(\lambda)\right) & =\sqrt{n}\left(2 \bar{X}_{n}^{1 / 2}-2 \lambda^{1 / 2}\right) \\
& \xrightarrow{d} Z \sim N(0,1)
\end{aligned}
$$

So,

- We could say that $\sqrt{\bar{X}_{n}}$ is asymptotically normal, with (asymptotic) mean $\sqrt{\lambda}$ and (asymptotic) variance $\frac{1}{4 n}$.
- This calculation could justify a square root transformation for count data.
- How about a better confidence interval for λ ?

Seeking a better confidence interval for λ

$$
\begin{aligned}
1-\alpha & \approx \operatorname{Pr}\left\{-z_{\alpha / 2}<Z<z_{\alpha / 2}\right\} \\
& =\operatorname{Pr}\left\{-z_{\alpha / 2}<2 \sqrt{n}\left(\bar{X}_{n}^{1 / 2}-\lambda^{1 / 2}\right)<z_{\alpha / 2}\right\} \\
& =\operatorname{Pr}\left\{\sqrt{\bar{X}_{n}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}<\sqrt{\lambda}<\sqrt{\bar{X}_{n}}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right\} \\
& =\operatorname{Pr}\left\{\left(\sqrt{\bar{X}_{n}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2}<\lambda<\left(\sqrt{\bar{X}_{n}}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2}\right\}
\end{aligned}
$$

where the last equality is valid provided $\sqrt{\overline{X_{n}}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}} \geq 0$.
Compare the confidence intervals
Variance-stabilized CI is

$$
\begin{aligned}
& \left(\left(\sqrt{\bar{X}_{n}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2},\left(\sqrt{\bar{X}_{n}}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2}\right) \\
= & \left(\bar{X}_{n}-2 \sqrt{\bar{X}_{n}} \frac{z_{\alpha / 2}}{2 \sqrt{n}}+\frac{z_{\alpha / 2}^{2}}{4 n}, \bar{X}_{n}+2 \sqrt{\bar{X}_{n}} \frac{z_{\alpha / 2}}{2 \sqrt{n}}+\frac{z_{\alpha / 2}^{2}}{4 n}\right) \\
= & \left(\bar{X}_{n}-z_{\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}+\frac{z_{\alpha / 2}^{2}}{4 n}, \bar{X}_{n}+z_{\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}+\frac{z_{\alpha / 2}^{2}}{4 n}\right)
\end{aligned}
$$

Compare to the ordinary (Wald) CI

$$
\left(\bar{X}_{n}-z_{\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}, \bar{X}_{n}+z_{\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}\right)
$$

Variance-stabilized CI is just like the ordinary CI

Except shifted to the right by $\frac{z_{\alpha / 2}^{2}}{4 n}$.

- If there is a difference in performance, we will see it for small n.
- Try some simulations.
- Is the coverage probability closer?

Try $n=10$, True $\lambda=1$ Illustrate the code first

```
> # Variance stabilized Poisson CI
> n = 10; lambda=1; m=10; alpha = 0.05; set.seed(9999)
> z = qnorm(1-alpha/2)
> cover1 = cover2 = NULL
> for(sim in 1:m)
+ {
+ x = rpois(n,lambda); xbar = mean(x); xbar
+ a1 = xbar - z*sqrt (xbar/n); b1 = xbar + z*sqrt (xbar/n)
+ shift = z^2/(4*n)
+ a2 = a1+shift; b2 = b1+shift
+ cover1 = c(cover1,(a1 < lambda && lambda < b1))
+ cover2 = c(cover2,(a2 < lambda && lambda < b2))
+ } # Next sim
> rbind(cover1,cover2)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
cover1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
cover2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
> mean(cover1)
[1] 0.9
```


Code for Monte Carlo sample size $=10,000$ simulations

```
# Now the real simulation
n = 10; lambda=1; m=10000; alpha = 0.05; set.seed(9999)
z = qnorm(1-alpha/2)
cover1 = cover2 = NULL
for(sim in 1:m)
    {
    x = rpois(n,lambda); xbar = mean(x); xbar
    a1 = xbar - z*sqrt (xbar/n); b1 = xbar + z*sqrt(xbar/n)
    shift = z^2/(4*n)
    a2 = a1+shift; b2 = b1+shift
    cover1 = c(cover1,(a1 < lambda && lambda < b1))
    cover2 = c(cover2,(a2 < lambda && lambda < b2))
    } # Next sim
p1 = mean(cover1); p2 = mean(cover2)
# 99 percent margins of error
me1 = qnorm(0.995)*sqrt(p1*(1-p1)/m); me1 = round(me1,3)
me2 = qnorm(0.995)*sqrt(p1*(1-p1)/m); me2 = round(me2,3)
cat("Coverage of ordinary CI = ",p1,"plus or minus ",me1,"\n")
cat("Coverage of variance-stabilized CI = ",p2,
"plus or minus ",me2,"\n")
```

Results for $n=10, \lambda=1$ and 10,000 simulations

```
Coverage of ordinary CI = 0.9292 plus or minus 0.007
```

Coverage of variance-stabilized CI $=0.9556$ plus or minus 0.007

Results for $n=100 \lambda=1$ and 10,000 simulations

```
Coverage of ordinary CI = 0.9448 plus or minus 0.006
Coverage of variance-stabilized CI = 0.9473 plus or minus 0.006
> p1+me1
[1] 0.9508
```

The arcsin-square root transformation For proportions
Sometimes, variable values consist of proportions, one for each case.

- For example, cases could be hospitals.
- The variable of interest is the proportion of patients who came down with something unrelated to their reason for admission - hospital-acquired infection.
- This is an example of aggregated data.

The advice you often get
When a proportion is the response variable in a regression, use the arcsin square root transformation.

That is, if the proportions are P_{1}, \ldots, P_{n}, let

$$
Y_{i}=\sin ^{-1}\left(\sqrt{P_{i}}\right)
$$

and use the Y_{i} values in your regression.

Why?

It's a variance-stabilizing transformation.

- The proportions are little sample means: $P_{i}=\frac{1}{m} \sum_{j=1}^{m} X_{i, j}$
- Drop the i for now.
- X_{1}, \ldots, X_{m} may not be independent, but let's pretend.
- $P=\bar{X}_{m}$
- Approximately, $\bar{X}_{m} \sim N\left(\theta, \frac{\theta(1-\theta)}{m}\right)$
- Normality is good.
- Variance that depends on the mean θ is not so good.

Apply the delta method

Central Limit Theorem says

$$
\sqrt{m}\left(\bar{X}_{m}-\theta\right) \xrightarrow{d} T \sim N(0, \theta(1-\theta))
$$

Delta method says

$$
\sqrt{m}\left(g\left(\bar{X}_{m}\right)-g(\theta)\right) \xrightarrow{d} Y \sim N\left(0, g^{\prime}(\theta)^{2} \theta(1-\theta)\right) .
$$

Want a function $g(x)$ with

$$
g^{\prime}(x)=\frac{1}{\sqrt{x(1-x)}}
$$

Try $g(x)=\sin ^{-1}(\sqrt{x})$.
Chain rule to get $\frac{d}{d x} \sin ^{-1}(\sqrt{x})$
"Recall" that $\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$. Then,

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1}(\sqrt{x}) & =\frac{1}{\sqrt{1-\sqrt{x}^{2}}} \cdot \frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2 \sqrt{x(1-x)}}
\end{aligned}
$$

Conclusion:

$$
\sqrt{m}\left(\sin ^{-1}\left(\sqrt{\bar{X}_{m}}\right)-\sin ^{-1}(\sqrt{\theta})\right) \xrightarrow{d} Y \sim N\left(0, \frac{1}{4}\right)
$$

So the arcsin-square root transformation stabilizes the variance

- The variance no longer depends on the probability that the proportion is estimating.
- Does not quite standardize the proportion, but that's okay for regression.
- Potentially useful for non-aggregated data too.
- If we want to do a regression on aggregated data, the point we have reached is that approximately,

$$
Y_{i} \sim N\left(\sin ^{-1}\left(\sqrt{\theta_{i}}\right), \frac{1}{4 m_{i}}\right)
$$

That was fun, but it was all univariate.

Because

- The multivariate CLT establishes convergence to a multivariate normal, and
- Vectors of MLEs are approximately multivariate normal for large samples, and
- The multivariate delta method can yield the asymptotic distribution of useful functions of the MLE vector,

We need to look at random vectors and the multivariate normal distribution.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf12

[^0]: *See last slide for copyright information.

