Chapter 7

Factorial Analysis of Variance

7.1 Concepts

A factor is just another name for a categorical independent variable. The term is usually used in experimental studies with more than one categorical independent variable, where cases (subjects, patients, experimental units) are randomly assigned to treatment conditions that represent combinations of the independent variable values. For example, consider an agricultural study in which the cases are plots of land (small fields), the dependent variable is crop yield in kilograms, and the independent variables are fertilizer type (three values) and type of irrigation (Sprinkler versus Drip). Table 7.1 shows the six treatment combinations, one for each cell of the table.

Table 7.1: A Two-Factor Design

	Fertilizer 1	Fertilizer 2	Fertilizer 3
Sprinker Irrigation			
Drip Irrigation			

Table 7.1 is an example of a complete factorial design, in which data are collected for all combinations of the independent variable values. In an incomplete, or frational factorial design, certain treatment combinations are deliberately omitted, leading to $n=0$ in one or more cells. When done in an organized way ${ }^{1}$, this practice can save quite a bit of money - say, in a crash test study where the cases are automobiles. In this course, we shall mostly confine our attention to complete factorial designs.

Naturally, a factorial study can have more than two factors. The only limitations are imposed by time and budget. And there is more than one vocabulary floating around ${ }^{2}$.

[^0]A three-factor design can also be described as a three-way design; there is one "way" for each dimension of the table of treatment means.

When Sir Ronald Fisher (in whose honour the F-test is named) dreamed up factorial designs, he pointed out that they enable the scientist to investigate the effects of several independent variables at much less expense than if a separate experiment had to be conducted to test each one. In addition, they allow one to ask systematically whether the effect of one independent variable depends on the value of another independent variable. If the effect of one independent variable depends on another, we will say there is an interaction between those variables. This kind of "it depends" conclusion is a lot easier to see when both factors are systematically varied in the same study. Otherwise, one might easily think that the results two studies carried out under somewhat different conditions were inconsistent with one another. We talk about an A "by" B or $A \times B$ interaction. Again, an interaction means "it depends."

A common beginner's mistake is to confuse the idea of an interaction between variables with the idea of a relationship between variables. They are different. Consider a version of Table 7.1 in which the cases are farms and the study is purely observational. A relationship between Irrigation Type and Fertilizer Type would mean that farms using different types of fertilizer tend to use different irrigation systems; in other words, the percentage of farms using Drip irrigation would not be the same for Fertilizer Types 1, 2 and 3. This is something that you might assess with a chi-square test of independence. But an interaction between Irrigation Type and Fertilizer Type would mean that the effect of Irrigation Type on average crop yield depends on the kind of fertilizer used. As we will see, this is equivalent to saying that certain contrasts of the treatment means are not all equal to zero.

7.1.1 Main Effects and Interactions as Contrasts

Testing for main effects by testing contrasts Table 7.2 is an expanded version of Table 7.1. In addition to population crop yield for each treatment combination (denoted by μ_{1} through μ_{6}), it shows marginal means - quantities like $\frac{\mu_{1}+\mu_{4}}{2}$, which are obtained by averaging over rows or columns. If there are differences among marginal means for a categorical independent variable in a two-way (or higher) layout like this, we say there is a main effect for that variable. Tests for main effects are of great interest; they can indicate whether, averaging over the values of the other categorical independent variables in the design, whether the independent variable in question is related to the dependent variable. Note that averaging over the values of other independent variables is not the same thing as controlling for them, but it can still be very informative.

Notice how any difference between marginal means corresponds to a contrast of the treatment means. It helps to string out all the combinations of factor levels into one long categorical independent variable. Let's call this a combination variable. For the crop yield example of Tables 7.1 and 7.2 , the combination variable has six values, corresponding to

[^1]Table 7.2: A Two-Factor Design with Population Means

	Fertilizer			
Irrigation	1	2	3	
Sprinker	μ_{1}	μ_{2}	μ_{3}	$\frac{\mu_{1}+\mu_{2}+\mu_{3}}{3}$
Drip	μ_{4}	μ_{5}	μ_{6}	$\frac{\mu_{4}+\mu_{5}+\mu_{6}}{3}$
	$\frac{\mu_{1}+\mu_{4}}{2}$	$\frac{\mu_{2}+\mu_{5}}{2}$	$\frac{\mu_{3}+\mu_{6}}{2}$	

the six treatment means μ_{1} through μ_{6} in the table. Suppose we wanted to test whether, averaging across fertilizer types, the two irrigation methods result in different average crop yield. This is another way of saying we want to test for difference between two different marginal means.

Sample Question 7.1.1

For the crop yield study of Table 7.2 , suppose we wanted to know whether, averaging across different fertilizers, method of irrigation is related to average crop yield.

1. Give the null hypothesis in symbols.
2. Make a table showing the weights of the contrast or contrasts of treatment means you would test to answer the question. There should be one row for each contrast. The null hypothesis will be that all the contrasts equal zero.

Answer to Sample Question 7.1.1

1. $\frac{\mu_{1}+\mu_{2}+\mu_{3}}{3}=\frac{\mu_{4}+\mu_{5}+\mu_{6}}{3}$
2. | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | -1 | -1 | -1 |

Sample Question 7.1.2

Suppose we wanted to test for the main effect(s) of Irrigation Type.

1. Give the null hypothesis in symbols.
2. Make a table showing the weights of the contrast or contrasts of treatment means you would test to answer the question. There should be one row for each contrast. The null hypothesis will be that all the contrasts equal zero.

Answer to Sample Question 7.1.2

This is the same as Sample Question 7.1.1, and has the same answer.

Sample Question 7.1.3

Suppose we wanted to know whether, averaging across different methods of irrigation, type of fertilizer is related to average crop yield.

1. Give the null hypothesis in symbols.
2. Make a table showing the weights of the contrast or contrasts of treatment means you would test to answer the question. There should be one row for each contrast. The null hypothesis will be that all the contrasts equal zero.

Answer to Sample Question 7.1.3

1. $\frac{\mu_{1}+\mu_{4}}{2}=\frac{\mu_{2}+\mu_{5}}{2}=\frac{\mu_{3}+\mu_{6}}{2}$
2. | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -1 | 0 | 1 | -1 | 0 |
| 0 | 1 | -1 | 0 | 1 | -1 |

In the answers to Sample Questions 7.1.1 and 7.1.3, notice that we are testing differences between marginal means, and the number of contrasts is equal to the number of equals signs in the null hypothesis.

Testing for interactions by testing contrasts Now we will see that tests for interactions - that is, tests for whether the effect of a factor depends on the level of another factor - can also be expressed as tests of contrasts. For the crop yield example, consider this question: Does the effect of Irrigation Type depend on the type of fertilizer used? For Fertilizer Type 1, the effect of Irrigation Type is represented by $\mu_{1}-\mu_{4}$. For Fertilizer Type 2, it is represented by $\mu_{2}-\mu_{5}$, and for Fertilizer Type 2, the effect of Irrigation Type is $\mu_{3}-\mu_{6}$. Thus the null hypothesis of no interaction may be written

$$
\begin{equation*}
H_{0}: \mu_{1}-\mu_{4}=\mu_{2}-\mu_{5}=\mu_{3}-\mu_{6} \tag{7.1}
\end{equation*}
$$

Because it contains two equals signs, the null hypothesis (7.1) is equivalent to saying that two contrasts of the treatment means are equal to zero. Here are the weights of the contrasts, in tabular form.

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
1	-1	0	-1	1	0
0	1	-1	0	-1	1

One way of saying that there is an interaction between Irrigation Method and Fertilizer Type is to say that the effect of Irrigation Method depends on Fertilizer Type, and now it is clear how to set up the null hypothesis. But what if the interaction were expressed in the opposite way, by saying that the effect of Fertilizer Type depends on Irrigation Method? It turns out these two ways of expressing the concept are 100% equivalent. They imply exactly the same null hypothesis, and the significance tests will be identical.

7.1.2 Graphing Interactions

Figure 7.1 shows a hypothetical pattern of population treatment means. There are main effects for both factors, but no interaction.

Figure 7.1: Main Effects But No Interaction

For each irrigation method, the effect of fertilizer type corresponds to a profile - a curve showing the pattern of means for the various fertilizer types. If the profiles are parallel, then the effects of fertilizer type are the same within each irrigation method. In Figure 7.1, the profiles are parallel, meaning there is no interaction. Of course Fertilizer Type is a nominal scale variable; it consists of unordered categories. Still, even though there is nothing in between Fertilizer Types 1 and 2 or between 2 and 3, it helps visually to connect the dots.

There are two natural ways to express the parallel profiles in Figure 7.1. One way is to say that the distance between the curves is the same at every point along the Fertilizer Type axis. This directly gives the null hypothesis in Expression (7.1). The other way for the profiles to be parallel is for the line segments connecting the means for Fertilizer Types 1 and 2 to have the same slope, and for the line segments connecting the means for Fertilizer Types 2 and 3 to have the same slope. That is,

$$
\begin{equation*}
H_{0}: \mu_{2}-\mu_{1}=\mu_{5}-\mu_{4} \text { and } \mu_{3}-\mu_{2}=\mu_{6}-\mu_{5} \tag{7.2}
\end{equation*}
$$

The first statement in Expression (7.2) may easily be re-arranged to yield $\mu_{2}-\mu_{5}=\mu_{1}-\mu_{4}$, while the second statement may be re-arranged to yield $\mu_{3}-\mu_{6}=\mu_{2}-\mu_{5}$. Thus, the null hypotheses in Expressions (7.1) and (7.2) are algebraically equivalent. They are just
different ways of writing the same null hypothesis, and it doesn't matter which one you use. Fortunately, this is a very general phenomenon.

7.1.3 Higher order designs (More than two factors)

The extension to more than two factors is straightforward. Suppose that for each combination of Irrigation Method and Fertilizer Type, a collection of plots was randomly assigned to several different types of pesticide (weed killer). Then we would have three factors: Irrigation Method, Fertilizer Type and Pesticide Type.

- For each independent variable, averaging over the other two variables would give marginal means - the basis for estimating and testing for main effects. That is, there are three (sets of) main effects: one for Irrigation method, one for Fertilizer type, and one for Pesticide type.
- Averaging over each of the independent variables in turn, we would have a two-way marginal table of means for the other two variables, and the pattern of means in that table could show a two-way interaction. That is, there are three 2-facto interactions: Irrigation by Fertilizer, Irrigation by Pesticidde, and Fertilizer by Pesticide.

The full three-dimensional table of means would provide a basis for looking at a threeway, or three-factor interaction. The interpretation of a three-way interaction is that the nature of the two-way interaction depends on the value of the third variable. This principle extends to any number of factors, so we would interpret a six-way interaction to mean that the nature of the 5 -way interaction depends on the value of the sixth variable. How would you graph a three-factor interaction? For each value of the third factor, make a separate two-factor plot like Figure 7.1.

Fortunately, the order in which one considers the variables does not matter. For example, we can say that the A by B interaction depends on the value of C , or that the A by C interaction depends on B, or that the B by C interaction depends on the value of A . The translations of these statements into algebra are all equivalent to one another, and lead to exactly the same test statistics and p-values for any set of data, always.

Here are the three ways of describing the three-factor interaction for the Crop Yeld example.

- The nature of the Irrigation method by Fertilizer type interaction depends on the type of Pesticide.
- The nature of the Irrigation method by Pesticide type interaction depends on the type of Fertilizer.
- The nature of the Pesticide type by Fertilizer interaction depends on the Irrigation method.

Again, these statements are all equivalent. Use the one that is easiest to think about and talk about. This principle extends to any number of factors.

As you might imagine, things get increasingly complicated as the number of factors becomes large. For a four-factor design, there are

- Four (sets of) main effects
- Six two-factor interactions
- Four three-factor interactions
- One four-factor interaction; the nature of the three-factor interaction depends on the value of the 4th factor ...
- There is an F-test for each one

Also, interpreting higher-way interactions - that is, figuring out what they mean - becomes more and more difficult for experiments with large numbers of factors. Once I knew a Psychology graduate student who obtained a significant 5 -way interaction when she analyzed the data for her Ph.D. thesis. Nobody could understand it, so she disappeared for a week. When she came back, she said "I've got it!" But nobody could understand her explanation.

For reasons like this, sometimes the higher-order interactions are deliberately omitted from the full model in big experimental designs; they are never tested. Is this reasonable? Most of my answers are just elaborate ways to say I don't know.

Regardless of how many factors we have, or how many levels there are in each factor, one can always form a combination variable - that is, a single categorical independent variable whose values represent all the combinations of independent variable values in the factorial design. Then, tests for main effects and interactions appear as test for collections of contrasts on the combination variable. This is helpful, for at least three reasons.

1. Thinking of an interaction as a collection of contrasts can really help you understand what it means. And especially for big designs, you need all the help you can get.
2. Once you have seen the tests for main effects and interactions as collections of contrasts, it is straightforward to compose a test for any collection of effects (or components of an effect) that is of interest.
3. Seeing main effects and interactions in terms of contrasts makes it easy to see how they can be modified to become Bonferroni or Scheffé follow-ups to an initial significant one-way ANOVA on the combination variable - if you choose to follow this conservative data analytic strategy.

7.1.4 Effect coding

While it is helpful to think of main effects and interactions in terms of contrasts, the details become unpleasant for designs with more than two factors. The combination variables become long, and thinking of interactions as collections of differences between differences of differences can give you a headache. An alternative is to use a regression
model with dummy variable coding. For almost any regression model with interactions between categorical independent variabls, the easiest dummy variable coding scheme is effect coding.

Recall from Section 5.6.3 (see page 125) that effect coding is just like indicator dummy variable coding with an intercept, except that the last category gets a minus one instead of a zero. For a single categorical independent variable (factor), the regression coefficients are deviations of the treatment means from the grand mean, or mean of treatment means. Thus, the regression coefficients are exactly the effects as described in standard textbooks on the analysis of variance.

For the two-factor Crop Yield study of Table 7.1 on page 166, here is how the effect coding dummy variables would be defined for Fertiziler type and Irrigation method (Water).

Fertilizer	f_{1}	f_{2}
1	1	0
2	0	1
3	-1	-1

Water	w
Sprinkler	1
Drip	-1

As in the quantitative by quantitative case (page 133) than the quantitative by categorical case (page 133) the interaction effects are the regression coefficients corresponding to products of independent variables. For a two-factor design, the products come from multiplying each dummy variable for one factor by each dummy variable for the other factor. You never multiply dummy variables for the same factor with each other. Here is the regression equation for conditional expected crop yield.

$$
E[Y \mid \mathbf{X}]=\beta_{0}+\beta_{1} f_{1}+\beta_{2} f_{2}+\beta_{3} w+\beta_{4} f_{1} w+\beta_{5} f_{2} w
$$

The last two independent variables are quite literally the products of the dummy variables for Fertilizer type and Irrigation method.

To understand what we have, let's make a table showing the conditional expected value of the depedent varable for each treatment combination. That's correct but not

Table 7.3: Expected values in terms of regression coefficients with effect coding: Crop yield study

Fertilizer	Water	f_{1}	f_{2}	w	$f_{1} w$	$f_{2} w$	$E[Y \mid \mathbf{X}]$
1	Sprinkler	1	0	1	1	0	$\beta_{0}+\beta_{1}+\beta_{3}+\beta_{4}$
1	Drip	1	0	-1	-1	0	$\beta_{0}+\beta_{1}-\beta_{3}-\beta_{4}$
2	Sprinkler	0	1	1	0	1	$\beta_{0}+\beta_{2}+\beta_{3}+\beta_{5}$
2	Drip	0	1	-1	0	-1	$\beta_{0}+\beta_{2}-\beta_{3}-\beta_{5}$
3	Sprinkler	-1	-1	1	-1	-1	$\beta_{0}-\beta_{1}-\beta_{2}+\beta_{3}-\beta_{4}-\beta_{5}$
3	Drip	-1	-1	-1	1	1	$\beta_{0}-\beta_{1}-\beta_{2}-\beta_{3}+\beta_{4}+\beta_{5}$

very informative, yet. In Table 7.4, the means are arranged in a row by column form like Table 7.2, except that rows and columns are transposed because it fits better on the page that way.

Table 7.4: Cell and marginal means in terms of regression coefficients with effect coding

	Irrigation		
Fert	Sprinkler	Drip	
1	$\mu_{1}=\beta_{0}+\beta_{1}+\beta_{3}+\beta_{4}$	$\mu_{4}=\beta_{0}+\beta_{1}-\beta_{3}-\beta_{4}$	$\frac{\mu_{1}+\mu_{4}}{2}=\beta_{0}+\beta_{1}$
2	$\mu_{2}=\beta_{0}+\beta_{2}+\beta_{3}+\beta_{5}$	$\mu_{5}=\beta_{0}+\beta_{2}-\beta_{3}-\beta_{5}$	$\frac{\mu_{2}+\mu_{5}}{2}=\beta_{0}+\beta_{2}$
3	$\mu_{3}=\beta_{0}-\beta_{1}-\beta_{2}+\beta_{3}-\beta_{4}-\beta_{5}$	$\mu_{6}=\beta_{0}-\beta_{1}-\beta_{2}-\beta_{3}+\beta_{4}+\beta_{5}$	$\frac{\mu_{3}+\mu_{6}}{2}=\beta_{0}-\beta_{1}-\beta_{2}$
	$\frac{\mu_{1}+\mu_{2}+\mu_{3}}{3}=\beta_{0}+\beta_{3}$	$\frac{\mu_{4}+\mu_{4}+\mu_{6}}{3}=\beta_{0}-\beta_{3}$	$\frac{1}{6} \sum_{j=1}^{6} \mu_{j}=\beta_{0}$

Immediately, it is clear what $\beta_{0}, \beta_{1}, \beta_{2}$ and β_{3} mean.

- The intercept β_{0} is the grand mean - the mean of (population) treatment means. It is also the mean of the marginal means, averaging over either rows or columns.
- β_{1} is the difference between the marginal mean for Fertilizer Type 1 and the grand mean.
- β_{2} is the difference between the marginal mean for Fertilizer Type 2 and the grand mean.
- So β_{1} and β_{2} are main effects for Fertilizer Type ${ }^{3}$. The marginal means for fertilizer Type are equal if and only if $\beta_{1}=\beta_{2}=0$.
- β_{3} is the difference between the marginal mean for Irrigation by Sprinkler and the grand mean. And, $\beta_{3}=0$ if an only if the two marginal means for Irrigation method are equal.

Furthermore, the two remaining regression coefficients - the ones corresponding to the product terms - are interaction effects. On page 169, the interaction between Irrigation method and Fertilizer type was expressed by saying that the effect of Irrigation method depended on Fertilizer type. The null hypothesis was that the effect of Irrigation method was identical for the three Fertilizer types. In other words, we had (Equation 7.1)

$$
H_{0}: \mu_{1}-\mu_{4}=\mu_{2}-\mu_{5}=\mu_{3}-\mu_{6}
$$

Using Table 7.4 and substituting for the $\mu \mathrm{s}$ in terms of $\beta \mathrm{s}$, a little algebra shows that this null hypothesis is equivalent to

$$
\beta_{4}=\beta_{5}=-\beta_{4}-\beta_{5} .
$$

[^2]This, in turn, is equivalent to saying that $\beta_{4}=\beta_{5}=0$. So to test for an interaction, we just test whether the regression coefficients for the product terms equal zero.

General Rules Everything in this example generalizes nicely to an arbitrary number of factors.

- The regression model has an intercept.
- Define effect coding dummy variables for each factor. If the factor has k levels, there will be $k-1$ dummy variables. Each dummy variable has a one for one of the factor levels, minus one for the last level, and zero for the rest.
- Form new independent variables that are products of the dummy variables. For any pair of factors A and B, multiply each dummy variable for A by each dummy variable for B.
- If there are more than two factors, form all three-way products, 4 -way products, and so on.
- It's not hard to get all the products for a multifactor design without missing any. After you have calculated all the products for factors A and B, take the dummy variables for factor C and
- Multiply each dummy variable for C by each dummy variable for A. These products correspond to the $A \times C$ interaction.
- Multiply each dummy variable for C by each dummy variable for B. These products correspond to the $B \times C$ interaction.
- Multiply each dummy variable for C by each $A \times B$ product. These threevariable products correspond to the $A \times B \times C$ interaction.
- It is straightforward to extend the process, multiplying each dummy variable for a fourth factor D by the dummy variables and products in the $A \times B \times C$ set. And so on there.
- To test main effects (differences between marginal means) for a factor, the null hypothesis is that the regression coefficients for that factor's dummy variables are all equal to zero.
- For any two-factor interaction, test the regression coefficients corresponding to the two-way products. For three-factor interactions, test the three-way products, and so on.
- Quantitative covariates may be included in the model, with or without interactions between covariates, or between covariates and factors. They work as expected. Multi-factor analysis of covariance is just a big multiple regression model.

7.2 Two-factor ANOVA with SAS: The Potato Data

This was covered in class.

7.3 Another example: The Greenhouse Study

This is an extension of the tubes example (see page 77) of Section 3.3. The seeds of the canola plant yield a high-quality cooking oil. Canola is one of Canada's biggest cash crops. But each year, millions of dollars are lost because of a fungus that kills canola plants. Or is it just one fungus? All this stuff looks the same. It's a nasty black rot that grows fastest under moist, warm conditions. It looks quite a bit like the fungus that grows in between shower tiles.

A team of botanists recognized that although the fungus may look the same, there are actually several different kinds that are genetically distinct. There are also quite a few strains of canola plant, so the questions arose

- Are some strains of fungus more aggressive than others? That is, do they grow faster and overwhelm the plant's defenses faster?
- Are some strains of canola plant more vulnerable to infection than others?
- Are some strains of fungus more dangerous to certain strains of plant and less dangerous to others?

These questions can be answered directly by looking at main effects and the interaction, so a factorial experiment was designed in which canola plants of three different varieties were randomly selected to be infected with one of six genetically different types of fungus. The way they did it was to scrape a little patch at the base of the plant, and wrap the wound with a moist band-aid that had some fungus on it. Then the plant was placed in a very moist dark environment for three days. After three days the bandage was removed and the plant was put in a commercial greenhouse. On each of 14 consecutive days, various measurements were made on the plant. Here, we will be concerned with lesion length, the length of the fungus patch on the plant, measured in millimeters.

The dependent variable will be mean lesion length; the mean is over the 14 daily lesion length measurements for each plant. The independent variables are Cultivar (type of canola plant) and MCG (type of fungus). Type of plant is called cultivar because the fungus grows (is "cultivated") on the plant. MCG stands for "Mycelial Compatibility Group." This strange name comes from the way that the botanists decided whether two types of fungus were genetically distinct. The would grow two samples on the same dish in a nutrient solution, and if the two fungus patches stayed separate, they were genetically different. If they grew together into a single patch of fungus (that is, they were compatible), then they were genetically identical. Apparently, this phenomenon is well established.

Here is the SAS program green1.sas. As usual, the entire program is listed first. Then pieces of the program are repeated, together with pieces of output and discussion.

```
/* green1.sas */
%include 'ghread.sas';
options pagesize=100;
proc freq;
    tables plant*mcg /norow nocol nopercent;
proc glm;
    class plant mcg;
    model meanlng = plant|mcg;
    means plant|mcg;
proc tabulate;
    class mcg plant;
    var meanlng ;
    table (mcg all),(plant all) * (mean*meanlng);
/* Replicate tests for main effects and interactions, using contrasts on a combination variable. This is the hard way to do it, but if you can do this, you understand interactions and you can test any collection of contrasts. The definition of the variable combo could have been in ghread.sas */
data slime;
set mould; /* mould was created by ghread91.sas */
if \(\quad\) plant=1 and \(\mathrm{mcg}=1\) then combo \(=1\);
else if plant=1 and mcg=2 then combo \(=2\);
else if plant=1 and mcg=3 then combo \(=3\);
else if plant=1 and mcg=7 then combo \(=4\);
else if plant \(=1\) and \(\mathrm{mcg}=8\) then combo \(=5\);
else if plant=1 and mcg=9 then combo \(=6\);
else if plant=2 and mcg=1 then combo \(=7\);
else if plant=2 and mcg=2 then combo \(=8\);
else if plant=2 and mcg=3 then combo \(=9\);
else if plant=2 and mcg=7 then combo = 10;
else if plant=2 and mcg=8 then combo \(=11\);
else if plant \(=2\) and \(\mathrm{mcg}=9\) then combo \(=12\);
else if plant=3 and mcg=1 then combo = 13;
else if plant \(=3\) and \(\mathrm{mcg}=2\) then combo \(=14\);
else if plant=3 and mcg=3 then combo \(=15\);
else if plant=3 and mcg=7 then combo = 16;
else if plant=3 and mcg=8 then combo \(=17\);
else if plant \(=3\) and \(\mathrm{mcg}=9\) then combo \(=18\);
label combo = 'Plant-MCG Combo';
/* Getting main effects and the interaction with CONTRAST statements */ proc glm;
```

class combo;
model meanlng = combo;
contrast 'Plant Main Effect'
combo $1 \begin{array}{llllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0,\end{array}$
combo $0 \begin{array}{llllllllllllllllll} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 ;\end{array}$
contrast 'MCG Main Effect'
combo 1-1 $\begin{gathered}-1 \\ 0\end{gathered} 0$ combo $001 \begin{array}{lllllllllllllllll} & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0,\end{array}$ combo 0 $00 \begin{aligned} & 1 \\ & -1\end{aligned} 0$
 combo $0 \quad 0 \quad 0 \quad 0 \quad 1-1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1-1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1-1$;
contrast 'Plant by MCG Interaction'

combo	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0,
combo	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0,
combo	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0,
combo	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0,
combo	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	$-1 ;$

/* proc reg's test statement may be easier, but first we need to
make 16 dummy variables for cell means coding. This will illustrate arrays and loops, too */
data yucky;
set slime;
array mu\{18\} mu1-mu18;
do $i=1$ to 18 ;
if combo=. then mu\{i\}=.;
else if combo=i then mu\{i\}=1;
else mu\{i\}=0;
end;
proc reg;
model meanlng = mu1-mu18 / noint;
alleq: test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12 $=\operatorname{mu} 13=\mathrm{mu} 14=\mathrm{mu} 15=\mathrm{mu} 16=\mathrm{mu} 17=\mathrm{mu} 18$;
plant: test mu1+mu2+mu3+mu4+mu5+mu6 $=m u 7+m u 8+m u 9+m u 10+m u 11+m u 12$, $\mathrm{mu} 7+\mathrm{mu} 8+\mathrm{mu} 9+\mathrm{mu} 10+\mathrm{mu} 11+\mathrm{mu} 12=\mathrm{mu} 13+\mathrm{mu} 14+\mathrm{mu} 15+\mathrm{mu} 16+\mathrm{mu} 17+\mathrm{mu} 18 ;$

```
    fungus: test mu1+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15
    = mu4+mu10+mu16 = mu5+mu11+mu17 = mu6+mu12+mu18;
p_by_f: test mu2-mu1=mu8-mu7=mu14-mu13,
    mu3-mu2=mu9-mu8=mu15-mu14,
    mu4-mu3=mu10-mu9=mu16-mu15,
    mu5-mu4=mu11-mu10=mu17-mu16,
    mu6-mu5=mu12-mu11=mu18-mu17;
/* Now illustrate effect coding, with the interaction represented by a
        collection of product terms. */
data nasty;
    set yucky;
    /* Two dummy variables for plant */
        if plant=. then p1=.;
        else if plant=1 then p1=1;
        else if plant=3 then p1=-1;
        else p1=0;
    if plant=. then p2=.;
        else if plant=2 then p2=1;
        else if plant=3 then p2=-1;
        else p2=0;
    /* Five dummy variables for mcg */
    if mcg=. then f1=.;
        else if mcg=1 then f1=1;
        else if mcg=9 then f1=-1;
        else f1=0;
    if mcg=. then f2=.;
        else if mcg=2 then f2=1;
        else if mcg=9 then f2=-1;
        else f2=0;
    if mcg=. then f3=.;
        else if mcg=3 then f3=1;
        else if mcg=9 then f3=-1;
        else f3=0;
    if mcg=. then f4=.;
        else if mcg=7 then f4=1;
        else if mcg=9 then f4=-1;
        else f4=0;
    if mcg=. then f5=.;
        else if mcg=8 then f5=1;
        else if mcg=9 then f5=-1;
        else f5=0;
```

```
/* Product terms for interactions */
    p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;
    p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;
    model meanlng = p1 -- p2f5;
    plant: test p1=p2=0;
    mcg: test f1=f2=f3=f4=f5=0;
    p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;
```

proc reg;

The SAS program starts with a \%include statement that reads ghread.sas. The file ghread.sas consists of a single big data step. We'll skip it, because all we really need are the two independent variables plant and mcg , and the dependent variable meanlng.

Just to see what we've got, we do a proc freq to show the sample sizes.
proc freq;
tables plant*mcg /norow nocol nopercent;
and we get
TABLE OF PLANT BY MCG
PLANT(Type of Plant) MCG(Mycelial Compatibility Group)

Frequency ${ }^{\text {l }}$	1 \|	2	3	71	8	9	Total
GP159	61	6	6	6	6	6	36
HANNA	61	6	6	6	6	6	36
WESTAR	61	6	6	6	6	6	36
Total	18	18	18	18	18	8	108

So it's a nice 3 by 6 factorial design, with 6 plants in each treatment combination. The proc glm for analyzing this is straightforward. Again, we get all main effects and interactions for the factor names separated by vertical bars.

```
proc glm;
    class plant mcg;
    model meanlng = plant|mcg;
    means plant|mcg;
```

And the output is

General Linear Models Procedure Class Level				
Information				
Class			Levels	Values
:---				
PLANT				
MCG				

Number of observations in data set $=108$

1991 Greenhouse Study 3						
General Linear Models Procedure						
Dependent Variable: MEANLNG Average Lesion length						
Source	DF	Squares	Square		Value	Pr > F
Model	17	328016.87350	19295.11021		19.83	0.0001
Error	90	87585.62589	973.17362			
Corrected Total	107	415602.49939				
	R-Square	C.V.	Root MSE	MEANLNG Mean		
	0.789256	48.31044	31.195731	64.573479		
Source	DF	Type I SS	Mean Square	F	Value	$\mathrm{Pr}>\mathrm{F}$
PLANT	2	221695.12747	110847.56373		113.90	0.0001
MCG	5	58740.26456	11748.05291		12.07	0.0001
PLANT*MCG	10	47581.48147	4758.14815		4.89	0.0001
Source	DF	Type III SS	Mean Square		Value	Pr > F
PLANT	2	221695.12747	110847.56373		113.90	0.0001
MCG	5	58740.26456	11748.05291		12.07	0.0001
PLANT*MCG	10	47581.48147	4758.14815		4.89	0.0001

Notice that the Type I and Type III tests are the same. This always happens when the sample sizes are equal. Now we take a look at marginal means and cell (treatment) means. This is the output of the means statement of proc glm.

1991 Greenhouse Study
General Linear Models Procedure

Level of PLANT	N	Mean	SD
GP159	36	14.055159	12.1640757
HANNA	36	55.700198	30.0137912
WESTAR	36	123.965079	67.0180440
Level of			
MCG	N	Mean	SD
1	18	41.4500000	33.6183462
2	18	92.1333333	78.3509451
3	18	87.5857143	61.7086751
7	18	81.7603175	82.6711755
8	18	50.8579365	39.3417859
9	18	33.6535714	39.1480830

Level of	Level of			
PLANT	MCG	N	Mean	SD
GP159	1	6	12.863095	12.8830306
GP159	2	6	21.623810	17.3001296
GP159	3	6	14.460714	7.2165396
GP159	7	6	17.686905	16.4258441
GP159	8	6	8.911905	7.3162618
GP159	9	6	8.784524	6.5970501
HANNA	1	6	45.578571	26.1430472
HANNA	2	6	67.296429	30.2424997
HANNA	3	6	94.192857	20.2877876
hanna	7	6	53.621429	24.8563497
HANNA	8	6	47.838095	12.6419109
HANNA	9	6	25.673810	17.1723150
WESTAR	1	6	65.908333	35.6968616
WESTAR	2	6	187.479762	45.1992178

WESTAR	3	6	154.103571	26.5469183
WESTAR	7	6	173.972619	79.1793105
WESTAR	8	6	95.823810	22.3712022
WESTAR	9	6	66.502381	52.5253101

The marginal are fairly easy to look at, and we definitely can construct a plot from the 18 cell means (or copy them into a nicer-looking table. But the following proc tabulate does the grunt work. In general, it's usually preferable to get the computer to do clerical tasks for you, especially if it's something you might want to do more than once.

```
proc tabulate;
    class mcg plant;
    var meanlng ;
    table (mcg all),(plant all) * (mean*meanlng);
```

The syntax of proc tabulate is fairly elaborate, but at times it's worth the effort. Any reader who has seen the type of stub-and-banner tables favoured by professional market researchers will be impressed to hear that proc tabulate can come close to that. I figured out how to make the table below by looking in the manual. I then promptly forgot the overall principles, because it's not a tool I use a lot - and the syntax is rather arcane. However, this example is easy to follow if you want to produce good-looking two-way tables of means. Here's the output.

The proc tabulate output makes it easy to graph the means. But before we do so, let's look at the main effects and interactions as collections of contrasts. This will actually make it easier to figure out what the results mean, once we see what they are.

We have a three by six factorial design that looks like this. Population means are shown in the cells. The single-subscript notation encourages us to think of the combination of MCG and cultivar as a single categorical independent variable with 18 categories.

Table 7.5: Cell Means for the Greenhouse Study

	MCG (Type of Fungus)					
Cultivar (Type of Plant)	1	2	3	7	8	9
GP159	μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	μ_{6}
Hanna	μ_{7}	μ_{8}	μ_{9}	μ_{10}	μ_{11}	μ_{12}
Westar	μ_{13}	μ_{14}	μ_{15}	μ_{16}	μ_{17}	μ_{18}

Next is the part of the SAS program that creates the combination variable. Notice that it involves a data step that comes after the proc glm. This usually doesn't happen. I did it by creating a new data set called slime that starts by being identical to mould, which was created in the file ghread.sas. The set command is used to read in the data set mould, and then we start from there. This is done just for teaching purposes. Ordinarily, I would not create multiple data sets that are mostly copies of each other. I'd put the whole thing in one data step. Here's the code. Because all 18 possibilities are mentioned explicitly, anything else (like a missing value) is automatically missing.

```
data slime;
    set mould; /* mould was created by ghread91.sas */
    if plant=1 and mcg=1 then combo = 1;
        else if plant=1 and mcg=2 then combo = 2;
        else if plant=1 and mcg=3 then combo = 3;
        else if plant=1 and mcg=7 then combo = 4;
        else if plant=1 and mcg=8 then combo = 5;
```

```
    else if plant=1 and mcg=9 then combo = 6;
    else if plant=2 and mcg=1 then combo = 7;
    else if plant=2 and mcg=2 then combo = 8;
    else if plant=2 and mcg=3 then combo = 9;
    else if plant=2 and mcg=7 then combo = 10;
    else if plant=2 and mcg=8 then combo = 11;
    else if plant=2 and mcg=9 then combo = 12;
    else if plant=3 and mcg=1 then combo = 13;
    else if plant=3 and mcg=2 then combo = 14;
    else if plant=3 and mcg=3 then combo = 15;
    else if plant=3 and mcg=7 then combo = 16;
    else if plant=3 and mcg=8 then combo = 17;
    else if plant=3 and mcg=9 then combo = 18;
label combo = 'Plant-MCG Combo';
```

From Table 7.50 n page 184, iIt is clear that the absence of a main effect for Cultivar is the same as.

$$
\begin{equation*}
\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}=\mu_{7}+\mu_{8}+\mu_{9}+\mu_{10}+\mu_{11}+\mu_{12}=\mu_{13}+\mu_{14}+\mu_{15}+\mu_{16} . \tag{7.3}
\end{equation*}
$$

There are two equalities here, and they are saying that two contrasts of the eighteen cell means are equal to zero. To see why this is true, recall that a contrast of the 18 treatment means is a linear combination of the form

$$
L=a_{1} \mu_{1}+a_{1} \mu_{2}+\ldots+a_{18} \mu_{18}
$$

where the a weights add up to zero. The table below gives the weights of the contrasts defining the test for the main effect of plant, one set of weights in each row. The first row corresponds to the first equals sign in Equation 7.3. It says that

$$
\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}-\left(\mu_{7}+\mu_{8}+\mu_{9}+\mu_{10}+\mu_{11}+\mu_{12}\right)=0 .
$$

The second row corresponds to the first equals sign in Equation 7.3. It says that

$$
\mu_{7}+\mu_{8}+\mu_{9}+\mu_{10}+\mu_{11}+\mu_{12}-\left(\mu_{13}+\mu_{14}+\mu_{15}+m u_{16}\right)=0
$$

Table 7.6: Weights of the linear combinations for testing a main effect of cultivar

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}
1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1

Table 7.6 is the basis of the first contrast statement in proc glm. Notice how the contrasts are separated by commas. Also notice that the variable on which we're doing contrasts (combo) has to be repeated for each contrast.

```
/* Getting main effects and the interaction with CONTRAST statements */
proc glm;
    class combo;
    model meanlng = combo;
    contrast 'Plant Main Effect'
        combo 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0
        combo 0
```

If there is no main effect for MCG, we are saying
$\mu_{1}+\mu_{7}+\mu_{13}=\mu_{2}+\mu_{8}+\mu_{14}=\mu_{3}+\mu_{9}+\mu_{15}=\mu_{4}+\mu_{10}+\mu_{16}=\mu_{5}+\mu_{11}+\mu_{17}=\mu_{6}+\mu_{12}+\mu_{18}$.
There are 5 contrasts here, one for each equals sign; there is always an equals sign for each contrast. Table 7.7 shows the weights of the contrasts.

Table 7.7: Weights of the linear combinations for testing a main effect of MCG (Fungus type)

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}
1	-1	0	0	0	0	1	-1	0	0	0	0	1	-1	0	0	0	0
0	1	-1	0	0	0	0	1	-1	0	0	0	0	1	-1	0	0	0
0	0	1	-1	0	0	0	0	1	-1	0	0	0	0	1	-1	0	0
0	0	0	1	-1	0	0	0	0	1	-1	0	0	0	0	1	-1	0
0	0	0	0	1	-1	0	0	0	0	1	-1	0	0	0	0	1	-1

And here is the corresponding test statement in proc glm.

```
contrast 'MCG Main Effect'
    combo 1 -1 0
    combo 0 1 1-1 0
    combo 0 0 0 1 -1 0}0
    combo 0 0 0 0 1-1 0 0
    combo 0 0 0 0 0 1 1-1 0
```

To compose the Plant by MCG interaction, consider the hypothetical graph in Figure 7.2. You can think of the "effect" of MCG as a profile, representing a pattern of differences among means. If the three profiles are the same shape for each type of plant - that is, if they are parallel, the effect of MCG does not depend on the type of plant, and there is no interaction.

Figure 7.2: No Interaction

For the profiles to be parallel, each set of corresponding line segments must be parallel. To start with the three line segments on the left, the rise represented by $\mu_{2}-\mu_{1}$ must equal the rise $\mu_{8}-\mu_{7}$, and $\mu_{8}-\mu_{7}$ must equal $\mu_{1} 4-\mu_{1} 3$. This is two contrasts that equal zero under the null hypothesis

$$
\mu_{2}-\mu_{1}-\mu_{8}+\mu_{7}=0 \text { and } \mu_{8}-\mu_{7}-\mu_{14}+\mu_{13}=0
$$

There are two contrasts for each of the four remaining sets of three line segments, for a total of ten contrasts. They appear directly in the contrast statement of proc glm. Notice how each row adds to zero; these are contrasts, not just linear combinations.

```
contrast 'Plant by MCG Interaction'
\begin{tabular}{lrrrrrrrrrrrrrrrrrr} 
combo & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0, \\
combo & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0, \\
combo & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0, \\
combo & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0, \\
combo & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0, \\
combo & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0, \\
combo & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0, \\
combo & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0, \\
combo & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0, \\
combo & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & \(-1 ;\)
\end{tabular}
```

Now we can compare the tests we get from these contrast statements with what we got from a two-way ANOVA. For easy reference, here is part of the two-way output.

Source	DF	Type III SS	Mean Square	F Value	Pr $>$ F
PLANT	2	221695.12747	110847.56373	113.90	0.0001
MCG	5	58740.26456	11748.05291	12.07	0.0001
PLANT*MCG	10	47581.48147	4758.14815	4.89	0.0001

And here is the output from the contrast statements.

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Plant Main Effect	2	221695.12747	110847.56373	113.90	0.0001
MCG Main Effect	5	58740.26456	11748.05291	12.07	0.0001
Plant by MCG Interac	10	47581.48147	4758.14815	4.89	0.0001

So it worked. Here are some comments.

- Of course this is not the way you'd want to test for main effects and interactions. On the contrary, it makes you appreciate all the work that glm does for you when you say model meanlng = plant|mcg;
- These contrasts are supposed to be an aid to understanding - understanding what main effects and interactions really are, and understanding how you can test nearly any hypothesis you can think of in a multi-factor design. Almost without exception, what you want to do is test whether some collection of contrasts are equal to zero. Now you can do it, whether the collection you're interested in happens to be standard, or not.
- On the other hand, this was brutal. The size of the design made specifying those contrasts an unpleasant experience. There is an easier way.

Cell means coding Because the test statement of proc reg has a more flexible syntax than the contrast statement of proc glm, it's a lot easier if you use cell means dummy variable coding, fit a model with no intercept in proc reg, and use test statements. In the following example, the indicator dummy variables are named μ_{1} to μ_{18}. This choice makes it possible to directly transcribe statements about the population cell means into test statements ${ }^{4}$. I highly recommend it. Of course if you really hate Greek letters, you could always name them m_{1} to m_{18} or something.

[^3]First, we need to define 18 dummy variables. In general, it's a bit more tedious to define dummy variables than to make a combination variable. Here, I use the combination variable combo (which has already been created) to make the task a bit easier - and also to illustrate the use of arrays and loops in the data step. The data set yucky below is the same as slime, except that it also has the eighteen indicators for the 18 combinations of plant and mcg. It's pretty self-explanatory, except that the name of the array does not need to be the same as the names of the variables. All you need is a valid SAS name for the array, and a list of variables. There can be more than one array statement, so you can have more than one array.
/* proc reg's test statement may be easier, but first we need to make 16 dummy variables for cell means coding. This will illustrate arrays and loops, too */
data yucky;
set slime;
array mu\{18\} mu1-mu18;
do $i=1$ to 18 ;
if combo=. then mu\{i\}=.;
else if combo=i then $\operatorname{mu}\{i\}=1$;
else mu\{i\}=0;
end;
proc reg;
model meanlng = mu1-mu18 / noint;
alleq: test mu1 $=\mathrm{mu} 2=\mathrm{mu} 3=\mathrm{mu} 4=\mathrm{mu} 5=\mathrm{mu} 6=\mathrm{mu} 7=\mathrm{mu} 8=\mathrm{mu} 9=\mathrm{mu} 10=\mathrm{mu} 11=\mathrm{mu} 12$
$=\mathrm{mu} 13=\mathrm{mu} 14=\mathrm{mu} 15=\mathrm{mu} 16=\mathrm{mu} 17=\mathrm{mu} 18$;
plant: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12,
$\mathrm{mu} 7+\mathrm{mu} 8+\mathrm{mu} 9+\mathrm{mu} 10+\mathrm{mu} 11+\mathrm{mu} 12=\mathrm{mu} 13+\mathrm{mu} 14+\mathrm{mu} 15+\mathrm{mu} 16+\mathrm{mu} 17+\mathrm{mu} 18 ;$
fungus: test mu1+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15
$=$ mu4 $+\mathrm{mu} 10+\mathrm{mu} 16=\mathrm{mu} 5+\mathrm{mu} 11+\mathrm{mu} 17=\mathrm{mu} 6+\mathrm{mu} 12+\mathrm{mu} 18$;
p_by_f: test mu2-mu1=mu8-mu7=mu14-mu13,
mu3-mu2 $=\mathrm{mu} 9-\mathrm{mu} 8=\mathrm{mu} 15-\mathrm{mu} 14$,
mu4-mu3=mu10-mu9=mu16-mu15,
mu5-mu4=mu11-mu10=mu17-mu16,
mu6-mu5=mu12-mu11=mu18-mu17;

Looking again at the table of means (Table 7.5 on page 184), it's easy to see how natural the syntax is. And again, the tests are correct. First, repeat the output from the contrast statements of proc glm (which matched the proc glm two-way ANOVA output).

Contrast	DF	Contrast SS	Mean Square	F Value	Pr $>$ F
Plant Main Effect	2	221695.12747	110847.56373	113.90	0.0001
MCG Main Effect	5	58740.26456	11748.05291	12.07	0.0001
Plant by MCG Interac	10	47581.48147	4758.14815	4.89	0.0001

Then, compare output from the test statements of proc reg.

Dependent Variable: MEANLNG
Test: ALLEQ Numerator: 19295.1102 DF: 17 F value: 19.8270
Denominator: 973.1736 DF: 90 Prob>F: 0.0001
Dependent Variable: MEANLNG
Test: PLANT Numerator: 110847.5637 DF: 2 F value: 113.9032 Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG
Test: FUNGUS Numerator: 11748.0529 DF: 5 F value: 12.0719 Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG
Test: P_BY_F Numerator: 4758.1481 DF: 10 F value: 4.8893 Denominator: $973.1736 \mathrm{DF}: 90$ Prob>F: 0.0001

Okay, now we know how to do anything. Finally, it is time to graph the interaction, and find out what these results mean!

Figure 7.3: Plant by MCG: Mean Lesion Length

First, we see a sizable and clear main effect for Plant. In fact, going back to the analysis of variance summary tables and dividing the Sum of Squares explained by Plant by the Total Sum of Squares, we observe that Plant explains around 53 percent of the variation in mean lesion length. That's huge. We will definitely want to look at pairwise comparisons of marginal means, too; we'll get back to this later.

Looking at the pattern of means, it's clear that while the main effect of fungus type is statistically significant, this is not something that should be interpreted, because which one is best (worst) depends on the type of plant. That is, we need to look at the interaction.

Before proceeding I should mention that many text advise us to never interpret main effects if the interaction is statistically significant. I disagree, and Figure 7.3 is a good example of why. It is clear that while the magnitudes of the differences depend on type of fungus, the lesion lengths are generally largest on Westar and smallest on GP159. So averaging over fungus types is a reasonable thing to do.

This does not mean the interaction should be ignored; the three profiles really look different. In particular, GP159 not only has a smaller average lesion length, but it seems to exhibit less responsiveness to different strains of fungus. A test for the equality of μ_{1} through μ_{6} would be valuable. Pairwise comparisons of the 6 means for Hanna and the 6 means for Westar look promising, too.

A Brief Consideration of Multiple Comparisons The mention of pairwise comparisons brings up the issue of formal multiple comparison follow-up tests for this problem. The way people often do follow-up tests for factorial designs is to make a combination variable and then do all pairwise comparisons. It seems like they do this because they think it's the only thing the software will let them do. Certainly it's better than nothing. Here are some comments:

- With SAS, pairwise comparisons of cell means are not the only thing you can do. Proc glm will do all pairwise comparisons of marginal means quite easily. This means it's easy to follow up a significant and meaningful main effect.
- For the present problem, there are 120 possible pairwise comparisons of the 16 cell means. If we do all these as one-at-a-time tests, the chances of false significance are certainly mounting. There is a strong case here for protectng the tests at a single joint significance level.
- Since the sample sizes are equal, Tukey tests are most powerful for all pairwise comparisons. But it's not so simple. Pairwise comparisons within plants (for example, comparing the 6 means for Westar) are interesting, and pairwise comparisons within fungus types (for example, comparison of Hanna, Westar and GP159 for fungus Type 1) are interesting, but the remaining 57 pairwise comparisons are a lot less so.
- Also, pairwise comparisons of cell means are not all we want to do. We've already mentioned the need for pairwise comparisons of the marginal means for plants, and
we'll soon see that other, less standard comparisons are of interest.

Everything we need to do will involve testing collections of contrasts. The approach we'll take is to do everything as a one-at-a-time custom test initially, and then figure out how we should correct for the fact that we've done a lot of tests.

It's good to be guided by the data. Here we go. The analyses will be done in the SAS program green2.sas. As usual, the entire program is given first. But you should be aware that the program was written one piece at a time and executed many times, with later analyses being suggested by the earlier ones.

The program starts by reading in the file ghbread.sas, which is just ghread.sas with the additional variables defined (especially combo and mu1 through mu18) that were defined in green1.sas.

```
/* green2.sas: */
%include 'ghbread.sas';
options pagesize=100;
proc glm;
    title 'Repeating initial Plant by MCG ANOVA, full design';
    class plant mcg;
    model meanlng = plant|mcg;
    means plant|mcg;
```

/* A. Pairwise comparisons of marginal means for plant, full design
B. Test all GP159 means equal, full design
C. Test profiles for Hanna \& Westar parallel, full design */
proc reg;
model meanlng = mu1-mu18 / noint;
A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
B_G159eq: test mu1=mu2=mu3=mu4=mu5=mu6;
C_HWpar: test mu8-mu7=mu14-mu13, mu9-mu8=mu15-mu14,
mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,
mu12-mu11=mu18-mu17;
/* D. Oneway on mcg, GP158 subset */
data just159; /* This data set will have just GP159 */
set mould;
if plant=1;
proc glm data=just159;
title 'D. Oneway on mcg, GP158 subset';
class mcg;
model meanlng = mcg;
/* E. Plant by MCG, Hanna-Westar subset */
data hanstar; /* This data set will have just Hanna and Westar */
set mould;
if plant ne 1;
proc glm data=hanstar;
title 'E. Plant by MCG, Hanna-Westar subset';
class plant mcg;
model meanlng = plant|mcg;
/* F. Plant by MCG followup, Hanna-Westar subset
Interaction: Follow with all pairwise differences of Westar minus Hanna differences
G. Differences within Hanna?
H. Differences within Westar? */
proc reg;
model meanlng = mu7-mu18 / noint;
F_inter: test mu13-mu7=mu14-mu8=mu15-mu9
$=$ mu16-mu10=mu17-mu11=mu18-mu12;
F_1vs2: test mu13-mu7=mu14-mu8;
F_1vs3: test mu13-mu7=mu15-mu9;
F_1vs7: test mu13-mu7=mu16-mu10;
F_1vs8: test mu13-mu7=mu17-mu11;
F_1vs9: test mu13-mu7=mu18-mu12;
F_2vs3: test mu14-mu8=mu15-mu9;
F_2vs7: test mu14-mu8=mu16-mu10;
F_2vs8: test mu14-mu8=mu17-mu11;
F_2vs9: test mu14-mu8=mu18-mu12;
F_3vs7: test mu15-mu9=mu16-mu10;
F_3vs8: test mu15-mu9=mu17-mu11;
F_3vs9: test mu15-mu9=mu18-mu12;
F_7vs8: test mu16-mu10=mu17-mu11;
F_7vs9: test mu16-mu10=mu18-mu12;
F_8vs9: test mu17-mu11=mu18-mu12;
G_Hanaeq: test $\mathrm{mu} 7=\mathrm{mu} 8=\mathrm{mu} 9=\mathrm{mu} 10=\mathrm{mu} 11=\mathrm{mu} 12$;
H_Westeq: test mu13=mu14=mu15=mu16=mu17=mu18;

```
proc glm data=hanstar;
    class combo;
    model meanlng = combo;
    lsmeans combo / pdiff adjust=scheffe;
proc iml;
title 'Table of Scheffe critical values for COLLECTIONS of contrasts';
title2 'Start with interaction';
    numdf = 5; /* Numerator degrees of freedom for initial test */
    dendf = 60; /* Denominator degrees of freedom for initial test */
    alpha = 0.05;
    critval = finv(1-alpha,numdf,dendf);
    zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */
    /* Label the columns */
    namz = {"Number of Contrasts in followup test"
        " Scheffe Critical Value"};
    mattrib S_table colname=namz;
    do i = 1 to numdf;
        s_table(|i,1|) = i;
        s_table(|i,2|) = numdf/i * critval;
    end;
    reset noname; /* Makes output look nicer in this case */
    print "Initial test has" numdf " and " dendf "degrees of freedom."
        "Using significance level alpha = " alpha;
    print s_table;
proc iml;
title 'Table of Scheffe critical values for COLLECTIONS of contrasts';
title2 'Start with all means equal';
    numdf = 11; /* Numerator degrees of freedom for initial test */
    dendf = 60; /* Denominator degrees of freedom for initial test */
    alpha = 0.05;
    critval = finv(1-alpha,numdf,dendf);
    zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */
    /* Label the columns */
    namz = {"Number of Contrasts in followup test"
            " Scheffe Critical Value"};
    mattrib S_table colname=namz;
    do i = 1 to numdf;
        s_table(|i,1|) = i;
        s_table(|i,2|) = numdf/i * critval;
    end;
    reset noname; /* Makes output look nicer in this case */
    print "Initial test has" numdf " and " dendf "degrees of freedom."
```

```
    "Using significance level alpha = " alpha;
    print s_table;
proc reg data=hanstar;
    title 'One more try at following up the interaction';
    model meanlng = mu7-mu18 / noint;
    onemore: test mu8-mu7 = mu14-mu13;
```

After reading and defining the data with a \%include statement, the program repeats the initial three by six ANOVA from green1.sas. This is just for completeness. Then the SAS program performs tasks labelled A through \mathbf{H}.

Task A proc reg is used to fit a cell means model, and then test for all three pairwise differences among Plant means. They are all significantly different from each other, confirming what appears visually in the interaction plot.

```
proc reg;
    model meanlng = mu1-mu18 / noint;
    A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
    A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
    A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
Dependent Variable: MEANLNG
Test: A_GVSH Numerator: 31217.5679 DF: 1 F value: 32.0781
    Denominator: 973.1736 DF: 90 Prob>F: 0.0001
Dependent Variable: MEANLNG
Test: A_GVSW Numerator: 217443.4318 DF: 1 F value: 223.4374
    Denominator: 973.1736 DF: 90 Prob>F: 0.0001
Dependent Variable: MEANLNG
Test: A_HVSW Numerator: 83881.6915 DF: 1 F value: 86.1940
    Denominator: 973.1736 DF: 90 Prob>F: 0.0001
```

As mentioned earlier, GP159 not only has a smaller average lesion length, but it seems to exhibit less variation in its vulnerability to different strains of fungus. Part of the significant interaction must come from this, and part from differences in the profiles of Hanna and Westar. Two questions arise:

1. Are μ_{1} through μ_{6} (the means for GP159) actually different from each other?

2. Are the profiles for Hanna and Westar different?

There are two natural ways to address these questions. The naive way is to subset the data - that is, do a one-way ANOVA to compare the 6 means for GP159, and a two-way (2 by 6) on the Hanna-Westar subset. In the latter analysis, the interaction of Plant by MCG would indicate whether the two profiles were different.

A more sophisticated approach is not to subset the data, but to recognize that both questions can be answered by testing collections of contrasts of the entire set of 18 means; it's easy to do with the test statement of proc reg.

The advantage of the sophisticated approach is this. Remember that the model specifies a conditional normal distribution of the dependent variable for each combination of independent variable values (in this case there are 18 combinations of independent variable values), and that each conditional distribution has the same variance. The test for, say, the equality of μ_{1} through μ_{6} would use only \bar{Y}_{1} through \bar{Y}_{6} (that is, just GP159 data) to estimate the 5 contrasts involved, but it would use all the data to estimate the common error variance. From both a commonsense viewpoint and the deepest possible theoretical viewpoint, it's better not to throw information away. This is why the sophisticated approach should be better.

However, this argument is convincing only if it's really true that the dependent variable has the same variance for every combination of independent variable values. Repeating some output from the means command of the very first proc glm,

Level of	Level of		-	
PLANT	MCG	N	Mean	SD
GP159	1	6	12.863095	12.8830306
GP159	2	6	21.623810	17.3001296
GP159	3	6	14.460714	7.2165396
GP159	7	6	17.686905	16.4258441
GP159	8	6	8.911905	7.3162618
GP159	9	6	8.784524	6.5970501
HANNA	1	6	45.578571	26.1430472
HANNA	2	6	67.296429	30.2424997
HANNA	3	6	94.192857	20.2877876
HANNA	7	6	53.621429	24.8563497
HANNA	8	6	47.838095	12.6419109
HANNA	9	6	25.673810	17.1723150
WESTAR	1	6	65.908333	35.6968616
WESTAR	2	6	187.479762	45.1992178
WESTAR	3	6	154.103571	26.5469183
WESTAR	7	6	173.972619	79.1793105
WESTAR	8	6	95.823810	22.3712022
WESTAR	9	6	66.502381	52.5253101

We see that the sample standard deviations for GP159 look quite a bit smaller on average. Without bothering to do a formal test, we have some reason to doubt the equal variances assumption. It's easy to see why GP159 would have less plant-to-plant variation in lesion length. It's so resistant to the fungus that there's just not that much fungal growth, period. So there's less opportunity for variation.

Note that the equal variances assumption is essentially just a mathematical convenience. Here, it's clearly unrealistic. But what's the consequence of violating it? It's well known that the equal variance assumption can be safely violated if the cell sample sizes are equal and large. Well, here they're equal, but $n=6$ is not large. So this is not reassuring.

It's not easy to say in general how the tests will be affected when the equal variance assumption is violated, but for the two particular cases we're interested in here (are the GP159 means equal and are the Hanna and Westar profiles parallel), we can figure it out. Formula 5.4 for the F-test (see page 130) says

$$
F=\frac{\left(S S R_{F}-S S R_{R}\right) / r}{M S E_{F}}
$$

The denominator (Mean Squared Error from the full model) is the estimated population error variance. That's the variance that's supposed to be the same for each conditional distribution. Since

$$
M S E=\frac{\sum_{i-1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}}{n-p}
$$

and the predicted value \widehat{Y}_{i} is always the cell mean, we can draw the following conclusions. Assume that the true variance is smaller for GP159.

1. When we test for equality of the GP159 means, using the Hanna-Westar data to help compute MSE will make the denominator of F bigger than it should be. So F will be smaller, and the test is too conservative. That is, it is less likely to detect differences that are really present.
2. When we test whether the Hanna and Westar profiles are parallel, use of the GP159 data to help compute $M S E$ will make the denominator of F smaller than it should be - so F will be bigger, and the test will not be conservative enough. That is, the chance of significance if the effect is absent will be greater than 0.05 . And a Type I error rate above 0.05 is always to be avaoided if possible.

This makes me inclined to favour the "naive" subsetting approach. Because the GP159 means look so equal, and I want them to be equal, I'd like to give the test for difference among them the best possible chance. And because it looks like the profiles for Hanna and Westar are not parallel (and I want them to be non-parallel, because it's more interesting if the effect of Fungus type depends on type of Plant), I want a more conservative test.

Another argument in favour of subsetting is based on botany rather than statistics. Hanna and Westar are commercial canola crop varieties, but while GP159 is definitely in
the canola family, it is more like a hardy weed than a food plant. It's just a different kind of entity, and so analyzing its data separately makes a lot of sense.

You may wonder, if it's so different, why was it included in the design in the first place? Well, taxonomically it's quite similar to Hanna and Westar; really no one knew it would be such a vigorous monster in terms of resisting fungus. That's why people do research - to find out things they didn't already know.

Anyway, we'll do the analysis both ways - both the seemingly naive way which is probably better once you think about it, and the sophisticated way that uses the complete set of data for all analyses.

Tasks B and C These represent the "sophisticated" approach that does not subset the data.

B: Test all GP159 means equal, full design
C: Test profiles for Hanna and Westar parallel, full design

```
proc reg;
    model meanlng = mu1-mu18 / noint;
    A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
    A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
    A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
    B_G159eq: test mu1=mu2=mu3=mu4=mu5=mu6;
    C_HWpar: test mu8-mu7=mu14-mu13, mu9-mu8=mu15-mu14,
    mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,
    mu12-mu11=mu18-mu17;
Dependent Variable: MEANLNG
Test: B_G159EQ Numerator: 151.5506 DF: 5 F value: 0.1557
Denominator: \(973.1736 \mathrm{DF}: 90\) Prob>F: 0.9778
Dependent Variable: MEANLNG
Test: C_HWPAR Numerator: 5364.0437 DF: 5 F value: 5.5119
Denominator: 973.1736 DF: 90 Prob>F: 0.0002
```

This confirms the visual impression of no differences among means for GP159, and nonparallel profiles for Hanna and Westar.

Task D Now compare the subsetting approach. We will carry out a oneway ANOVA on MCG, using just the GP159 subset. Notice the creation of SAS data sets with subsets of the data.

```
data just159; /* This data set will have just GP159 */
    set mould;
    if plant=1;
proc glm data=just159;
    title 'D. Oneway on mcg, GP158 subset';
    class mcg;
    model meanlng = mcg;
```

D. Oneway on mcg, GP158 subset

General Linear Models Procedure

R-Square	C.V.	Root MSE	MEANLNG Mean
0.146319	86.37031	12.139485	14.055159

| Source | DF | Type I SS | Mean Square | F Value | Pr $>$ F |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| MCG | 5 | 757.75319161 | 151.55063832 | 1.03 | 0.4189 |
| Source | DF | Type III SS | Mean Square | F Value | Pr $>$ F |
| MCG | 5 | 757.75319161 | 151.55063832 | 1.03 | 0.4189 |

This analysis is consistent with what we got without subsetting the data. That is, it does not provide evidence that the means for GP159 are different. But when we didn't subset the data, we had $p=0.9778$. This happened exactly because including Hanna and Westar data made $M S E$ larger, F smaller, and hence p bigger.

Task E Now we will do a Plant by MCG analysis, using just the Hanna-Westar subset of the data.
data hanstar; /* This data set will have just Hanna and Westar */
set mould;
if plant ne 1;
proc glm data=hanstar;
title 'E. Plant by MCG, Hanna-Westar subset';
class plant mcg;
model meanlng = plant|mcg;
E. Plant by MCG, Hanna-Westar subset

General Linear Models Procedure
Class Level Information

Class Levels Values

PLANT 2 HANNA WESTAR
MCG $\quad 6 \quad 123789$

Number of observations in data set $=72$
E. Plant by MCG, Hanna-Westar subset

General Linear Models Procedure

Source	DF	Type I SS	Mean Square	F Value	$\operatorname{Pr}>\mathrm{F}$
PLANT	1	83881.691486	83881.691486	60.52	0.0001
MCG	5	78743.774570	15748.754914	11.36	0.0001
PLANT*MCG	5	26820.218272	5364.043654	3.87	0.0042
Source	DF	Type III SS	Mean Square	F Value	$\operatorname{Pr}>\mathrm{F}$
PLANT	1	83881.691486	83881.691486	60.52	0.0001
MCG	5	78743.774570	15748.754914	11.36	0.0001
PLANT*MCG	5	26820.218272	5364.043654	3.87	0.0042

The significant interaction indicates that the profiles for Hanna and Westar are nonparallel, confirming the visual impression we got from the interaction plot. But the p-value is larger this time. When all the data were used to calculate the error term, we had $p=0.0002$; but now it rises to $p=0.0042$. This is definitely due to the low variation in GP159. Further analyses will be limited to the Hanna-Westar subset.

Now think of the interaction in a different way. Overall, Hanna is more vulnerable than Westar, but the interaction says that the degree of that greater vulnerability depends on the type of fungus. For each of the 6 types of fungus, there is a difference between Hanna and Westar. Let's look at parirwise differences of these differences. We might be able to say, then, something like this: "The difference in vulnerability between Hanna and Westar is greater for Fungus Type 2 than Fungus Type 1."

Task F: Plant by MCG followup, Hanna-Westar subset. First, verify that the interaction can be expressed as a collection of differences betweeen differences. Of course it can.

```
proc reg;
    model meanlng = mu7-mu18 / noint;
    F_inter: test mu13-mu7=mu14-mu8=mu15-mu9
            = mu16-mu10=mu17-mu11=mu18-mu12;
F_1vs2: test mu13-mu7=mu14-mu8;
F_1vs3: test mu13-mu7=mu15-mu9;
F_1vs7: test mu13-mu7=mu16-mu10;
F_1vs8: test mu13-mu7=mu17-mu11;
F_1vs9: test mu13-mu7=mu18-mu12;
F_2vs3: test mu14-mu8=mu15-mu9;
F_2vs7: test mu14-mu8=mu16-mu10;
F_2vs8: test mu14-mu8=mu17-mu11;
F_2vs9: test mu14-mu8=mu18-mu12;
F_3vs7: test mu15-mu9=mu16-mu10;
F_3vs8: test mu15-mu9=mu17-mu11;
```

```
F_3vs9: test mu15-mu9=mu18-mu12;
F_7vs8: test mu16-mu10=mu17-mu11;
F_7vs9: test mu16-mu10=mu18-mu12;
F_8vs9: test mu17-mu11=mu18-mu12;
```

Dependent Variable: MEANLNG
Test: F_INTER Numerator: 5364.0437 DF: 5 F value: 3.8699 Denominator: 1386.077 DF: 60 Prob>F: 0.0042

Dependent Variable: MEANLNG
Test: F_1VS2 Numerator: 14956.1036 DF: 1 F value: 10.7902 Denominator: 1386.077 DF: 60 Prob>F: 0.0017

Dependent Variable: MEANLNG
Test: F_1VS3 Numerator: 2349.9777 DF: 1 F value: 1.6954
Denominator: 1386.077 DF: 60 Prob>F: 0.1979

Dependent Variable: MEANLNG
Test: F_1VS7 Numerator: 15006.4293 DF: 1 F value: 10.8265 Denominator: 1386.077 DF: 60 Prob>F: 0.0017

Dependent Variable: MEANLNG
Test: F_1VS8 Numerator: 1147.2776 DF: 1 F value: 0.8277
Denominator: 1386.077 DF: 60 Prob>F: 0.3666

Dependent Variable: MEANLNG
Test: F_1VS9 Numerator: 630.3018 DF: 1 F value: 0.4547
Denominator: 1386.077 DF: 60 Prob>F: 0.5027

Dependent Variable: MEANLNG
Test: F_2VS3 Numerator: 5449.1829 DF: 1 F value: 3.9314
Denominator: 1386.077 DF: 60 Prob>F: 0.0520

Dependent Variable: MEANLNG
Test: F_2VS7 Numerator: 0.0423 DF: 1 F value: 0.0000
Denominator: 1386.077 DF: 60 Prob>F: 0.9956
Dependent Variable: MEANLNG
Test: F_2VS8 Numerator: 7818.7443 DF: 1 F value: 5.6409
Denominator: 1386.077 DF: 60 Prob>F: 0.0208

Dependent Variable: MEANLNG

Test: F_2VS9	Numerator: Denominator:	$\begin{array}{r} 9445.7674 \\ 1386.077 \end{array}$	$\begin{aligned} & \mathrm{DF}: \\ & \mathrm{DF}: \end{aligned}$	1 60	F value: Prob>F:	$\begin{aligned} & 6.8147 \\ & 0.0114 \end{aligned}$
Dependent Variable: MEANLNG						
Test: F_3VS7	Numerator:	5479.5767	DF:	1	F value:	3.9533
	Denominator:	1386.077	DF:	60	Prob>F:	0.0513
Dependent Variable: MEANLNG						
Test: F_3VS8	Numerator:	213.3084	DF:	1	F value:	0.1539
	Denominator:	1386.077	DF:	60	Prob>F:	0.6962
Dependent Variable: MEANLNG						
Test: F_3VS9	Numerator:	546.1923	DF:	1	F value:	0.3941
	Denominator:	1386.077	DF:	60	Prob>F:	0.5326
Dependent Variable: MEANLNG						
Test: F_7VS8	Numerator:	7855.1432	DF:	1	F value:	5.6672
	Denominator:	1386.077	DF:	60	Prob>F:	0.0205
Dependent Variable: MEANLNG						
Test: F_7VS9	Numerator:	9485.7704	DF:	1	F value:	6.8436
	Denominator:	1386.077	DF:	60	Prob>F:	0.0112
Dependent Variable: MEANLNG						
Test: F_8VS9	Numerator:	76.8370	DF:	1	F value:	0.0554
	Denominator:	1386.077	DF:	60	Prob>F:	0.8147

Tasks G and H Finally we test separately for MCG differences within Hanna and within Westar.

```
G_Hanaeq: test mu7=mu8=mu9=mu10=mu11=mu12;
H_Westeq: test mu13=mu14=mu15=mu16=mu17=mu18;
```

E. Plant by MCG, Hanna-Westar subset

The REG Procedure
Test G_Hanaeq Results for Dependent Variable meanlng

Source \quad DF \quad| Mean |
| ---: |
| Square | F Value \quad Pr $>F$

Numerator	5	3223.58717	2.33	0.0536
Denominator	60	1386.07689		

Test H_Westeq Results for Dependent Variable meanlng

	Mean			
Source	DF	Square	F Value	Pr $>$ F
Numerator	5	17889	12.91	$<.0001$
Denominator	60	1386.07689		

There is evidence of differences in mean lesion length within Westar, but not Hanna. It makes sense to follow up with pairwise comparisons of the MCG means for just Westar, but first let's review what we've done so far, limiting the discussion to just the HannaWestar subset of the data. We've tested

- Overall difference among the 12 means
- Main effect for PLANT
- Main effect for MCG
- PLANT*MCG interaction
- 15 pairwise comparisons of the Hanna-Westar difference, following up the interaction
- One comparison of the 6 means for Hanna
- One comparison of the 6 means for Westar

That's 21 tests in all, and we really should do at least 15 more, testing for pairwise differences among the Westar means. Somehow, we should make this into a set of proper post-hoc tests, and correct for the fact that we've done a lot of them. But how? Tukey tests are only good for pairwise comparisons, and a Bonferroni correction is very illadvised, since these tests were not all planned before seeing the data. This pretty much leaves us with Scheffé or nothing.

Scheffé Tests Because some of the tests we've done are for more than one contrast at a time, the discussion of Scheffé tests for collections of contrasts in Section 3.4.5 (page 94) is relevant. But Section 3.4.5 is focused on the case where we are following up a significant difference among all the treatment means. Here, the initial test may or may not be a test for equality of all the means. We might start somewhere else, like with a test for an interaction or main effect. It's a special case of Scheffé tests for regression (Section 5.10, page 133).

Assume a multifactor design. Create a combination independent variable whose values are all combinations of factor levels. All the tests we do will be tests for collections consisting of one or more contrasts of the cell means. Start with a statistically significant initial test, an F-test for r contrasts. A Scheffé follow-up test will be a test for s contrasts, not necessarily a subset of the contrasts of the initial test. The follow-up test must obey these rules:

- $s<r$
- If all r contrasts of the initial test are zero in the population, then all s contrasts of the follow-up test must be zero in the population. In other words, the null hypothesis of the follow-up test must be implied by the null hypothesis of the initial test. (The follow-up tests are proper follow-ups; see Section 3.4.6, page 96).

Next, compute the ordinary one-at-a-time F statistic for the follow-up test (it will have s and $n-p$ degrees of freedom). Then, use the Scheffé critical value of Equation 5.8 on page 133, which is repeated here for convenience:

$$
f_{S c h}=\frac{r}{s} f_{c r i t}
$$

where $f_{\text {crit }}$ is the usual critical value for the initial test. Then, considered as a Scheffé follow-up, the test is significant at the joint 0.05 level if the computed value of F for the collection of contrasts is greater than $f_{S c h}$.

Actually, the formula given above is more general. It applies to testing linear combinations of regression coefficients in a multiple regression setting (see Section 5.10, page 133). The initial test is a test of r linear constraints on the regression coefficients, and the followup test is a test of s linear constraints, where $s<r$ and the linear constraints of the initial test imply the linear constraints of the follow-up test. This is very nice because it allows, for example, Scheffé follow-ups to a significant analysis of covariance.

Before applying Scheffé adjustments to the tests we have done on the greenhouse data, a few comments are in order.

- The term "linear constraints" may sound imposing, but a linear constraint is just a statement that some linear combination equals a constant. Almost always, the constant is zero. So for example, saying that a contrast of cell means is equal to zero is the same as specifying a linear constraint on the betas of a multiple regression model (for example, with cell means coding).
- If you're testing 6 independent variables controlling for some other set of independent variables, the null hypothesis says that 6 regression coefficients are equal to zero. That's six linear constraints on the regression coefficients.
- In the initial one-way ANOVA setting (Section 3.4.3, page 89) where we were testing single contrasts of p cell means, the Scheffé adjusted criticl value was defined by $f_{\text {Sch }}=(p-1) f_{\text {crit }}$. This was a special case of $f_{\text {Sch }}=\frac{r}{s} f_{\text {crit }}$. The initial test for equality of p means involved $p-1$ contrasts, so $r=p-1$. The followup tests were all for single contrasts, so $s=1$.
- As in the case of testing single contrasts in a one-way design, it is impossible for a followup to be significant if the initial test is not. And if the initial test is significant, there is always something to find in the family of Scheffé follow-ups.
- Suppose we have a follow-up test for s linear constraints, and it's not significant. Then every Scheffé follow-up test whose null hypothesis is implied by those constraints will also be non-significant. To use the metaphor of data fishing, once you've looked for fish in a particular region of the lake and determined that there's nothing there, further detailed exploration in that region is a waste of time.

The formula $f_{S c h}=\frac{r}{s} f_{c r i t}$ is very simple to apply. There are only two potential complications, and they are related to one another.

- First, you have to know what significance test you are following up. For example, if your initial test is the test for equality of all cell means, then the test for a given main effect could be carried out as a Scheffé follow-up, and a pairwise comparison of marginal means would be another follow-up to the same initial test. Or, you could start with the test for the main effect. Then, the pairwise comparison of marginal means would be a follow-up to the one-at-a-time test for the main effect. You could do it either way, and the conclusions might differ. Where you start is a matter of data-analytic philosophy. But starting with the standard tests for main effects and interactions is more traditional.
- The second potential complication is that you really have to be sure that the null hypothesis of the initial test implies the null hypothesis of the follow-up test. In terms of proc reg syntax, it means that the test statement of the initial test implies the test statements of all the follow-up tests. Sometimes this is easy to check, and sometimes it is tricky. To a large extent, how easy it is to check depends on what the initial test is.
- If the initial test is a test for all cell means being equal (a one-way ANOVA on the combination variable), then it's easy, because if all the cell means are equal, then any possible contrast of the cell means equals zero. The proof is one line of High School algebra.
- Similarly, suppose we are using a regression model with an intercept, and the initial test is for all the regression coefficients except β_{0} simultaneously. This means that the null hypothesis of the initial test is $H_{0}: \beta_{1}=\ldots=\beta_{p-1}=0$, and therefore any linear combination of those quantities is zero. This means that you can test any subset of independent variables controlling for all the others as a proper Scheffé follow-up to the first test SAS prints.
- If you're following up tests for main effects, then the standard test for any contrast of marginal means is a proper follow-up to the test for the main effect.

Beyond these principles, the logical connection between initial and follow-up tests really needs to be checked on a case-by-case basis. Often, the initial test can be expressed
more than one way in the test statement of proc reg, and one of those statements will make things clear enough so you don't need to do any algebra. This is what I did with the significant Plant by Fungus interaction for the Hanna-Westar subset. When the interaction was written as

```
F_inter: test mu13-mu7=mu14-mu8=mu15-mu9
    = mu16-mu10=mu17-mu11=mu18-mu12;
```

it was clear that all the pairwise comparisons of Westar-Hanna differences were implied.

F_1vs2:	test	mu7=mu14-mu8;
F_1vs3:	test	mu13-mu7=mu15-mu9;
F_1vs7:	test	mu13-mu7=mu16-mu10;
F_1vs8:	test	mu13-mu7=mu17-mu11;
F_1vs9:	test	mu13-mu7=mu18-mu12;
F_2vs3:	test	mu14-mu8=mu15-mu9;
F_2vs7:	test	mu14-mu8=mu16-mu10;
F_2vs8:	test	mu14-mu8=mu17-mu11;
F_2vs9:	test	mu14-mu8=mu18-mu12;
F_3vs7:	test	mu15-mu9=mu16-mu10;
F_3vs8:	test	mu15-mu9=mu17-mu11;
F_3vs9:	test	mu15-mu9=mu18-mu12;
F_7vs8:	test	mu16-mu10=mu17-mu11;
F_7vs9:	test	mu16-mu10=mu18-mu12;
F_8vs9:	test	mu17-mu11=mu18-mu1

Sometimes it is easy to get this wrong. Just note that SAS will do all pairwise comparisons of marginal means (in the means statement of proc glm) as Scheffé follow-ups, but don't trust it unless the sample sizes are equal. Do it yourself. This warning applies up to SAS version 6.10. Is it a real error, or was it done deliberately to minimize calls to technical support? It's impossible to tell.

Now let's proceed, limiting the analysis to the Hanna-Westar subset. Just for fun, we'll start in two places. Our initial test will be either the test for equality of all 12 cell means, or the test for the Plant by Fungus interaction. Thus, we need two tables of critical values.

```
proc iml;
title 'Table of Scheffe critical values for COLLECTIONS of contrasts';
title2 'Start with all means equal';
    numdf = 11; /* Numerator degrees of freedom for initial test */
    dendf = 60; /* Denominator degrees of freedom for initial test */
    alpha = 0.05;
    critval = finv(1-alpha,numdf,dendf);
    zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */
    /* Label the columns */
```

```
namz \(=\{\) "Number of Contrasts in followup test"
            " Scheffe Critical Value"\};
mattrib S_table colname=namz;
do \(i=1\) to numdf;
    s_table(|i,1|) = i;
    s_table(|i,2|) = numdf/i * critval;
end;
reset noname; /* Makes output look nicer in this case */
print "Initial test has" numdf " and " dendf "degrees of freedom."
    "Using significance level alpha = " alpha;
print s_table;
```

Table of Scheffe critical values for COLLECTIONS of contrasts
Initial test has 11 and 60 degrees of freedom.
Using significance level alpha = 0.05
Number of Contrasts in followup test Scheffe Critical Value

1	21.474331
2	10.737166
3	7.1581104
4	5.3685828
5	4.2948663
6	3.5790552
7	3.0677616
8	2.6842914
9	2.3860368
10	2.1474331
11	1.9522119

Let's start by treating the tests for main effects and the interaction as follow-ups to the significant ANOVA on the combination variable ($F=12.43$; $d f=11,71 ; p<.0001$). The table below collects numbers displayed earlier.

The interesting Plant by MCG interaction is no longer significant as a Scheffe test. This means that all the pairwise comparisons among Westar-Hanna differences will also be non-significant, as Scheffé follow-ups to the oneway ANOVA on the combination variable. There are no fish in that part of the lake. Just to check, the biggest Westar-Hanna difference was 120.35 for MCG 7, and the smallest was 20.33 for MCG 1. Comparing these two differences yielded a one-at-a-time F of 10.83 . But $s=1$ here, and the first

Table 7.8: Scheffé follow-ups to the test for differences among 12 means (Just Hanna and Westar)

Effect	s	F	Scheffé Critical Value	Significant?
Plant	1	60.52	21.47	Yes
MCG	5	11.36	4.29	Yes
Plant \times MCG	5	3.87	4.29	No
All Hanna Equal?	5	2.33	4.29	No
All Westar Equal?	5	12.91	4.29	Yes

row of Table 7.8 has the Scheffé critical value of $f_{S c h}=21.47$, which may also be found in the proc iml output further above. So $F=10.83$ falls short of the value required for significance, and as expected, none of the proper Scheffé follow-ups to a non-significant Scheffé follow-up are significant.

The last row of Table 7.8 shows that the MCG differences for just Westar are significant as a Scheffé follow-up, and so pairwise comparisons of the Westar means are of interest. The easiest way to do this is with Scheffé tests on pairwise differences using proc glm.

```
proc glm data=hanstar;
    class combo;
    model meanlng = combo;
    lsmeans combo / pdiff adjust=scheffe;
```


Adjustment for Multiple Comparisons: Scheffe

combo	meanlng LSMEAN	LSMEAN Number
7	45.578571	1
8	67.296429	2
9	94.192857	3
10	53.621429	4
11	47.838095	5
12	25.673810	6
13	65.908333	7
14	187.479762	8
15	154.103571	9
16	173.972619	10
17	95.823810	11
18	66.502381	12

Least Squares Means for effect combo Pr > |t| for HO: LSMean(i)=LSMean(j)

Dependent Variable: meanlng

i/j	1	2	3	4	5	6	
1		0.9999	0.9175	1.0000	1.0000	1.0000	
2	0.9999		0.9994	1.0000	1.0000	0.9726	
3	0.9175	0.9994		0.9775	0.9401	0.5241	
4	1.0000	1.0000	0.9775		1.0000	0.9991	
5	1.0000	1.0000	0.9401	1.0000		0.9999	
6	1.0000	0.9726	0.5241	0.9991	0.9999		
7	1.0000	1.0000	0.9990	1.0000	1.0000	0.9789	
8	0.0002	0.0047	0.0923	0.0008	0.0003	<. 0001	
9	0.0191	0.1620	0.7277	0.0457	0.0246	0.0016	
10	0.0016	0.0235	0.2742	0.0046	0.0022	<. 0001	
11	0.8979	0.9989	1.0000	0.9696	0.9243	0.4845	
12	0.9999	1.0000	0.9992	1.0000	1.0000	0.9764	
Least Squares Means for effect combo Pr > \|t	for HO: LSMean(i)=LSMean(j)						
Dependent Variable: meanlng							
i/j	7	8	9	10	11	12	
1	1.0000	0.0002	0.0191	0.0016	0.8979	0.9999	
2	1.0000	0.0047	0.1620	0.0235	0.9989	1.0000	
3	0.9990	0.0923	0.7277	0.2742	1.0000	0.9992	
4	1.0000	0.0008	0.0457	0.0046	0.9696	1.0000	
5	1.0000	0.0003	0.0246	0.0022	0.9243	1.0000	
6	0.9789	<. 0001	0.0016	<. 0001	0.4845	0.9764	
7		0.0039	0.1445	0.0201	0.9983	1.0000	
8	0.0039		0.9955	1.0000	0.1071	0.0042	
9	0.1445	0.9955		1.0000	0.7623	0.1518	
10	0.0201	1.0000	1.0000		0.3058	0.0215	
11	0.9983	0.1071	0.7623	0.3058		0.9986	
12	1.0000	0.0042	0.1518	0.0215	0.9986		

It's actually just the last 6 means that we want to compare. Editing the output above by
hand and re-labelling the means with the MCG codes $(1,2,3,7,8,9)$, we have

| Least Squares Means for effect combo Pr > \|t| for HO: LSMean(i)=LSMean(j) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dependent Variable: meanlng | | | | | | |
| i/j | 1 | 2 | 3 | 7 | 8 | 9 |
| 1 | | 0.0039 | 0.1445 | 0.0201 | 0.9983 | 1.0000 |
| 2 | 0.0039 | | 0.9955 | 1.0000 | 0.1071 | 0.0042 |
| 3 | 0.1445 | 0.9955 | | 1.0000 | 0.7623 | 0.1518 |
| 7 | 0.0201 | 1.0000 | 1.0000 | | 0.3058 | 0.0215 |
| 8 | 0.9983 | 0.1071 | 0.7623 | 0.3058 | | 0.9986 |
| 9 | 1.0000 | 0.0042 | 0.1518 | 0.0215 | 0.9986 | |

In the following display (also edited by hand, but similar to what SAS produces with means combo / scheffe;) means with the same letter are not significantly different by a Scheffé test.

	meanlng MCG		
1	65.908333	A	
9	66.502381	A	
8	95.823810	A	B
3	154.103571	A	B
7	173.972619		B
2	187.479762		B

On Westar, fungus types 2 and 7 grow faster than types 1 and 9 ; types 8 and 3 occupy a middle ground, and their growth rates are not significantly different from either extreme group.

Comparing marginal MCG Means I still need to do this. Put it in green2.sas.

Starting with the Interaction Logically, a test for interaction can be a follow-up test, but almost no one ever does this in practice. It's much more traditional to start with a one-at-a-time test for interaction and then, if you're very sophisticated, do multiple comparison follow-ups to that initial test. Now we'll do this with Scheffé follow-ups In the present case $r=5$, and the critical values are obtaind from proc iml as before:

```
proc iml;
title 'Table of Scheffe critical values for COLLECTIONS of contrasts';
title2 'Start with interaction';
    numdf = 5; /* Numerator degrees of freedom for initial test */
    dendf = 60; /* Denominator degrees of freedom for initial test */
    alpha = 0.05;
    critval = finv(1-alpha,numdf,dendf);
    zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */
    /* Label the columns */
    namz = {"Number of Contrasts in followup test"
        " Scheffe Critical Value"};
    mattrib S_table colname=namz;
    do i = 1 to numdf;
        s_table(|i,1|) = i;
        s_table(|i,2|) = numdf/i * critval;
    end;
    reset noname; /* Makes output look nicer in this case */
    print "Initial test has" numdf " and " dendf "degrees of freedom."
            "Using significance level alpha = " alpha;
    print s_table;
```

Table of Scheffe critical values for COLLECTIONS of contrasts

```
Initial test has 5 and 60 degrees of freedom.
```

 Using significance level alpha = 0.05
 Number of Contrasts in followup test Scheffe Critical Value

1	11.841351
2	5.9206756
3	3.9471171
4	2.9603378
5	2.3682702

So the Scheffé critcal value for any single contrast is $f_{S c h}=11.84$, and none none of the pairwise comparisons of Westar-Hanna differences reaches statistical significance as a Scheffé follow-up - even though they look very promising. As a mathematical certainty, there is a single-contrast Scheffé follow-up to the interaction that is significant, but it's
not one of these. Let's give it one more try. Look again at Figure 7.3 from page 190.

The profile for Westar goes up sharply between MCG 1 and 2, while it goes up less steeply for Hanna. This is the biggest absolute difference in line segment slopes.
proc reg data=hanstar;
title 'One more try at following up the interaction';
model meanlng = mu7-mu18 / noint;
onemore: test mu8-mu7 = mu14-mu13;

One more try at following up the interaction
The REG Procedure
Model: MODEL1

Test onemore Results for Dependent Variable meanlng

Source	Mean Square			
DF Value	Pr F F			
Numerator	1	14956	10.79	0.0017
Denominator	60	1386.07689		

The F statistic does not reach the Scheffé critical value of 11.84 , so this promising component of the interaction is also non-significant. Again, while we know that there is a contrast of the cell means that is significantly different from zero as a Scheffé follow-up, that does not mean it is easy to find.

[^0]: ${ }^{1}$ If it is safe to assume that certain contrasts of the treatment means equal zero, it is often possible to estimate and test other contrasts of interest even with zero observations in some cells. The feisibility of substituting assumptions for missing data is an illustration of Data Analysis Hint 4 on page 114.
 ${ }^{2}$ This is typical. There are different dialects of Statistics, corresponding roughly to groups of users

[^1]: from different disciples. These groups tend not to talk with one another, and often each one has its own tame experts. So the language they use, since it develops in near isolation, tends to diverge in minor ways.

[^2]: ${ }^{3}$ Technically, there is a third main effect for Fertilizer Type: $\beta_{1}-\beta_{2}$. Any factor with k levels has k main effects that add up to zero.

[^3]: ${ }^{4}$ Here's why it works. In test statements, proc reg uses the name of the independent variable to stand for the regression coefficient for that independent variable. And with cell means coding, the regression coefficients (β values) are identical to the cell means (μ values). So if the name of each cell means coding indicator is the same as the μ for that cell in the first place, you can just directly state the null hypothesis in the test statement.

