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Chapter 1

Introduction

This book is about using statistical methods to draw conclusions from real data. It is
deliberately non-mathematical, relying on translations of statistical theory into English.
For the most part, formulas are avoided. While this involves some loss of precision, it
also makes the course accessible to students from non-statistical disciplines (particularly
graduate students and advanced undergraduates on their way to graduate school) who
need to use statistics in their research. Even for students with strong training in theoretical
statistics, the use of plain English can help reveal the connections between theory and
applications, while also suggesting a useful way to communicate with non-statisticians.

We will avoid mathematics, but we will not avoid computers. Learning to apply
statistical methods to real data involves actually doing it, and the use of software is
not optional. Furthermore, we will not employ “user-friendly” menu-driven statistical
programs. Why?

e [t’s just too easy to poke around in the menus trying different things, produce some
results that seem reasonable, and then two weeks later be unable to say exactly
what one did.

e Real data sets tend to be large and complex, and most statistical analyses involve
a sizable number of operations. If you discover a tiny mistake after you produce
your results, you don’t want to go back and repeat two hours of menu selections
and mouse clicks, with one tiny variation.

e [f you need to analyze a data set that is similar to one you have analyzed in the past,
it’s a lot easier to edit a program than to remember a collection of menu selections
from last year.

Don’t worry! The word “program” does not mean we are going to write programs in
some true programming language like C or Java. We’ll use statistical software in which
most of the actual statistical procedures have already been written by experts; usually,
all we have to do is invoke them by using high-level commands.

The statistical programs we will use SAS and to a much lesser extent, R. These pro-
grams are command-oriented rather than menu-oriented, and are very powerful. They



are industrial strength tools, and will be illustrated in an industrial strength environment
— unix. This is mostly for local convenience. There are Windows versions of both SAS
and R that work just as well as the unix versions, except for very big jobs.

Applied Statistics really refers to two related enterprises. The first might be more
accurately termed “Applications of Statistics,” and consists of the appropriate application
of standard general techniques. The second enterprise is the development of specialized
techniques that are designed specifically for the data at hand. The difference is like
buying your clothes from Walmart versus sewing them yourself (or going to a tailor).
In this book, we will do both. We’ll maintain the non-mathematical approach in the
later part by substituting computing power and random number generation for statistical
theory.

1.1 Vocabulary of data analysis

We start with a data file. Think of it as a rectangular array of numbers, with the rows
representing cases (units of analysis, observations, subjects, replicates) and the columns
representing variables (pieces of information available for each case). There are n cases,
where n is the sample size.

e A physical data file might have several lines of data per case, but you can imagine
them listed on a single long line.

e Data that are not available for a particular case (for example because a subject fails
to answer a question, or because a piece of measuring equipment breaks down) will
be represented by missing value codes. Missing value codes allow observations with
missing information to be automatically excluded from a computation.

e Variables can be quantitative (representing amount of something) or categorical.
In the latter case the “numbers” are codes representing category membership. Cate-
gories may be ordered (small vs. medium vs. large) or unordered (green vs. blue
vs. yellow). When a quantitative variable reflects measurement on a scale capable of
very fine gradation, it is sometimes described as continuous. Some statistical texts
use the term qualitative to mean categorical. When an anthropologist uses the
word “qualitative,” however, it usually refers to ethnographic or case study research
in which data are not explicitly assembled into a data file.

Another very important way to classify variables is
Independent Variable (IV): Predictor = X (actually X;,i =1,...,n)
Dependent Variable (DV): Predicted = Y (actually Y;,i =1,...,n)
Example: X = weight of car in kilograms, Y = fuel efficiency in litres per kilometer

Sample Question 1.1.1 Why isn’t it the other way around?



Answer to Sample Question 1.1.1 Since weight of a car is a factor that probably in-
fluences fuel efficiency, it’s more natural to think of predicting fuel efficiency from weight.

The general principle is that if it’s more natural to think of predicting A from B, then
A is the dependent variable and B is the independent variable. This will usually be the
case when B is thought to cause or influence A. Sometimes it can go either way or it’s
not clear. But usually it’s easy to decide.

Sample Question 1.1.2 Is it possible for a variable to be both quantitative and categor-
ical? Answer Yes or No, and either give an example or explain why not.

Answer to Sample Question 1.1.2 Yes. For example, the number of cars owned by a
person or family.

In some fields, you may hear about nominal, ordinal, interval and ratio variables,
or variables measured using “scales of measurement” with those names. Ratio means
the scale of measurement has a true zero point, so that a value of 4 represents twice as
much as 2. An interval scale means that the difference (interval) between 3 and 4 means
the same thing as the difference between 9 and 10, but zero does not necessarily mean
absence of the thing being measured. The usual examples are shoe size and ring size.
In ordinal measurement, all you can tell is that 6 is less than 7, not how much more.
Measurement on a nominal scale consists of the assignment of unordered categories. For
example, citizenship is measured on a nominal scale.

It is usually claimed that one should calculate means (and therefore, for example,
do multiple regression) only with interval and ratio data; it’s usually acknowledged that
people do it all the time with ordinal data, but they really shouldn’t. And it is obviously
crazy to calculate a mean on numbers representing unordered categories. Or is it?

Sample Question 1.1.3 Give an example in which it’s meaningful to calculate the mean
of a variable measured on a nominal scale.

Answer to Sample Question 1.1.3 Code males as zero and females as one. The mean
is the proportion of females.

It’s not obvious, but actually all this talk about what you should and shouldn’t do with
data measured on these scales does not have anything to do with statistical assumptions.
That is, it’s not about the mathematical details of any statistical model. Rather, it’s a set
of guidelines for what statistical model one ought to adopt. Are the guidelines reasonable?
It’s better to postpone further discussion until after we have seen some details of multiple
regression.



1.2 Statistical significance

We will often pretend that our data represent a random sample from some population.
We will carry out formal procedures for making inferences about this (usually fictitious)
population, and then use them as a basis for drawing conclusions from the data.

Why do we do all this pretending? As a formal way of filtering out things that happen
just by coincidence. The human brain is organized to find meaning in what it perceives,
and it will find apparent meaning even in a sequence of random numbers. The main
purpose of testing for statistical significance is to protect Science against this. Even when
the data do not fully satisfy the assumptions of the statistical procedure being used (for
example, the data are not really a random sample) significance testing can be a useful way
of restraining scientists from filling the scientific literature with random garbage. This is
such an important goal that we will spend a substantial part of the course on significance
testing.

1.2.1 Definitions

Numbers that can be calculated from sample data are called statistics. Numbers that
could be calculated if we knew the whole population are called parameters. Usually
parameters are represented by Greek letters such as «, § and v, while statistics are
represented by ordinary letters such as a, b, c¢. Statistical inference consists of making
decisions about parameters based on the values of statistics.

The distribution of a variable corresponds roughly to a histogram of the values of
the variable. In a large population for a variable taking on many values, such a histogram
will be indistinguishable from a smooth curve.

For each value z of the independent variable X, in principle there is a separate distri-
bution of the dependent variable Y. This is called the conditional distribution of Y
given X = x.

We will say that the independent and dependent variables are unrelated if the condi-
tional distribution of the dependent variable is identical for each value of the independent
variable. That is, the histogram of the dependent variable does not depend on the value
of the independent variable. If the distribution of the dependent variable does depend on
the value of the independent variable, we will describe the two variables as related. All
this vocabulary applies to sample as well as population data-sets!.

Most research questions involve more than one independent variable. It is also common
to have more than one dependent variable. When there is one dependent variable, the
analysis is called univariate. When more than one dependent variable is being considered
simultaneously, the analysis is called multivariate.

Sample Question 1.2.1 Give an example of a study with two categorical independent
variables, one quantitative independent variable, and two quantitative dependent variables.

LA population dataset may be entirely hypothetical. For example, if a collection of cancer-prone
laboratory mice are given an anti-cancer vaccine, one might pretend that those mice are a random
sample from a population of all cancer-prone mice receiving the vaccine — but of course there is no such
population.



Answer to Sample Question 1.2.1 In a study of success in university, the subjects are
first-year university students. The categorical independent variables are Sex and Immi-
gration Status (Citizen, Permanent Resident or Visa), and the quantitative independent
variable is family income. The dependent variables are cumulative Grade Point Average
at the end of first year, and number of credits completed in first year.

Many problems in data analysis reduce to asking whether one or more variables are
related — not in the actual data, but in some hypothetical population from which the
data are assumed to have been sampled. The reasoning goes like this. Suppose that
the independent and dependent variables are actually unrelated in the population. If
this null hypothesis is true, what is the probability of obtaining a sample relationship
between the variables that is as strong or stronger than the one we have observed? If
the probability is small (say, p < 0.05), then we describe the sample relationship as
statistically significant, and it is socially acceptable to discuss the results. In particular,
there is some chance of having the results taken seriously enough to publish in a scientific
journal.

The number 0.05 is called the significance level. In principle, the exact value of
the significance level is arbitrary as long as it is fairly small, but scientific practice has
calcified around a suggestion of R. A. Fisher (in whose honour the F-test is named), and
the 0.05 level is an absolute rule in many journals in the social and biological sciences.

We will willingly conform to this convention. We conform willingly because we under-
stand that scientists can be highly motivated to get their results into print, even if those
“results” are just trends that could easily be random noise. To restrain these people from
filling the scientific literature with random garbage, we need a clear rule.

For those who like precision, the formal definition of a p-value is this. It is the minimum
significance level a at which the null hypothesis (of no relationship between independent
variable and dependent variable in the population) can be rejected.

Here is another useful way to talk about p-values. The p-value is the probability of
getting our results (or better) just by chance. If p is small enough, then the data are very
unlikely to have arisen by chance, assuming there is really no relationship between the
independent variable and the dependent variable in the population. In this case we will
conclude there really is a relationship.

Of course we seldom or never know for sure what is happening in the entire population.
So when we reject a null hypothesis, we may be right or wrong. Sometimes, the null
hypothesis is true (nothing is going on) and we mistakenly reject it; this is called a
Type One Error. It is also possible that the null hypothesis is false (there really is a
relationship between independent and dependent variable in the population) but we fail
to reject it. This is called a Type Two Error. Possibly the errors are numbered this way
because Mr. Fisher believed that false knowledge is a really bad thing — it’s the Number
One kind of mistake you can make.

The probability of correctly rejecting the null hypothesis — that is, the probability of
discovering something that really is present, is one minus the probability of a Type Two
error. This is called the Power of a statistical test. Clearly, more power is a good thing.
But there is a tradeoff between power and Type One error, so that it is impossible for any



statistical test to simultaneously minimize the chances of Type One error and maximize
the power. The accepted solution is to insist that the Type One error probability be no
more than some small value (the significance level — 0.05 for us), and use the test that has
the greatest power subject to this constraint. An important part of theoretical statistics
is concerned with proving that certain significance tests that have the best power, and
the tests that are used in practice tend to be the winners of this statistical power contest.

If you think about it for a moment, you will realize that most of the time, even a test
with good overall power will not have exactly the same power in every situation. The two
main principles are:

e The stronger the relationship between variables in the population, the greater the
power.

e The larger the sample size, the greater the power.

These two principles may be combined to yield a method for choosing a sample size
based on power, before any data have been collected. You choose a strength of relationship
that you want to detect, ideally one that is just barely strong enough to be scientifically
meaningful. Then you choose a (fairly high) probability with which you want to be able
to detect it. Next, you pick a sample size and calculate the power — not difficult, in this
age of computers. It will almost certainly be too low, though it may be higher than you
need if you have started with a huge sample size. So you increase (or decrease) the sample
size, and calculate the power again. Continue until you have located the smallest sample
size that gives you the power you want for the strength of relationship you have chosen.
This is not the only rational way to choose sample size, but it is one of the two standard
ones.? Examples will be given later.

Closely related to significance tests are confidence intervals. A confidence interval
corresponds to a pair of numbers calculated from the sample data, a lower confidence limit
and an upper confidence limit. The confidence limits are chosen so that the probability
of the interval containing some parameter (or function of the parameters, like a difference
between population means) equals a large value, say 0.95. Such a confidence interval
would be called a “ninety-five percent confidence interval.” The connection between tests
and confidence intervals is that a two tailed ¢-test or Z-test will be significant at the 0.05
level if and only if the 95% confidence interval does not contain zero.

1.2.2 Accepting the Null Hypothesis?

What should we do if p > .057 Fisher suggested that we should not conclude anything. In
particular, he suggested that we should not conclude that the independent and dependent
variables are unrelated. Instead, we can say only that there is insufficient evidence to
conclude that there is a relationship. A good reference is Fisher’s masterpiece, Statistical
methods for research workers [9], which had its first edition in 1925, and its 14th and last
edition in 1970, eight years after Fisher’s death.

2The other standard way is to choose the sample size so that a chosen confidence interval will have at
most some specified width.



In some courses, Fisher’s advice is given as an absolute rule. Students are told that
one never accepts the null hypothesis. But in other courses, if the null hypothesis is not
rejected, then it is accepted without further question. Who is right? This is the echo
of a very old quarrel between Fisher, who is responsible for the concept of hypothesis
testing more or less as we know it, and the team of Jerzy Neyman and Egon Pearson,
who came along a bit later and cleaned up Fisher’s method, putting it on a firm decision-
theoretic basis. The decision in question is between the null hypothesis and the alternative
hypothesis, period. According to Neyman and Pearson, you have to pick one of them,
based on the data. Refusal to decide is not an option.

During their lifetimes, Fisher fought bitterly with Neyman and Pearson. To Neyman
and Pearson, Fisher was creative but mathematically unsophisticated. To Fisher, Neyman
and Pearson were good mathematicians, but they were missing the point, because science
does not proceed by simple yes or no decisions made in isolation from one another. Today,
Neyman-Pearson theory usually dominates in theoretical research and theoretical courses,
while Fisher’s approach dominates in applications and applied courses. One might think
that because this is an applied course, we’ll just side with Fisher. But it’s a bit trickier
than that.

In the typical data analysis project, the first step is to assemble the data file and
check it for errors. Then, the usual practice is to carry out a variety of statistical tests
to get a preliminary idea of how the variables are related to each other. This phase can
be automated (as in stepwise regression) or not, but in general you try a lot of tests, and
if a potential independent variable is not significantly related to the dependent variable
in question, you usually just drop it and look elsewhere. That is, the null hypothesis is
freely accepted, and the Neyman-Pearson approach seems to govern this most applied of
statistical pursuits.

You can’t fault this; scientists must explore their data, and statistical testing is a
good way to do it. But it is helpful to distinguish between exploratory and confirmatory
statistical analysis. In an exploratory analysis, the researcher carries out a large number
of tests in an attempt to understand how the variables are related to one another. Various
statistical models are employed, variables may be defined and re-defined several times, and
the sample may be subdivided in various ways. Anything reasonable may be (and should
be) attempted. Numerous null hypotheses may be tentatively rejected, and numerous
others may be tentatively accepted. Properly speaking, the product of an exploratory
analysis is hypotheses, not conclusions. It is rare for all the details of an exploratory
analysis to be given in writing, though it is good practice to keep a record of what has
been tried.

In a confirmatory analysis, a more limited number of tests are carried out with the
intention of coming to firm conclusions.® The results of confirmatory analyses are often

31deally, exploratory and confirmatory analyses should be carried out on different data sets, possibly
by randomly splitting the data into exploratory and confirmatory sub-samples. But this is only feasible
when data are not too expensive or time-consuming to collect. In practice, researchers often explore their
data thoroughly, and then report the most interesting results as if they were a confirmatory analysis.
This practice is almost guaranteed to inflate the probability of Type One error, so it is wise to treat the
results of most scientific investigations as tentative until they have been independently replicated. In any



written up, because communication of results is in many ways the most important phase
of any investigation. It is clear that acceptance of the null hypothesis is a standard
feature of good exploratory analysis, even if it is not recognized as such. The argument
between Fisher and Neyman-Pearson is whether the null hypothesis should be accepted
in confirmatory analysis.

First of all, it’s clear that Fisher is right in a way. Suppose you wish to compare to
methods of teaching the piano. You randomly assign three students to one method and
two students to the other. After some reasonable period of time, you compare ratings of
their performance, using a two-sample ¢ test or something. Suppose the results are not
statistically significant. Does it make sense to conclude that the two methods are equally
effective? Obviously not; the sample size is so small that we probably don’t have enough
power to detect even a fairly large effect.

But Neyman and Pearson do not give up, even in this situation. They say that if
one had to choose based just on this tiny data set, the conclusion of no effect would be
the rational choice. Meanwhile, Fisher is going crazy. Who would decide anything based
on such inadequate evidence? He does not know whether to laugh at them or tear his
hair out, so he does both, in public. On their side, Neyman and Pearson are irritated
by Fisher’s unwillingness (or inability) to appreciate that when statistical tests emerge as
mathematical consequences of a general theory, this is better than just making them up
out of thin air.

Fisher wins this round, but it’s not over. The trouble with his approach is that it never
allows one to conclude that the null hypothesis is true. But sometimes, experimental
treatments just don’t do anything, and it is of scientific and practical importance to be
able to say so. For example, medical researchers frequently conclude that drugs don’t
work. On what basis are they drawing these conclusions? On what basis should they
draw such conclusions?

Unfortunately, though there are clear conventional standards for deciding when a
relationship is present, there is much less agreement on how to decide that one is absent.
In medical research, scientists often get away with such claims based only on the fact
that a test fails to attain statistical significance. Then, if the sample size is not unusually
small, nobody objects. It seems to depend on the editor of the journal.

There are a couple of reasonable suggestions about how to be more systematic (need
references here). Both methods stop short of allowing you to conclude that a relationship
is completely absent. Instead, they focus on deciding that the relationship between inde-
pendent variable and dependent variable is so weak that it does not matter, if it exists at
all.

One approach is based on power. Suppose you have selected the sample size so that
that there is a high probability (maybe 95%) of detecting a relationship that is just barely
meaningful (of course, if the relationship in the population happens to be stronger, the
probability of detecting it will be even higher). Then, if the test is non-significant, you
conclude that the relationship is not strong enough to be meaningful.

case, it is useful to distinguish conceptually between exploratory and confirmatory analysis, even though
the pure forms may seen only rarely in practice.



Another approach is based on confidence intervals. Again, you need to be able to
specify what’s scientifically or perhaps clinically meaningful, in terms of the population
parameters. You construct a confidence interval for the quantity in question (for example
a difference between means). If the 95% confidence interval lies entirely within a range of
values that is scientifically meaningless, you conclude that the relationship is not strong
enough to be meaningful.

These two reasonable methods need not yield the same conclusion for a given data
set; the confidence interval approach allows a relationship to be deemed negligible even
though it is statistically significant, while the power approach does not. Figure 1.1 shows
how this can happen. Notice that the 95% confidence interval is entirely within the range
of values deemed too small to be meaningful. But the confidence interval does not contain
zero, so p < 0.05. Any time the true parameter value is in the non-meaningful range but
is not exactly zero, a configuration like this is guaranteed to occur if the sample size is
large enough.

Figure 1.1: A relationship that is significant but too weak to be meaningful.
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Unfortunately, both the power method and the confidence interval method typically
require a very large sample to conclude that a relationship is (virtually) absent. So it
often happens that an important test is non-significant, but the power for detecting a
marginal effect was fairly low, and the confidence interval includes both zero and values
that are not trivial. In this situation, the best we can do is follow Fisher’s advice, and
say that the data do not provide sufficient evidence to conclude that the independent and
dependent variables are related.

Frequently, one has to write for a non-technical audience, and an important part of
this course is to express conclusions in plain, non-technical language — language that is
understandable to someone with no statistical training, but at the same time acceptable
to experts. Suppose you need to state conclusions, and the results are not statistically



significant. Most of your primary audience has no statistical background, so you need to
speak in clear, non-statistical language. But some of the audience (maybe including the
technical staff of your main audience) will be very disturbed if you seem to be accepting
the null hypothesis; they can make a lot of trouble. How do you finesse this?

Here are some statements that are acceptable. It’s good not to use exactly the same
phrase over and over.

e The data do not provide evidence that the treatment has any effect.
e There was no meaningful connection between . ..
e The results were consistent with no treatment effect.

e The results were consistent with no association between astrological sign and per-
sonality type.

e The small differences in average taste ratings could have been due to sampling error.

e The small differences in average taste ratings were within the range of sampling
error.

The nice thing about using this kind of language is that it communicates clearly to
non-experts, but it lets the experts read between the lines and see that you are aware
of the technical (philosophic) issue, and that you are being careful. For hundreds more
examples, take a look at Moore and McCabe’s Introduction to the practice of statistics [15].
This introductory text is simple and non-technical on the surface, but written with all
the theoretical complexities clearly in mind and under control. The result is a book
that satisfies both the absolute beginner and the professional statistician — quite an
accomplishment.

1.2.3 Standard elementary significance tests

We will now consider some of the most common elementary statistical methods; these
are covered in most introductory statistics courses. There is always just one independent
variable and one dependent variable. For each test, you should be able to answer the
following questions.

1. Make up your own original example of a study in which the technique could be used.
2. In your example, what is the independent variable?
3. In your example, what is the dependent variable?

4. Indicate how the data file would be set up.

10



Independent observations One assumption shared by most standard methods is that
of ”independent observations.” The meaning of the assumption is this. Observations 13
and 14 are independent if and only if the conditional distribution of observation 14 given
observation 13 is the same for each possible value observation 13. For example if the
observations are temperatures on consecutive days, this would not hold. If the dependent
variable is score on a homework assignment and students copy from each other, the
observations will not be independent.

When significance testing is carried out under the assumption that observations are
independent but really they are not, results that are actually due to chance will often be
detected as significant with probability considerably greater than 0.05. This is sometimes
called the problem of inflated n. In other words, you are pretending you have more
separate pieces of information than you really do. When observations cannot safely be
assumed independent, this should be taken into account in the statistical analysis. We
will return to this point again and again.

Independent (two-sample) t-test

This is a test for whether the means of two independent groups are different. Assumptions
are independent observations, normality within groups, equal variances. For large samples
normality does not matter. For large samples with nearly equal sample sizes, equal
variance assumption does not matter. The assumption of independent observations is
always important.

Sample Question 1.2.2 Make up your own original example of a study in which a two-
sample t-test could be used.

Answer to Sample Question 1.2.2 An agricultural scientist is interested in compar-
ing two types of fertilizer for potatoes. Fifteen small plots of ground receive fertilizer A
and fifteen receive fertilizer B. Crop yield for each plot in pounds of potatoes harvested is
recorded.

Sample Question 1.2.3 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.3 Fertilizer, a binary variable taking the values A
and B.

Sample Question 1.2.4 In your ezample, what is the dependent variable (or variables)?
Answer to Sample Question 1.2.4 Crop yield in pounds.
Sample Question 1.2.5 [ndicate how the data file might be set up.

Answer to Sample Question 1.2.5

11



A 131
A 113

B 122

Matched (paired) t¢-test

Again comparing two means, but from paired observations. Pairs of observations come
from the same case (subject, unit of analysis), and presumably are non-independent. The
matched t-test takes this lack of independence into account by computing a difference for
each pair, reducing the volume of data (and the apparent sample size) by half. This is our
first example of a repeated measures analysis. Here is a general definition. We will say
that there are repeated measures on an independent variable if a case (unit of analysis,
subject, participant in the study) contributes a value of the dependent variable for each
value of the independent variable in question. A variable on which there are repeated
measures is sometimes called a within-cases (or within-subjects) variable. When this
language is being spoken, variables on which there are not repeated measures are called
between-cases. In a within-cases design, each case serves as its own control. When the
correlations among data from the same case are substantial, a within-cases design can
have higher power than a between-cases design.

The assumptions of the matched ¢-test are that the differences represent independent
observations from a normal population. For large samples, normality does not matter.
The assumption that different cases represent independent observations is always impor-
tant.

Sample Question 1.2.6 Make up your own original example of a study in which a
matched t-test could be used.

Answer to Sample Question 1.2.6 Before and after a 6-week treatment, participants
in a quit-smoking program were asked “On the average, how many cigarettes do you smoke
each day?”

Sample Question 1.2.7 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.7 Presence versus absence of the program, a binary
variable taking the values “Absent” or “Present” (or maybe “Before” and “After”). We
can say there are repeated measures on this factor, or that it is a within-subjects factor.

Sample Question 1.2.8 In your example, what is the dependent variable (or variables)?
Answer to Sample Question 1.2.8 Reported number of cigarettes smoked per day.

Sample Question 1.2.9 Indicate how the data file might be set up.

12



)

Answer to Sample Question 1.2.9 The first column is “Before,” and the second col-

umn 1s “After.”

22 18
40 34

20 10

One-way Analysis of Variance

Extension of the independent t-test to two or more groups. Same assumptions, everything.
F = 2 for two groups.

Sample Question 1.2.10 Make up your own original example of a study in which a
one-way analysis of variance could be used.

Answer to Sample Question 1.2.10 Fighty branches of a large bank were chosen to
participate in a study of the effect of music on tellers” work behaviour. Twenty branches
were randomly assigned to each of the following 4 conditions. 1=No music, 2=FElevator
music, 3=Rap music, 4=Individual choice (headphones). Average customer satisfaction
and worker satisfaction were assessed for each bank branch, using a standard question-
naire.

Sample Question 1.2.11 In your example, what are the cases?
Answer to Sample Question 1.2.11 Branches, not people answering the questionnaire.
Sample Question 1.2.12 Why do it that way?

Answer to Sample Question 1.2.12 To avoid serious potential problems with inde-
pendent observations within branches. The group of interacting people within social setting
18 the natural unit of analysis, like an organism.

Sample Question 1.2.13 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.13 Type of music, a categorical variable taking on 4
values.

Sample Question 1.2.14 In your example, what is the dependent variable (or vari-
ables)?

Answer to Sample Question 1.2.14 There are 2 dependent variables, average cus-
tomer satisfaction and average worker satisfaction. If they were analyzed simultaneously
the analysis would be multivariate (and not elementary).

13



Sample Question 1.2.15 Indicate how the data file might be set up.

Answer to Sample Question 1.2.15 The columns correspond to Branch, Type of Mu-
sic, Customer Satisfaction and Worker Satisfaction

1 2 475 531
2 4 291 6.82

80 2 5.12 4.06
Sample Question 1.2.16 How could this be made into a repeated measures study?

Answer to Sample Question 1.2.16 Let each branch experience each of the 4 music
conditions in a random order (or better, use only 72 branches, with 3 branches receiving
each of the 24 orders). There would then be 10 pieces of data for each bank: Branch,
Order (a number from 1 to 24), and customer satisfaction and worker satisfaction for
each of the 4 conditions.

Including all orders of presentation in each experimental condition is an example of
counterbalancing — that is, presenting stimuli in such a way that order of presentation
is unrelated to experimental condition. That way, the effects of the treatments are not
confused with fatigue or practice effects (on the part of the experimenter as well as the
subjects). In counterbalancing, it is often not feasible to include all possible orders of
presentation it each experimental condition, because sometimes there are too many. The
point is that order of presentation has to be unrelated to any manipulated independent
variable.

Two (and higher) way Analysis of Variance

Extension of One-Way ANOVA to allow assessment of the joint relationship of several
categorical independent variables to one quantitative dependent variable that is assumed
normal within treatment combinations. Tests for interactions between independent vari-
ables are possible. An interaction means that the relationship of one independent variable
to the dependent variable depends on the value of another independent variable. This
method is not really elementary, because there is more than one independent variable.

Crosstabs and chi-squared tests

Cross-tabulations (Crosstabs) are joint frequency distribution of two categorical variables.
One can be considered an independent variable, the other a dependent variable if you like.
In any case (even when the independent variable is manipulated in a true experimental
study) we will test for significance using the chi-squared test of independence. Assumption
is independent observations are drawn from a multinomial distribution. Violation of the
independence assumption is common and very serious.
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Sample Question 1.2.17 Make up your own original example of a study in which this
technique could be used.

Answer to Sample Question 1.2.17 For each of the prisoners in a Toronto jail, record
the race of the offender and the race of the victim. This is illegal; you could go to jail
yourself for publishing the results. It’s totally unclear which is the independent variable
and which is the dependent variable, so I'll make up another example.

For each of the graduating students from a university, record main field of study and
and gender of the student (male or female).

Sample Question 1.2.18 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.18 Gender

Sample Question 1.2.19 In your example, what is the dependent variable (or vari-
ables)?

Answer to Sample Question 1.2.19 Main field of study (many numeric codes).
Sample Question 1.2.20 Indicate how the data file would be set up.

Answer to Sample Question 1.2.20 The first column is Gender (0=Male, 1=F). The
second column s Field.

1 2
0 14
0 9

Correlation and Simple Regression

Correlation Start with a scatterplot showing the association between two (quantita-
tive, usually continuous) variables. A scatterplot is a set of Cartesian coordinates with
a dot or other symbol showing the location of each (z,y) pair. If one of the variables
is clearly the independent variable, it’s traditional to put it on the x axis. There are n
points on the scatterplot, where n is the number of cases in the data file.

Often, the points in a scatterplot cluster around a straight line. The correlation
coefficient (Pearson’s r) expresses how close the points are to the line.
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Here are some properties of the correlation coefficient r:

—-1<r<1

r = +1 indicates a perfect positive linear relationship. All the points are exactly on
a line with a positive slope.

r = —1 indicates a perfect negative linear relationship. All the points are exactly
on a line with a negative slope.

r = 0 means no linear relationship (curve possible)

r? represents explained variation, reduction in (squared) error of prediction. For

example, the correlation between scores on the Scholastic Aptitude Test (SAT) and
first-year grade point average (GPA) is around 40.50, so we say that SAT scores
explain around 25% of the variation in first-year GPA.

The test of significance for Pearson’s r assumes a bivariate normal distribution for the
two variables; this means that the only possible relationship between them is linear. As
usual, the assumption of independent observations is always important.

Here are some examples of scatterplots and the associated correlation coefficients. The
number 2 on a plot means that two points are on top of each other, or at least too close
to be distinguished in this crude line printer graphic.

C1
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- * 2 2% k% % *
45+ * *x %2 *
- * * *
- *
- * ok ok
- * *
30+
- * *
+ + + + + + Cc3
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Correlation of C1 and C3 = 0.004
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Simple Regression One independent variable, one dependent. In the usual examples
both are quantitative (continuous). We fit a least-squares line to the cloud of points in
a scatterplot. The least-squares line is the unique line that minimizes the sum of squared
vertical distances between the line and the points in the scatterplot. That is, it minimizes
the total (squared) error of prediction.

Denoting the slope of the least-squares line by b; and the intercept of the least-squares
line by b,

by =r>Y and by =Y — b, X.
xX
That is, the slope of the least squares has the same sign as the correlation coefficient, and
equals zero if and only if the correlation coefficient is zero.

Usually, you want to test whether the slope is zero. This is the same as testing
whether the correlation is zero, and mercifully yields the same p-value. Assumptions are
independent observations (again) and that within levels of the independent variable, the
dependent variable has a normal distribution with the same variance (variance does not
depend on value of the dependent variable). Robustness properties are similar to those
of the 2-sample t-test. The assumption of independent observations is always important.

Multiple Regression

Regression with several independent variables at once; we're fitting a (hyper) plane rather
than a line. Multiple regression is very flexible; all the other techniques mentioned above
(except the chi-squared test) are special cases of multiple regression. More details will be
given later.

20



1.3 Experimental versus observational studies

Why might someone want to predict a dependent variable from an independent variable?
There are two main reasons.

e There may be a practical reason for prediction. For example, a company might
wish to predict who will buy a product, in order to maximize the productivity of
its sales force. Or, an insurance company might wish to predict who will make a
claim, or a university computer centre might wish to predict the length of time a
type of hard drive will last before failing. In each of these cases, there will be some
independent variables that are to be used for prediction, and although the people
doing the study may be curious and may have some ideas about how things might
turn out and why, they don’t really care why it works, as long as they can predict
with some accuracy. Does variation in the independent variable cause variation in
the dependent variable? Who cares?

e This may be science (of some variety). The goal may be to understand how the
world works — in particular, to understand the dependent variable. In this case,
most likely we are implicitly or explicitly thinking of a causal relationship between
the independent variable and dependent variable. Think of attitude similarity and
interpersonal attraction ....

Sample Question 1.3.1 A study finds that high school students who have a computer at
home get higher grades on average than students who do not. Does this mean that parents
who can afford it should buy a computer to enhance their children’s chances of academic
success?

Here is an answer that gets zero points. “Yes, with a computer the student can become
computer literate, which is a necessity in our competitive and increasingly technological
society. Also the student can use the computer to produce nice looking reports (neatness
counts!), and obtain valuable information on the World Wide Web.” ZERO.

The problem with this answer is that while it makes some fairly reasonable points, it
is based on personal opinion, and fails to address the real question, which is “Does this
mean ..." Here is an answer that gets full marks.

Answer to Sample Question 1.3.1 Not necessarily. While it is possible that some
students are doing better academically and therefore getting into university because of
their computers, it is also possible that their parents have enough money to buy them a
computer, and also have enough money to pay for their education. It may be that an
academically able student who is more likely to go to university will want a computer
more, and therefore be more likely to get one somehow. Therefore, the study does not
provide good evidence that a computer at home will enhance chances of academic success.

Note that in this answer, the focus is on whether the study provides good evidence
for the conclusion, not whether the conclusion is reasonable on other grounds. And
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the answer gives specific alternative explanations for the results as a way of criticizing
the study. If you think about it, suggesting plausible alternative explanations is a very
damaging thing to say about any empirical study, because you are pointing out that the
investigators expended a huge amount of time and energy, but didn’t establish anything
conclusive. Also, suggesting alternative explanations is extremely valuable, because that
is how research designs get improved and knowledge advances.

In all these discussions of causality, it is important to understand what the term does
not mean. If we say that smoking cigarettes causes lung cancer, it does not mean that
you will get lung cancer if and only if you smoke cigarettes. It means that smoking
contributes to the chances that you will get cancer. So when we say “cause,” we really
mean “contributing factor.” And it is almost always one contributing factor among many.

Now here are some general principles. If X and Y are measured at roughly the
same time, X could be causing Y, Y could be causing X, or there might be some third
variable (or collection of variables) that is causing both X and Y. Therefore we say
that ”Correlation does not necessarily imply causation.” Here, by correlation we mean
association (lack of independence) between variables. It is not limited to situations where
you would compute a correlation coefficient.

A confounding variable is a variable not included as an independent variable, that
might be related to both the independent variable and the dependent variable — and that
might therefore create a seeming relationship between them where none actually exists,
or might even hide a relationship that is present. Some books also call this a “lurking
variable.” You are responsible for the vocabulary “confounding variable.”

An experimental study is one in which cases are randomly assigned to the different
values of an independent variable (or variables). An observational study is one in which
the values of the independent variables are not randomly assigned, but merely observed.

Some studies are purely observational, some are purely experimental, and many are
mixed. It’s not really standard terminology, but in this course we will describe indepen-
dent wvariables as experimental (i.e., randomly assigned, manipulated) or observed.

In an experimental study, there is no way the dependent variable could be causing
the independent variable, because values of the independent variable are assigned by the
experimenter. Also, it can be shown (using the Law of Large Numbers) that when units of
observation are randomly assigned to values of an independent variable, all potential con-
founding variables are cancelled out as the sample size increases. This is very wonderful.
You don’t even have to know what they are!

Sample Question 1.3.2 Is it possible for a continuous variable to be experimental, that
is, randomly assigned?

Answer to Sample Question 1.3.2 Sure. In a drug study, let one of the independent
variables consist of n equally spaced dosage levels spanning some range of interest, where
n 1s the sample size. Randomly assign one participant to each dosage level.

Sample Question 1.3.3 Give an original example of a study with one quantitative ob-
served independent variable and one categorical manipulated independent variable. Make
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the study multivariate, with one dependent variable consisting of unordered categories and
two quantitative dependent variables.

Answer to Sample Question 1.3.3 Stroke patients in a drug study are randomly as-
signed to either a standard blood pressure drug or one of three experimental blood pressure
drugs. The categorical dependent variable is whether the patient is alive or not 5 years
after the study begins. The quantitative dependent variables are systolic and diastolic blood
pressure one week after beginning drug treatment.

In practice, of course there would be a lot more variables; but it’s still a good answer.

Because of possible confounding variables, only an experimental study can provide
good evidence that an independent variable causes a dependent variable. Words like
effect, affect, leads to etc. imply claims of causality and are only justified for experimental
studies.

Sample Question 1.3.4 Design a study that could provide good evidence of a causal
relationship between having a computer at home and academic success.

Answer to Sample Question 1.3.4 High school students without computers enter a
lottery. The winners (50% of the sample) get a computer to use at home. The dependent
variable is whether or not the student enters university.

Sample Question 1.3.5 s there a problem with independent observations here? Can
you fix it?

Answer to Sample Question 1.3.5 Oops. Yes. Students who win may be talking to
each other, sharing software, etc.. Actually, the losers will be communicating too. There-
fore their behaviour is non-independent and standard significance tests will be invalid. One
solution is to hold the lottery in n separate schools, with one winner in each school. If the
dependent variable were GPA, we could do a matched t-test comparing the performance
of the winner to the average performance of the losers.

Sample Question 1.3.6 What if the dependent variable is going to university or not?

Answer to Sample Question 1.3.6 We are getting into deep water here. Here is how
I would do it. In each school, give a score of “1”7 to each student who goes to university,
and a “07 to each student who does not. Again, compare the scores of the winners to the
average scores of the losers in each school using a matched t-test. Note that the mean
difference that is to be compared with zero here is the mean difference in probability of
going to university, between students who get a computer to use and those who do not.
While the differences for each school will not be normally distributed, the central limit
theorem tells us that the mean difference will be approximately normal if there are more
than about 20 schools, so the t-test is valid. In fact, the t-test is conservative, because the
tails of the t distribution are heavier than those of the standard normal. This answer is
actually beyond the scope of the present course.
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Artifacts and Compromises

Random assignment to experimental conditions will take care of confounding variables,
but only if it is done right. It is amazingly easy for for confounding variables to sneak back
into a true experimental study through defects in the procedure. For example, suppose
you are interested in studying the roles of men and women in our society, and you have
a b0-item questionnaire that (you hope) will measure traditional sex role attitudes on a
scale from 0 = Very Non-traditional to 50 = Very Traditional. However, you suspect that
the details of how the questionnaire is administered could have a strong influence on the
results. In particular, the sex of the person administering the questionnaire and how he
or she is dressed could be important.

Your subjects are university students, who must participate in your study in order to
fulfill a course requirement in Introductory Psychology. You randomly assign your sub-
jects to one of four experimental conditions: Female research assistant casually dressed,
Female research assistant formally dressed, Male research assistant casually dressed, or
Male research assistant formally dressed. Subjects in each experimental condition are in-
structed to report to a classroom at a particular time, and they fill out the questionnaire
sitting all together.

This is an appealing procedure from the standpoint of data collection, because it is
fast and easy. However, it is so flawed that it may be a complete waste of time to do the
study at all. Here’s why. Because subjects are run in four batches, an unknown number
of confounding variables may have crept back into the study. To name a few, subjects
in different experimental conditions will be run at different times of day or different days
of the week. Suppose subjects in the the male formally dressed condition fill out the
questionnaire at 8 in the morning. Then all the subjects in that condition are exposed
to the stress and fatigue of getting up early, as well as the treatment to which they have
been randomly assigned.

There’s more, of course. Presumably there are just two research assistants, one male
and one female. So there can be order effects; at the very least, the lab assistant will be
more practiced the second time he or she administers the questionnaire. And, though the
research assistants will surely try to administer the questionnaire in a standard way, do
you really believe that their body language, facial expressions and tone of voice will be
identical both times?

Of course, the research assistants know what condition the subjects are in, they know
the hypotheses of the study, and they probably have a strong desire to please the boss —
the investigator (professor or whatever) who is directing this turkey, uh, excuse me, I mean
this research. Therefore, their behaviour could easily be slanted, perhaps unconsciously
so, to produce the hypothesized effects.

This kind phenomenon is well-documented. It’s called experimenter expectancy. Ex-
perimenters find what they expect to find. If they are led to believe that certain mice
are very intelligent, then those mice will do better on all kinds of learning tasks, even
though in fact the mice were randomly assigned to be labeled as “intelligent.” This kind
of thing applies all the way down to flatworms. The classic reference is Robert Rosen-
thal’s Ezperimenter expectancy in behavioral research [18]. Naturally, the expectancy
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phenomenon applies to teachers and students in a classroom setting, where it is called
teacher expectancy. The reference for this is Rosenthal and Jacobson’s Pygmalion in the
classroom [19].

It is wrong (and complacent) to believe that expectancy effects are confined to psycho-
logical research. In medicine, placebo effects are well-documented. Patients who are given
an inert substance like a sugar pill do better than patients who are not, provided that
they or their doctors believe that they are getting medicine that works. Is it the patients’
expectancies that matter, or the doctors’? Probably both. The standard solution, and
the only acceptable solution in clinical trials of new drugs, is the so called double blind,
in which subjects are randomly assigned to receive either the drug or a placebo, and nei-
ther the patient nor the doctor knows which it is. This is the gold standard. Accept no
substitutes.

Until now, we have been discussing threats to the Internal Validity of research. A
study has good internal validity if it’s designed to eliminate the influence of confounding
variables, so one can be reasonably sure that the observed effects really are being produced
by the independent variables of interest. But there’s also External Validity. External va-
lidity refers to how well the phenomena outside the laboratory or data-collection situation
are being represented by the study. For example, well-controlled, double-blind taste tests
indicated that the Coca-cola company had a recipe that consumers liked better than the
traditional one. But attempts to market “New” Coke were an epic disaster. There was
just more going on in the real world of soft drink consumption than in the artificial lab-
oratory setting of a taste test. Cook and Campbell’s Quasi-experimentation [7] contains
an excellent discussion of internal versus external validity.

In Industrial-Organizational psychology, we have the Hawthorne Effect, which takes
its name from the Hawthorne plant of General Electric, where some influential studies of
worker productivity were carried out in the 1930’s. The basic idea is that when workers
know that they are part of a study, almost anything you do will increase productivity.
Make the lights brighter? Productivity increases. Make the lights dimmer? Productivity
increases. This is how the Hawthorne Effect is usually described. The actual details of the
studies and their findings are more complex [17], but the general idea is that when people
know they are participating in a study, they tend to feel more valued, and act accordingly.
In this respect, the fact that the subjects know that a study is being carried can introduce
a serious distortion into the way things work, and make the results unrepresentative of
what normally happens.

Medical research on non-human animals is always at least subject to discussion on
grounds of external validity, as is almost any laboratory research in Psychology. Do you
know why the blood vessels running away from the heart are called “arteries?” It’s because
they were initially thought to contain air. Why? Because medical researchers were basing
their conclusions entirely on dissections of dead bodies. In live bodies, the arteries are
full of blood.

Generally speaking, the controlled environments that lead to the best internal validity
also produce the greatest threats to external validity. Is a given laboratory setup captur-
ing the essence of the phenomena under consideration, or is it artificial and irrelevant?
It’s usually hard to tell. The best way to make an informed judgement is to compare
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laboratory studies and field studies that are trying to answer the same questions. The
laboratory studies usually have better internal validity, and the field studies usually have
better external validity. When the results are consistent, we feel more comfortable.
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Chapter 2

First set of tools: SAS running
under unix (including linux)

The SAS language is the same regardless of what hardware you use or what operating
system is running on the hardware. SAS programs are simple text files that can be
transported from one machine to another with minimal difficulty. In this book, everything
will be illustrated with SAS running under the unix operating system, but it’s not a
problem even if the next place you go only has PCs. The adjustment to SAS-PC should
be fast and fairly painless.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graphical shell that
runs on top of unix), but we won’t bother with it. Basically, you type a command, press
Enter, and unix does something for (or to) you. It may help to think of unix as DOS
on steroids, if you remember DOS. The table below has all the unix commands you will
need. Throughout, fname stands for the name of a file.
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A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man sort).
Is Lists names of the files in your directory.

less fname Displays fname on screen, one page at a time. Spacebar for next page, q to
quit.

Ipr fname Prints hard copy. That first character is a capital L. lpr stands for line
printer. These physical devices no longer exist in most installations.

rm fname Removes fname, erasing it forever.

cp fnamel fname2 Makes a copy of fnamel. The new copy is named fname2.
mv fnamel fname2 Moves (renames) fnamel

emacs fname Starts the emacs text editor, editing fname (can be new file).

R Gets you into the R implementation of the S environment.

sas fname Executes SAS commands in the file fname.sas, yielding frname.log and (if
no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when you can’t log
off because there are stopped jobs. Use ps to see the job numbers.

mail yourname@yourisp.com < fname Email a file to yourself. Very handy for get-
ting files to your home computer for printing.

curl URL > fname A URL is a Web address. This command is intended to help you
get a copy of the source code of Web pages. But when the web page contains just
a data file, as it sometimes does in this course, this is a great way to get a copy of
the data. Copy the URL from your browser, like this.

curl http://fisher.utstat.toronto.edu/ brunner/429f07/code_n_data/drp.dat > drp.dat

This really is a minimal set of commands. The unix operating system is extremely
powerful, and has an enormous number of commands. You can’t really see the power
from the minimal set above, but you can see the main drawback from the standpoint of
a new user. Commands tend to be terse, consisting of just a few keystrokes. They make
sense once you are familiar with them (like 1s for listing the files in a directory, or rm for
remove), but they are hard to guess. The man command (short for manual) gives very
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accurate information, but you have to know the name of the command before you can
use man to find out about it.

Just for future reference, here are a few more commands that you may find useful, or
otherwise appealing.

A Few More unix Commands

mkdir dirname Makes a new sub-directory (like a folder) named dirname. You can
have sub-directories within sub-directories; it’s a good way to organize your work.

cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory dirname.
cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

Is > fname Sends the output of the 1s command to the file fname instead of to the
screen.

cat fname Lists the whole file on your screen, not one page at a time. It goes by very
fast, but usually you can scroll back up to see the entire file, if it’s not too long.

cat fnamel fname2 > fname3 Concatenates fnamel and fname2 (sticks them to-
gether) and re-directs the output to fname3

grep ERROR cartoonl.log Searches for the string ERROR in the file cartoonl.log.
Echos each line containing the string. Silent if ERROR does not occur. Case
sensitive.

alias chk "grep ERROR *.log ; grep WARN *.log” Makes a new command called
chk. It checks for the string ERROR and the string WARN in any log file.

cal Displays a calendar for this month
cal 1 3002 Displays a calendar for January 3002.

unset noclobber Are you tired of being asked if you really want to remove or overwrite
a file?

rm fnamel fname2 Remove both

rm -f fname Remove without asking for confirmation, this time only.
alias rm ”rm -f’ rm now means rm -f.

rm -r dirname Remove the directory, and everything in it recursively.

R —vanilla < frnamel > fname2 Execute the S language commands in fnamel, send-
ing output to fname2. Run in “plain vanilla” mode.
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Printing files at home This is a question that always comes up. Almost surely, the
printer connected to your printer at home is not directly connected to the university
network. If you want to do something like print your SAS output at home, you have to
transfer the file on the unix machine to the hard drive of your home computer, and print
it from there. One way is to use some kind of sftp (secure file transfer protocol) tool to
get the file in question onto your hard drive. If you are a Mac or linux user, sftp is built
in. For Windows users, the free utility WinSCP is recommended.

Depending on your email program, another method is to email yourself the file. This
is illustrated in the first set of unix commands. To repeat,

mail yourname@yourisp.com < fname.

This approach is not recommended if you use a web-based email program like Hotmail.

If you print your files from a word-processing program like MS Word, it is a good
idea to use a fixed-width font like Courier, and not the Times or Times Roman font.
Everything will be lined up better.

2.1.1 Editing text files with emacs

SAS programs are plain text files, and so are raw data files. You must type in your
programs, and occasionally type in or modify raw data files as well. It is best to do this
directly on the unix server, and the recommended tool is emacs, a free open-source text
editor. Emacs is the work of Richard Stallman, originator of the Free Software Foundation
and the gnu project. You can think of emacs as a vastly more powerful version of Notepad.

Emacs allows you to edit text in a full-screen environment, but it dates from the time
before full graphical user interfaces. Therefore, if you are connecting to the unix machine
using PuTTY or a terminal application, take your hand away from the mouse. You cannot
get to a location by clicking there, and you cannot do most of the things you ordinarily
do with your mouse.!

To get into emacs from the operating system, type emacs fname at the unix prompt
(fname stands for the name of a file). If fname is a previously existing file, it will be
brought into emacs and you will see it on the screen. If fname does not already exist,
it will be created. Whatever you type will be inserted to the left of the blinking cursor.
Pressing the DELETE or the BACKSPACE key will erase the character to the left of the
cursor. Move around with the arrow keys, not the mouse.

Emacs is largely controlled by sequences single keystroke commands. To let emacs
know that a sequence is meant to be a command and not something to be inserted into
the text, you must either hold down the CONTROL key and press the command key, or
strike the ESC (escape) key first and then press the command key. In the summary of
commands below, C- and then a letter means hold down the CONTROL key and press

You can select text in the usual way, and if you are using PuTTY, selecting text copies it to a buffer
you can think of as the clipboard. But this is happening in PuTTY, a program running on your PC. Emacs,
a program running on the remote unix machine, knows nothing about it. And, pressing the right mouse
key pastes the contents of the buffer, but emacs thinks you're just typing fast.
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the letter. ESC- and then a letter means strike the ESC key and then press the letter.
Here is a very small set of useful commands:

A Minimal Set of emacs Commands

C-x C-s Save the file. Do this often as you type!

C-x C-c Exit emacs, saving the file. Really want to leave? Reply y for yes or n for no.
C-x C-w Save the file under a new name.

C-e Move cursor to end of line.

C-a Move cursor to beginning of line.

C-v Forward a screen.

ESC-v Backward a screen.

ESC-> Move to end of file.

ESC-< Move to beginning of file.

C-k Kill (delete) to end of line; contents are saved in the “kill” buffer.

C-@ Set “mark”. (Now move "point” (cursor) to other boundary of text you want to
copy or cut.)

C-w Cuts text between point and mark, placing it in kill buffer.
ESC-w Copies text between point and mark, placing it in kill buffer.

C-y “Yank” (paste) contents of kill buffer. If several items have been deleted consecu-
tively, (like with many C-K’s) they’re all there.

C-x i Insert file at cursor. EMACS will ask for file name.

ESC-% Search and replace. y=yes, n=no, !=yes from here on with no prompt, ESC
terminates the search.

C-x u Undo the last command. Keep doing it to keep undoing.

C-x g Makes emacs stop whatever it is trying to do, like prompting you with several
choices you are not interested in. This is how you back out of a command you wish
you had not entered.

C-x z Temorarily suspends emacs, escaping to the operating system prompt. Come back
with fg.
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2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs as well as on
bigger computers, it is truly the last of the great old mainframe statistical packages. The
first beta release was in 1971, and the SAS Institute, Inc. was spun off from the University
of North Carolina in 1976, the year after Bill Gates dropped out of Harvard. This is a
serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency are beyond any question. For
the purposes of this class, there are no bugs. The disadvantages of SAS are all related to
the fact that it was designed to run in a batch-oriented mainframe environment. So, for
example, the SAS Institute has tried hard to make SAS an “interactive” program, but
the interface still basically file and text oriented, not graphical.

2.2.1 The Four Main File Types
A typical SAS job will involve four main types of file.

e The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is called drp.dat.

e The Program File: This is also sometimes called a “command file,” because it’s
usually not much of a program. It consists of commands that the SAS software
tries to follow. You create this file with a text editor like emacs. The command file
contains a reference to the raw data file (in the infile statement), so SAS knows
where to find the data. In the first example we will consider below, the command
file is called readingl.sas. SAS expects program files to have the extension .sas,
and you should always follow this convention.

e The Log File: This file is produced by every SAS run, whether it is successful of
unsuccessful. It contains a listing of the command file, as well any error messages or
warnings. The name of the log file is automatically generated by SAS; it combines
the first part of the command file’s name with the extension .log. So for example,
when SAS executes the commands in readingl.sas, it writes a log file named
readingl.log.

e The List File: The list file contains the output of the statistical procedures re-
quested by the command file. The list file has the extension .1st — so, for example,
running SAS on the command file readingl . sas will produce readingl.1lst as well
as readingl.log. A successful SAS run will almost always produce a list file. The
absence of a list file indicates that there was at least one fatal error. The presence
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of a list file does not mean there were no errors; it just means that SAS was able to
do some of what you asked it to do. Even if there are errors, the list file will usually
not contain any error messages; they will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. In this text, all the examples will be run from the
unix command line. In my view, this way is simplest and also the best way to start. Also,
it is by far the easiest way to use SAS from home, assuming that SAS is running on a
remote server and not your home computer.

The following illustrates a simple SAS run. The unix prompt is YesMaster >, indi-
cating that unix is waiting for a command. You unix prompt will probably be different.
Initially, there are no files in the directory. So when we type 1s to list the files, we just
get the unix prompt again.

YesMaster > 1s
YesMaster >

The first step is to get the raw data file. It’s a classic: the data that Student (William
Gossett) used to illustrate the ¢-test in the paper where he first reported it [21]. Navigate
to the data file with a Web browser, copy the address and click on the unix window
(PuTTY, for most students.) Then use the curl command to copy the data file to your
directory. In PuTTY, you'd type curl, then space, then press the right mouse key to
paste the Web address; it’s long, and wraps to the next line. Type another space, the
“greater than” sign (unix redirection, sending output somewhere), and then the name of
the file you want it to go to — in this case studentsleep.data. Finally, press the Enter
key. You see a cryptic report on the data transmission, and get the unix prompt again.
Then, 1s shows that the file is there.

YesMaster > curl http://fisher.utstat.toronto.edu/ brunner/442f09/code_n_data/text/
studentsleep.data > studentsleep.data

% Total % Received Y, Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 314 100 314 0 0 15492 0O —t——i—— ——i——1—— ——1——:1—- 0

YesMaster > 1s
studentsleep.data

You always examine the raw data file before doing anything else. Look at it with the
less command — spacebar for another page, q for quit.
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YesMaster > less studentsleep.data

Patient Drug 1 Drug 2
1 0.7 1.9
2 -1.6 0.8
3 -0.2 1.1
4 -1.2 0.1
5 -0.1 -0.1
6 3.4 4.4
7 3.7 5.5
8 0.8 1.6
9 0.0 4.6

10 2.0 3.4

YesMaster >

Actually, it’s so obvious that you should look at your data that it is seldom mentioned.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. This is so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file is big, do it
anyway. At least page through it a screen at a time, looking for anything strange. Check
the values of all the variables for a few cases. Do they make sense? If you have obtained
the data file from somewhere, along with a description of what’s in it, never believe that
the description you have been given is completely accurate.

The file studentsleep.data contains two variables for ten patients suffering from
insomnia. Notice the variable names on the first line. Some software (like R) can use this
information, but SAS cannot. Furthermore, if it tries to read the data and encounters
characters where it expects numbers, the results are unpleasant. One solution is to edit
the raw data file and get rid of the labels, but actually labels like this can be useful. We’ll
get SAS to skip the first line, and start reading data from line two.

Each variable is actually a difference, representing how much eztra sleep a patient
got when taking a sleeping pill. Drug 1 is Dextro-hyoscyamine hydrobomide, while Drug
2 is Laevo-hyoscyamine hydrobomide. We want to know whether each drug is effective,
and also which drug is more effective. Following Gosset, we’ll use one-sample t-tests to
decide whether each drug is effective; since these one-sample t-tests are carried out on
differences, they are matched t¢-tests. We'll also compute a match-t-test comparing Drug
1 and Drug 2. Notice that this is a within-cases design.

To analyze the data with SAS, we need to create another plain text file containing a
SAS program. We'll use emacs. At the unix prompt, type emacs sleepl.sas and Enter.
Please use the extension .sas for all SAS program files. The file does not exist yet, so
emacs creates a new empty file with that name, and presents you with a blank screen.
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You type in the program, exit emacs, and type the 1s command. Now you have two files.
Here is the process just described.

YesMaster > emacs sleepl.sas

YesMaster > 1s
sleepl.sas studentsleep.data

To execute a SAS program called fname.sas, type sas fname at the unix prompt.
When we do this, we see that SAS has created two additional files: the log file and the
list file.

YesMaster > sas sleepl
YesMaster > 1s
sleepl.log sleepl.lst sleepl.sas studentsleep.data

If there are no errors or the errors are not too serious, statistical output will appear
in the list file, in this case sleepl.1lst. If there are warnings or error messages, they will
appear in the log file. So even if there is a list file, your next step is to take a look at
the log file with less or cat. If there are problems, use emacs to fix them by editing the
program file, the data file, or both. Repeat as needed.

The whole process will be faster and easier if you open two unix windows at once.
Arrange your desktop so you can see at least part of both screens at the same time (this
means fighting the MS Windows habit of filling your entire monitor with a single window).
Edit your program with emacs in one window, and have the unix prompt in the other
window. When your program looks good, save it, but don’t exit emacs. Click on the
other window, do sas fname, and less the log or list file. If there’s a problem, click on
the window with emacs running, modify the program, save again, and so on.

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

e Most SAS commands belong either in data step or in a proc step; they will generate
errors if they are used in the wrong kind of step.

e Some statements, like the title and options commands, exist outside of the data
and proc steps, but there are relatively few of these.
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The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to at least one raw data file, telling SAS where to
look for the data. It specifies variable names and labels, and provides instructions about
how to read the data; for example, the data might be read from fixed column locations.
Variables from the raw data file can be modified, and new variables can be created.

Each data step creates a SAS data set, a file consisting of the data (after modifica-
tions and additions), labels, and so on. Statistical procedures operate on SAS data sets,
so you must create a SAS data set before you can start computing any statistics.

A SAS data set is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data sets were always
written to temporary scratch files on the computer’s hard drive; these days, they may be
maintained in RAM if they are small enough. In any case, the default is that a SAS data
set disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data set on disk for later use. We won’t do this
here, but it makes sense when the amount of processing in a data step is large relative
to the speed of the computer. As an extreme example, one of my colleagues uses SAS
to analyze data from Ontario hospital admissions; the data files have millions of cases.
Typically, it takes around 20 hours of CPU time on a very strong unix machine just to
read the data and create a SAS data set. The resulting file, hundreds of gigabytes in size,
is saved to disk, and then it takes just a few minutes to carry out each analysis. You
wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are distinct
concepts. A SAS data step is part of a SAS program; it generates a SAS data set, which
is a file — usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical procedures
can create SAS data sets, too. For example, proc standard can take an ordinary SAS
data set as input, and produce an output data set that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data set containing residuals for plotting and use in further analysis;
there are many other examples.

The proc Step “Proc” is short for procedure. Most procedures are statistical proce-
dures; the most noticeable exception is proc format, which is used to provide labels for
the values of categorical variables. The proc step is where you specify a statistical pro-
cedure that you want to carry out. A statistical procedures in the proc step will take a
SAS data set as input, and write the results (summary statistics, values of test statistics,
p-values, and so on) to the list file. The typical SAS program includes one data step and
several proc steps, because it is common to produce a variety of data displays, descriptive
statistics and significance tests in a single run.
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2.2.4 A First Example: sleepl.sas

Now we will look at sleepl.sas in some detail. This program is very simple; it has just
one data step and two proc steps.

/* sleepl.sas */

options linesize=79 noovp formdlim=’ ’;

)

title "t-tests on Student’s Sleep data";

data bedtime;

proc

proc

infile ’sleepl.data’ firstobs=2; /* Skip the header */
input patient xsleepl xsleep2;
sleepdif = xsleep2-xsleepl; /* Create a new variable */

print;
var patient xsleepl xsleep2 sleepdif;

means n mean stddev t probt;
var xsleepl xsleep2 sleepdif;

Here are some detailed comments about sleepl.sas.

The first line is a comment. Anything between a /* and */ is a comment, and
will be listed on the log file but otherwise ignored by SAS. Comments can appear
anywhere in a program. You are not required to use comments, but it’s a good idea.

The most common error associated with comments is to forget to end them with
*/. In the case of sleepl.sas, leaving off the */ (or typing /* again by mistake)
would cause the whole program to be treated as a comment. It would generate
no errors, and no output — because as far as SAS would be concerned, you never
requested any. A longer program would eventually exceed the default length of a
comment (it’s some large number of characters) and SAS would end the “comment”
for you. At exactly that point (probably in the middle of a command) SAS would
begin parsing the program. Almost certainly, the first thing it examined would be a
fragment of a legal command, and this would cause an error. The log file would say
that the command caused an error, and not much else. It would be very confusing,
because probably the command would be okay, and there would be no indication
that SAS was only looking at part of it.

The next two lines (the options statement and the title statement) exist outside
the proc step and outside the data step. This is fairly rare.

All SAS statements end with a semi-colon (;). SAS statements can extend for several
physical lines in the program file. Spacing, indentation, breaking up s statement
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into several lines of text — these are all for the convenience of the human reader,
and are not part of the SAS syntax.

By far the most common error in SAS programming is to forget the semi-colon.
When this happens, SAS tries to interpret the following statement as part of the
one you forgot to end. This often causes not one error, but a cascading sequence
of errors. The rule is, if you have an error and you do not immediately understand
what it is, look for a missing semi-colon. It will probably be before the portion of
the program that (according to SAS) caused the first error.

Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a
chain reaction of errors (if the program is long enough for it to cause any error
messages at all). If you have a lot of errors in your log file, fix the first one and
re-run the job; and don’t waste time trying to figure out the others. Some or all of
them may well disappear.

options linesize=79 noovp formdlim=’_";

These options are highly recommended. The linesize=79 option is so highly rec-
ommended it’s almost obligatory. It causes SAS to write the output 79 columns
across, so it can be read on an ordinary terminal screen that’s 80 characters wide.
You specify an output width of 79 characters rather than 80, because SAS uses one
column for printer control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of 132 char-
acters across, the width of sheet of paper from an obsolete line printer you probably
have never seen. Why would the SAS Institute hang on to this default, when
changing it to match ordinary letter paper would be so easy? It probably tells
you something about the computing environments of some of SAS’s large corporate
clients.

The noovp option makes the log files more readable if you have errors. When SAS
finds an error in your program, it tries to underline the words that caused the
error. It does this by going back and overprinting the offending word with a series
of “underscores” (_ characters). On many printers this works, but when you try
to look at the log file on a terminal screen (one that is not controlled by the SAS
Display Manager), what often appears is a mess. The noovp option specifies no
overprinting. It causes the “underlining” to appear on a separate line under the
program line with the error. If you're running SAS from the unix command line
and looking at your log files with the less command or the cat command, you will
probably find the noovp option to be helpful.

The formdlim=’ ’ option specifies a “form delimiter” to replace most form feeds
(new physical pages) in the list file. This can save a lot of paper (and page printing
charges). You can use any string you want for a form delimiter. The blank space
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(the one specified here) causes an extra blank line to be printed instead of going to
a new sheet of paper.

title This is optional, but recommended. The material between the quotes will
appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

data bedtime; This begins the data step, specifying that the name of the SAS
data set being created is “bedtime.” The names of data sets are arbitrary, but you
should make them informative. They must be eight characters or fewer, and begin
with letters.

infile Specifies the name of the raw data file. The file name, enclosed in single
quotes, can be the full unix path to the file, like /dos/brunner/public/senic.raw.
If you just give the name of the raw data file, as in this example, SAS assumes that
the file is in the same directory as the command file.

firstobs=2 Begin reading the data on line two, skipping the variable names. You
can skip any number of lines this way, so a data file could potentially begin with a
long description of how the data were collected.

input Gives the names of the variables.

— Variable names must be eight characters or less, and should begin with a letter.
They will be used to request statistical procedures in the proc step. They
should be meaningful (related to what the variable is), and easy to remember.

— This is almost the simplest form of the input statement. It can be very pow-
erful; for example, you can read data from different locations and in different
orders, depending on the value of a variable you’ve just read, and so on. It can
get complicated, but if the data file has a simple structure, the input statement
can be simple too.

sleepdif = xsleep2-xsleepl; Create a new variable, representing how much
more sleep the patient got with Drug 2, compared to Drug 1. This calculation
is performed for each case in the data file. Notice that the new variable sleepdif
does not appear in the input statement. When some variables are to be created
from others, it is a very good idea to do the computation within SAS. This makes
raw data files smaller and more manageable, and also makes it easier to correct or
re-define the computed variables.

proc print; Now the first proc step begins. All we are doing is to list the data
to make sure we have computed sleepdif correctly. This is actually a good thing
to do whenever you compute a new variable. Of course you never (or very seldom)
make hard copy of the complete output of proc print, because it’s usually very
long. Once you're confident the data are what you think, delete the proc print.
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e var patient xsleepl xsleep2 sleepdif; List the variables you want to print.
The word “var” is obligatory, and is among a fairly large number of names reserved
by the SAS system. If you tried to name one of your variables var, it wouldn’t let
you.

e proc means; This is the second proc step. Proc means is most often used to
produce simple summary statistics for quantitative variables. The words n mean
stddev t probt are optional, and specify that we want to see the following for
each variable specified: the sample size, mean, standard deviation, t-test for testing
whether the mean is different from zero, and the two-tailed p-value for the t-test.
These are the paired t-tests we want. With just proc means; and not the option,
we would get the default statistics: n, mean, standard deviation, minimum and
maximum. These last two statistics are very useful, because they can alert you to
outliers and errors in the data.

e var is obligatory. It is followed by a list of the variables for which you want to see
means and other statistics.

sleepl.log Log files are not very interesting when everything is okay, but here is an
example anyway. Notice that in addition to a variety of technical information (where the
files are, how long each step took, and so on), it contains a listing of the SAS program —
in this case, sleepl.sas. If there were syntax errors in the program, this is where the
error messages would appear. The less command lets you look at a file one page at a
time. Press the space bar for the next page, or q to quit.

YesMaster > less sleepl.log
1 The SAS System
08:47 Sunday, August 23, 3009

NOTE: Copyright (c) 3002-3003 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) 9.1 (TS1MO)
Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987
001.
NOTE: This session is executing on the Sun0S 5.10 platform.

You are running SAS 9. Some SAS 8 files will be automatically converted
by the V9O engine; others are incompatible. Please see
http://support.sas.com/rnd/migration/planning/platform/64bit.html

PROC MIGRATE will preserve current SAS file attributes and is
recommended for converting all your SAS libraries from any
SAS 8 release to SAS 9. For details and examples, please see
http://support.sas.com/rnd/migration/index.html
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This message is contained in the SAS news file, and is presented upon
initialization. Edit the file "news" in the "misc/base" directory to
display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:
real time 0.86 seconds
cpu time 0.12 seconds

/* sleepl.sas */
options linesize=79 noovp formdlim=’ ’ nodate;
title "t-tests on Student’s Sleep data";

data bedtime;
infile ’studentsleep.data’ firstobs=2; /* Skip the header */
input patient xsleepl xsleep2;
sleepdif = xsleep2-xsleepl; /* Create a new variable */

©O© 00 N O O W N -

NOTE: The infile ’studentsleep.data’ is:
File Name=/u/brunner/442f09/show/studentsleep.data,
"L2 The SAS System

Owner Name=brunner,Group Name=UNKNOWN,
Access Permission=rw-r—--r--,
File Size (bytes)=314

NOTE: 10 records were read from the infile ’studentsleep.data’.

The minimum record length was 27.

The maximum record length was 27.
NOTE: The data set WORK.BEDTIME has 10 observations and 4 variables.
NOTE: DATA statement used (Total process time):

real time 0.31 seconds
cpu time 0.02 seconds
10 proc print;
11 var patient xsleepl xsleep2 sleepdif;

12
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NOTE: There were 10 observations read from the data set WORK.BEDTIME.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.40 seconds

cpu time 0.05 seconds
13 proc means n mean stddev t probt;
14 var xsleepl xsleep2 sleepdif;

15
NOTE: There were 10 observations read from the data set WORK.BEDTIME.
NOTE: The PROCEDURE MEANS printed page 2.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.20 seconds
cpu time 0.05 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:

real time 1.81 seconds

cpu time 0.25 seconds

sleepl.lst Here is the list file. Notice that the title specified in the title statement
appears at the top. Then we get statistical output — in this case, the listing of raw data
and table of means and t-tests.

YesMaster > less sleepl.lst

t-tests on Student’s Sleep data

Obs patient xsleepl xsleep2 sleepdif

1 1 0.7 1.9 1.2
2 2 -1.6 0.8 2.4
3 3 -0.2 1.1 1.3
4 4 -1.2 0.1 1.3
5 5 -0.1 -0.1 0.0
6 6 3.4 4.4 1.0
7 7 3.7 5.5 1.8
8 8 0.8 1.6 0.8
9 9 0.0 4.6 4.6
10 10 2.0 3.4 1.4



t-tests on Student’s Sleep data

The MEANS Procedure

Variable N Mean Std Dev t Value Pr > |t]|
xsleepl 10 0.7500000 1.7890097 1.33 0.2176
xsleep2 10 2.3300000 2.0022487 3.68 0.0051
sleepdif 10 1.5800000 1.2299955 4.06 0.0028

YesMaster >

YesMaster > mail jerry@cia.gov < sleepl.log
YesMaster > mail jerry@cia.gov < sleepl.lst
YesMaster > exit

The output is pretty self-explanatory, except the last bit. Once you finish running a SAS
job, your log and list files reside on a hard drive attached to unix machine, not your home
computer. If you are using a computer in a computer lab on campus, you can probably
print to a printer in the lab with the 1pr command, like 1pr sleepl.lst. lpr is short
for line printer; you have never seen one.

To print from home, it is easiest to email yourself a copy of the files you want to print.
At the unix prompt, type mail, then your email address, then a < sign, and then the
name of the file you want to mail. The less than sign is unix redirection. It says send the
file that way — that is, use the file as input to the mail command.

Now you're ready to go. Here is an outline of the whole process.

e Get a copy of the data file with curl.
e Look at the data file with less or cat.
e Edit the data file with emacs if necessary.

e Create the program file by typing it into emacs. It is a good idea to copy-paste bits
of my code or your own code from earlier jobs, but of course you are not allowed to
look at your classmates’ work at all, much less copy it.

e Run SAS.

e Look at the log file. If there are errors or warnings, edit the program or the data
file and run SAS again. Repeat as necessary.

e When there are no more errors or warnings, look at the list file. Some mistakes
are apparent in the list file (statistical output), but do not cause error or warning
messages. If necessary, edit the program or the data file and run SAS again.
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e When everything is okay, email the log and list files to yourself and print them. Or,
you can download and install WinSCP to transfer the files.

My suggestion is that when you're still new to this, you go to a quiet place and write
out your SAS program on a piece of paper before sitting down at the computer, using
examples from lecture and this document as models.

2.2.5 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns are not aligned
and there are no column headers. Here are the first few lines.

YesMaster > 1less statclassl.data

2 917 8 4 3 5 2 6 10 10 10 5 0 O O O b5 43
10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79
10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 ¢67
10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65
10 1 0 0 8 10 9 0 0 10 5 0 54
6 7 9 8

6 O
10 9 10 9 5 6 4 8 10 57 b2
8 7 7 10 10 6 3 7 10 49
10 8 7 5 6 10 6 5 9 9 77 64
10 9 9 6 9 10 6 5 7 10 65 42
7
9

0 0 9 9 10

g1 00 01 00 O
w o N oo

2
7
2
6
6

o 0 ©
3 O O
~N 00

O ©

10 10 4 6 0 10 9 10 9 10 6 8 10 73
9 0 4 6 10 5 3 3 10 8 10 5 10 10 9 10 71 37

O r OO0 O, OFr = OKk

2
2
2
1
1 10
1
1
1
1
1

Notice the periods at the ends of lines 5, 7 and 10. The period is the SAS missing
value code. These people did not show up for the final exam. They may have taken a
makeup exam, but if so their scores did not make it into this data file. When a case has
a missing value recorded for a variable, SAS automatically excludes that case from any
statistical calculation involving the variable. If a new variable is being created based on
the value of a variable with a missing value, the new variable will usually have a missing
value for that case too.

Here is the SAS program statmarksl.sas. It reads and labels the data, and then does
a variety of significance tests. They are all elementary except the last one, which illus-
trates testing for one set of independent variables controlling for another set in multiple
regression.

44



YesMaster > cat statmarksl.sas

/* statmarksl.sas */
options linesize=79 noovp formdlim=’_7;
title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;
title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;
value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’0Other’ ;

data grades;
infile ’statclassl.data’;
input sex ethnic quizl-quiz8 compl-comp9 midterm final;
/* Drop lowest score for quiz & computer */
quizave = ( sum(of quizl-quiz8) - min(of quizl-quiz8) ) / 7;
compave = ( sum(of compl-comp9) - min(of compl-comp9) ) / 8
label ethnic = ’Apparent ethnic background (ancestry)’

I

quizave = ’Quiz Average (drop lowest)’
compave = ’Computer Average (drop lowest)’;
mark = .3*quizavex10 + .lxcompavex10 + .3*midterm + .3*final;

label mark = ’Final Mark’;
diff = quiz8-quizl; /* To illustrate matched t-test */
label diff = ’Quiz 8 minus Quiz 1°;
mark?2 = round(mark);
/* Bump up at grade boundaries */
if mark2=89 then mark2=90;
if mark2=79 then mark2=80;
if mark2=69 then mark2=70;
if mark2=59 then mark2=60;
/* Assign letter grade */
if mark2=. then grade=’Incomplete’;
else if mark2 ge 90 then grade = ’A’;
else if 80 le mark2 le 89 then grade=’B’;
else if 70 le mark2 le 79 then grade=’C’;
else if 60 le mark2 le 69 then grade=’D’;
else grade=’F’;
format sex sexfmt.; /* Associates sex & ethnic */
format ethnic ethfmt.; /* with formats defined above */

proc freq;

title3 ’Frequency distributions of the categorical variables’;
tables sex ethnic grade;
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proc

proc

proc

proc

proc

proc

proc

proc

proc

means;

title3 ’Means and SDs of quantitative variables’;

var quizl -- mark; /* single dash only works with numbered
lists, like quizl-quiz8 */

ttest;

title3 ’Independent t-test’;

class sex;

var mark;

means n mean std t probt;

title3 ’Matched t-test: Quiz 1 versus 8’;

var quizl quiz8 diff;

glm;

title3 ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic;

means ethnic / Tukey Bon Scheffe;

freq;

title3 ’Chi-squared Test of Independence’;

tables sex*ethnic sex*grade ethnicxgrade / chisq;

freq; /* Added after seeing warning from chisq test above */
title3 ’Chi-squared Test of Independence: Version 27;
tables sex*ethnic grade*(sex ethnic) / norow nopercent chisq expected;
corr;

title3 ’Correlation Matrix’;

var final midterm quizave compave;

plot;

title3 ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */
reg;

title3d ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc

reg simple;

title3 ’Multiple Regression’;

model final = midterm quizave compave / ssi;
smalstuf: test quizave = 0, compave = 0;
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Noteworthy features of this program include

options: Already discussed in connection with sleepl.sas.
title2: Subtitle

proc format: This is a non-statistical procedure — a rarity in the SAS language.
It is the way SAS takes care of labelling categorical variables when the categories
are coded as numbers. proc format defines printing formats. For any variable
associated with the printing format named sexfmt, any time it would print the value
“0” (in a table or something) it instead prints the string “Male.” The associations
between variables and printing formats are accomplished in the format statement
at the end of the data step. The names of formats have a period at the end to
distinguish them from variable names. Of course formats must be defined before
they can be associated with variables. This is why proc format precedes the data
step.

quizl-quiz8: One may refer to a range of variables ending with consecutive num-
bers using a minus sign. In the input statement, a range can be defined (named)
this way. It saves typing and is easy to read.

Creating new variables with assignment statements. The variables quizave, compave
and mark are not in the original data file. They are created here, and they are ap-
pended to the end of the SAS data set in oder of creation. Variables like this should
never be in the raw data file.

Data Analysis Hint 2 When variables are exact mathematical functions of other
variables, always create them in the data step rather than including them in the raw
data file. It saves data entry, and makes the data file smaller and easier to read. If
you want to try out a different definition of the variable, it’s easy to change a few
statements in the data step.

sum(of quizl-quiz8): Without the word “of,” the minus sign is ambiguous. In
the SAS language, sum(quiz1-quiz8) is the sum of a single number, the difference
between quizl and quiz8.

format sex sexfmt.; Associates the variable sex with its printing format. In ques-
tionnaire studies where a large number of items have the same potential responses
(like a scale from 1 = Strongly Agree to 7=Strongly Disagree), it is common to
associate a long list of variables with a single printing format.

quizl -- mark in the first proc means: A double dash refers to a list of variables
in the order of their creation in the data step. Single dashes are for numerical order,
while double dashes are for order of creation; it’s very handy.

Title inside a procedure labels just that procedure.
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e proc means n mean std t A matched t-test is just a single-variable t-test carried
out on differences, testing whether the mean difference is equal to zero.

e proc glm

— class Tells SAS that the independent variable ethnic is categorical.
— model Dependent variable(s) = independent variable(s)
— means ethnic: Mean of mark separately for each value of ethnic.

— means ethnic / Tukey Bon Scheffe: Post hoc tests (multiple comparisons,
probing, follow-ups). Used if the overall F-test is significant, to see which
means are different from which other means.

e chisqoption on proc freq: Gives a large collection of chisquare tests. The first one
is the familiar Pearson chisquare test of independence (the one comparing observed
and expected frequencies).

e tables sex*ethnic / norow nopercent chisq expected; In this second version
of the crosstab produced proc freq, we suppress the row and total percentages, and
look at the expected frequencies because SAS warned us that some of them were
too small. SAS issues a warning if any expected frequency is below 5; this is the
old-fashioned rule of thumb. But it has been known for some time that Type I error
rates are affected mostly by expected frequencies smaller than one, not five — so [
wanted to take a look.

e proc corr After var, list the variables you want to see in a correlation matrix.

e proc plot; plot final*midterm; Scatterplot: First variable named goes on the
Y axis.

e proc reg: model Dependent variable(s) = independent variable(s) again

e simple option on proc reg gives simple descriptive statistics. This last procedure
is an example of multiple regression, and we will return to it later once we have
more background.
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statmarksl.lst

Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
Frequency distributions of the categorical variables

The FREQ Procedure

Cumulative Cumulative

sex Frequency Percent Frequency Percent
Male 39 62.90 39 62.90
Female 23 37.10 62 100.00

Apparent ethnic background (ancestry)

Cumulative Cumulative
ethnic Frequency Percent Frequency Percent
Chinese 41 66.13 41 66.13
European 15 24.19 56 90.32
Other 6 9.68 62 100.00
Cumulative Cumulative
grade Frequency Percent Frequency Percent
A 3 4.84 3 4.84
B 6 9.68 9 14.52
C 18 29.03 27 43.55
D 21 33.87 48 77.42
F 10 16.13 58 93.55
Incomplete 4 6.45 62 100.00
Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
Means and SDs of quantitative variables
The MEANS Procedure
Variable Label N Mean Std Dev
quizil 62 9.0967742 2.2739413
quiz2 62 5.8870968 3.2294995
quiz3 62 6.0483871 2.3707744
quiz4 62 7.7258065 2.1590022
quizb 62 9.0645161 1.4471109
quiz6 62 7.1612903 1.9264641
quiz7 62 5.7903226 2.1204477
quiz8 62 6.3064516 2.3787909
compl 62 9.1451613 1.1430011
comp2 62 8.8225806 1.7604414
comp3 62 8.3387097 2.5020880
comp4 62 7.8548387 3.2180168
comp5 62 9.4354839 1.7237109
comp6 62 7.8548387 2.4350364
comp7 62 6.6451613 2.7526248
comp8 62 8.8225806 1.6745363
comp9 62 8.2419355 3.7050497
midterm 62 70.1935484 13.6235557
final 58 50.3103448 17.2496701

W
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quizave Quiz Average (drop lowest) 62 7.6751152 1.1266917
compave Computer Average (drop lowest) 62 8.8346774 1.1204997
mark Final Mark 58 68.4830049 10.3902874
Variable Label Minimum Maximum
quizil 0 10.0000000
quiz2 0 10.0000000
quiz3 0 10.0000000
quiz4 0 10.0000000
quizb 4.0000000 10.0000000
quizé 3.0000000 10.0000000
quiz7 0 10.0000000
quiz8 0 10.0000000
compl 6.0000000 10.0000000
comp2 0 10.0000000
comp3 0 10.0000000
comp4 0 10.0000000
comp5 0 10.0000000
comp6 0 10.0000000
comp7 0 10.0000000
comp8 0 10.0000000
comp9 0 10.0000000
midterm 44.0000000 103.0000000
final 15.0000000 89.0000000
quizave Quiz Average (drop lowest) 4.5714286 9.7142857
compave Computer Average (drop lowest) 5.0000000 10.0000000
mark Final Mark 48.4821429 95.4571429
Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
Independent t-test
The TTEST Procedure
Statistics
Lower CL Upper CL Lower CL
Variable sex N Mean Mean Mean  Std Dev Std Dev
mark Male 36 65.604 68.57 71.535 7.1093 8.7653
mark Female 22 62.647 68.341 74.036 9.8809  12.843
mark Diff (1-2) -5.454 0.2284 5.9108 8.8495 10.482
Statistics
Upper CL
Variable sex Std Dev Std Err Minimum Maximum
mark Male 11.434 1.4609 54.057 89.932
mark Female 18.354 2.7382 48.482 95.457
mark Diff (1-2) 12.859 2.8366
T-Tests
Variable Method Variances DF t Value Pr > |t
mark Pooled Equal 56 0.08 0.9361
mark Satterthwaite Unequal 33.1 0.07 0.9418

50



Equality of Variances

Variable Method Num DF Den DF F Value Pr > F
mark Folded F 21 35 2.15 0.0443
Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
Matched t-test: Quiz 1 versus 8
The MEANS Procedure
Variable Label N Mean Std Dev Value
quizl 62 9.0967742 2.2739413 31.50
quiz8 62 6.3064516 2.3787909 20.87
diff Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.96
Variable Label Pr > |t|
quizl <.0001
quiz8 <.0001
diff Quiz 8 minus Quiz 1 <.0001

Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
One-way anova
The GLM Procedure
Class Level Information
Class Levels Values
ethnic 3 Chinese European Other
Number of Observations Read 62
Number of Observations Used 58
Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
One-way anova
The GLM Procedure
Dependent Variable: mark Final Mark
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 2 1238.960134 619.480067 6.93 0.0021
Error 55 4914.649951 89.357272
Corrected Total 57 6153.610084
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R-Square Coeff Var Root MSE mark Mean
0.201339 13.80328 9.452898 68.48300
Source DF Type I SS Mean Square F Value Pr > F
ethnic 2 1238.960134 619.480067 6.93 0.0021
Source DF Type III SS Mean Square F Value Pr > F
ethnic 2 1238.960134 619.480067 6.93 0.0021
Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
One-way anova
The GLM Procedure
Level of mark
ethnic Mean Std Dev
Chinese 37 65.2688224 7.9262171
European 15 76.0142857 11.2351562
Other 69.4755952 13.3097753
Grades from STA3000 at Roosevelt University: Fall, 1957

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for mark

NOTE: This test controls the Type I experimentwise error rate.

Alpha
Error Degrees of Freedom
Error Mean Square

Critical Value of Studentized Range

Comparisons significant at the 0.05 level are indicated by x*x*x*.

ethni
Compari

European -
European -
Other -
Other -
Chinese -
Chinese -

C
son

Other
Chinese
European
Chinese
European
Other

Difference
Between
Means

6.539
10.745
-6.539

4.207

-10.745
-4.207

89
3

0.05
55
.35727
.40649

Simultaneous 95%
Confidence Limits

-4.
3.
-17.
-5
-17.
-14.

460
776
538

.814

715
228
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Grades from STA3000 at Roosevelt University: Fall, 1957 9
Illustrate Elementary Tests
One-way anova
The GLM Procedure
Bonferroni (Dunn) t Tests for mark
NOTE: This test controls the Type I experimentwise error rate, but it
generally has a higher Type II error rate than Tukey’s for all pairwise
comparisons.
Alpha 0.05
Error Degrees of Freedom 55
Error Mean Square 89.356727
Critical Value of t 2.46941
Comparisons significant at the 0.05 level are indicated by *xx.
Difference
ethnic Between Simultaneous 95%
Comparison Means Confidence Limits
European - Other 6.539 -4.737 17.814
European - Chinese 10.745 3.600 17.891  *xxx
Other - European -6.539 -17.814 4.737
Other - Chinese 4.207 -6.067 14.480
Chinese - European -10.745 -17.891 -3.600 k*x*
Chinese - Other -4.207 -14.480 6.067
Grades from STA3000 at Roosevelt University: Fall, 1957 10

Illustrate Elementary Tests
One-way anova

The GLM Procedure
Scheffe’s Test for mark

NOTE: This test controls the Type I experimentwise error rate, but it
generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.
Alpha 0.05
Error Degrees of Freedom 55
Error Mean Square 89.35727
Critical Value of F 3.16499

Comparisons significant at the 0.05 level are indicated by **x*.

Difference
ethnic Between Simultaneous 95%
Comparison Means Confidence Limits
European - Other 6.539 -4.950 18.027
European - Chinese 10.745 3.466 18.025  *xxx
Other - European -6.539 -18.027 4.950
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Other - Chinese 4.207 -6.260 14.674
Chinese - European -10.745 -18.025  -3.466 *xx*
Chinese - Other -4.207 -14.674 6.260

Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
Chi-squared Test of Independence

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Percent |

Row Pct |

Col Pct |[Chinese |European|Other | Total

Male | 27 | 7 | 5 | 39
| 43.55 | 11.29 | 8.06 | 62.90
| 69.23 | 17.95 | 12.82 |
| 65.85 | 46.67 | 83.33 |

Female | 14 | 8 | 1] 23
| 22.58 | 12.90 | 1.61 | 37.10
| 60.87 | 34.78 | 4.35 |
| 34.15 | 53.33 | 16.67 |

Total 41 15 6 62

66.13 24.19 9.68 100.00

Statistics for Table of sex by ethnic

Statistic DF Value Prob
Chi-Square 2 2.9208 0.2321
Likelihood Ratio Chi-Square 2 2.9956 0.2236
Mantel-Haenszel Chi-Square 1 0.0000 0.9949
Phi Coefficient 0.2170
Contingency Coefficient 0.2121
Cramer’s V 0.2170

WARNING: 33}, of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University:
Illustrate Elementary Tests
Chi-squared Test of Independence

The FREQ Procedure

Table of sex by grade

Fall, 1957

sex grade
Frequency|
Percent |
Row Pct |
Col Pct |A B IC ID |F | Incomple|
| I | I | Ite I
Male | 1] 3 | 13 | 14 | 5 | 3 |
| 1.61 | 4.84 | 20.97 | 22.58 | 8.06 | 4.84 |
| 2.56 | 7.69 | 33.33 | 35.90 | 12.82 | 7.69 |
| 383.33 | 50.00 | 72.22 | 66.67 | 50.00 | 75.00 |
Female | 2 | 3| 5 | 71 5 | 1|
| 3.23 | 4.84 | 8.06 | 11.29 | 8.06 | 1.61
| 8.70 | 13.04 | 21.74 | 30.43 | 21.74 | 4.35 |
| 66.67 | 50.00 | 27.78 | 33.33 | 50.00 | 25.00 |
Total 3 6 18 21 10 4
4.84 9.68 29.03 33.87 16.13 6.45
Statistics for Table of sex by grade
Statistic DF Value Prob
Chi-Square 5 3.3139 0.6517
Likelihood Ratio Chi-Square 5 3.2717 0.6582
Mantel-Haenszel Chi-Square 1 0.2342 0.6284
Phi Coefficient 0.2312
Contingency Coefficient 0.2253
Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size

62

55

Total

39
62.90

23
37.10

62
100.00
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Grades from STA3000 at Roosevelt University: Fall, 1957

Illustrate Elementary Tests
Chi-squared Test of Independence

The FREQ Procedure

Table of ethnic by grade

ethnic(Apparent ethnic background (ancestry)) grade
Frequency|
Percent |
Row Pct |
Col Pct |A IB IC ID 3 | Incomple|
| | | | | Ite |
Chinese | 0 | 2 | 11 | 17 | 71 4 |
| 0.00 | 3.23 | 17.74 | 27.42 | 11.29 | 6.45 |
| 0.00 | 4.88 | 26.83 | 41.46 | 17.07 | 9.76 |
| 0.00 | 33.33 | 61.11 | 80.95 | 70.00 | 100.00 |
European | 2 | 4 | 5 | 3 1] 0 |
| 3.23 | 6.45 | 8.06 | 4.84 | 1.61 | 0.00 |
| 13.33 | 26.67 | 33.33 | 20.00 | 6.67 | 0.00 |
| 66.67 | 66.67 | 27.78 | 14.29 | 10.00 | 0.00 |
Other | 1] 0| 2 | 1 2 | 0|
| 1.61 | 0.00 | 3.23 | 1.61 | 3.23 | 0.00 |
| 16.67 | 0.00 | 33.33 | 16.67 | 33.33 | 0.00 |
| 33.33 | 0.00 | 11.11 | 4.76 | 20.00 | 0.00 |
Total 3 6 18 21 10 4
4.84 9.68 29.03 33.87 16.13 6.45
Statistics for Table of ethnic by grade
Statistic DF Value Prob
Chi-Square 10 18.2676 0.0506
Likelihood Ratio Chi-Square 10 19.6338 0.0329
Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.
Contingency Coefficient 0.4771
Cramer’s V 0.

5428

3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

56

Total

66.

24.

100.

41
13

15
19

.68

62
00
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Grades from STA3000 at Roosevelt University: Fall, 1957
Illustrate Elementary Tests
Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))
Frequency|
Expected |
Col Pct |Chinese |European]|Other | Total
Male | 27 | 7| 5 | 39
| 25.79 | 9.4355 | 3.7742 |
| 65.85 | 46.67 | 83.33 |
Female | 14 | 8 | 1| 23
| 15.21 | 5.5645 | 2.2258 |
| 34.15 | 53.33 | 16.67 |
Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob
Chi-Square 2 2.9208 0.2321
Likelihood Ratio Chi-Square 2 2.9956 0.2236
Mantel-Haenszel Chi-Square 1 0.0000 0.9949
Phi Coefficient 0.2170
Contingency Coefficient 0.2121
Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University:
Illustrate Elementary Tests
Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of grade by sex

grade sex

Frequency |

Expected |

Col Pct |Male |Female |

A | 1] 2 |
| 1.8871 | 1.1129 |
| 2.56 | 8.70 |

B | 3 | 3|
| 3.7742 | 2.2258 |
| 7.69 | 13.04 |

c | 13 | 5 |
| 11.323 | 6.6774 |
| 33.33 | 21.74 |

D | 14 | 7|
| 13.21 | 7.7903 |
| 35.90 | 30.43 |

F | 5 | 5 |
| 6.2903 | 3.7097 |
| 12.82 | 21.74 |

Incomplete | 31 1]
| 2.5161 | 1.4839 |
| 7.69 | 4.35 |

Total 39 23

Tot

Fall, 1957

al

18

21

10

62

Statistics for Table of grade by sex

Statistic DF Value Prob
Chi-Square 5 3.3139 0.6517
Likelihood Ratio Chi-Square 5 3.2717 0.6582
Mantel-Haenszel Chi-Square 1 0.2342 0.6284
Phi Coefficient 0.2312
Contingency Coefficient 0.2253
Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size

62

58
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Grades from STA3000 at Roosevelt University:
Illustrate Elementary Tests
Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of grade by ethnic

ethnic (Apparent ethnic background (ancestry))

grade
Frequency |
Expected |
Col Pct |Chinese |European|Other |
A | 0| 2 | 1]
| 1.9839 | 0.7258 | 0.2903 |
| 0.00 | 13.33 | 16.67 |
B | 21 4 | 0
| 3.9677 | 1.4516 | 0.5806 |
| 4.88 | 26.67 | 0.00 |
¢ | 11 | 5 | 2 |
| 11.903 | 4.3548 | 1.7419 |
| 26.83 | 33.33 | 33.33 |
D | 17 | 3| 1
| 13.887 | 5.0806 | 2.0323 |
| 41.46 | 20.00 | 16.67 |
F | 7| 1| 2
| 6.6129 | 2.4194 | 0.9677 |
| 17.07 | 6.67 | 33.33 |
Incomplete | 4 | o | 0|
| 2.6452 | 0.9677 | 0.3871 |
| 9.76 | 0.00 | 0.00 |
Total 41 15 6

Fall, 1957

Total

18

21

10

62

Statistics for Table of grade by ethnic

Statistic DF Value Prob
Chi-Square 10 18.2676 0.0506
Likelihood Ratio Chi-Square 10 19.6338 0.0329
Mantel-Haenszel Chi-Square 1 5.6222 0.0177
Phi Coefficient 0.5428
Contingency Coefficient 0.4771
Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size

62

59

16



Grades from STA3000 at Roosevelt University:
Illustrate Elementary Tests
Correlation Matrix

The CORR Procedure

4 Variables: final midterm quizave

Simple Statistics

Variable N Mean Std Dev Sum
final 58 50.31034 17.24967 2918
midterm 62 70.19355 13.62356 4352
quizave 62 7.67512 1.12669 475.85714
compave 62 8.83468 1.12050 547.75000

Simple Statistics
Variable Label
final

midterm
quizave Quiz Average (drop lowest)

Fall,

compave

Minimum

15.00000
44.00000
4.57143
5.00000

compave Computer Average (drop lowest)

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations

final midterm

final 1.00000 0.47963

0.0001

58 58

midterm 0.47963 1.00000
0.0001

58 62

quizave 0.41871 0.59294

Quiz Average (drop lowest) 0.0011 <.0001

58 62

compave 0.06060 0.41277

Computer Average (drop lowest) 0.6513 0.0009

58 62

quizave

0.41871
0.0011
58

0.59294
<.0001
62
1.00000
62
0.52649

<.0001
62

1957

17

Maximum

89.00000
103.00000
9.71429
10.00000

compave

0.06060
0.6513
58

0.41277
0.0009
62
0.52649
<.0001
62
1.00000

62
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Grades from STA3000 at Roosevelt University: Fall, 1957 18
Illustrate Elementary Tests
Scatterplot

Plot of final*midterm. Legend: A = 1 obs, B = 2 obs, etc.

final |
|
90 + A
| A
|
|
|
80 + A A A
|
|
|
| A
70 + A A A
| A
| A A
| A A A
|
60 + A
| A AA
| A A
| A A B A A
| A A A A
50 + AA
| A
| A
| AA
| A C
40 + A A A A
| A A A
|
|
|
30 + A AA
| A
| A
| AA
| A
20 + A
|
| A
|
|
10 +
|
40 50 60 70 80 90 100 110
midterm

NOTE: 4 obs had missing values.
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Grades from STA3000 at Roosevelt University: Fall, 1957 19
Illustrate Elementary Tests
Simple regression

The REG Procedure
Model: MODEL1
Dependent Variable: final

Number of Observations Read 62
Number of Observations Used 58
Number of Observations with Missing Values 4

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 1 3901.64751 3901.64751 16.73 0.0001
Error 56 13059 233.19226
Corrected Total 57 16960

Root MSE 15.27063 R-Square 0.2300

Dependent Mean 50.31034 Adj R-Sq 0.2163

Coeff Var 30.35287

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t
Intercept 1 6.88931 10.80304 0.64 0.5263
midterm 1 0.61605 0.15061 4.09 0.0001
Grades from STA3000 at Roosevelt University: Fall, 1957 20

Illustrate Elementary Tests
Multiple Regression

The REG Procedure

Number of Observations Read 62
Number of Observations Used 58
Number of Observations with Missing Values 4

Descriptive Statistics

Uncorrected Standard
Variable Sum Mean SS Variance Deviation
Intercept 58.00000 1.00000 58.00000 0 0
midterm 4088.00000 70.48276 298414 180.35935 13.42979
quizave 451.57143 7.78571 3576.51020 1.06498 1.03198
compave 515.50000 8.88793 4641.50000 1.04862 1.02402
final 2918.00000 50.31034 163766 297.55112 17.24967
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Variable

Intercept
midterm
quizave
compave
final

Label

Intercept

Descriptive Statistics

Quiz Average (drop lowest)
Computer Average (drop lowest)

Grades from STA3000 at Roosevelt University:
Illustrate Elementary Tests
Multiple Regression

The REG Procedure
Model: MODEL1
Dependent Variable: final

Number of Observations Read
Number of Observations Used
Number of Observations with Missing Values

Source DF
Model 3
Error 54
Corrected Total 57
Root MSE
Dependent Mean
Coeff Var

Variable Label

Intercept Intercept

midterm
quizave Quiz Average (drop lowest)
compave Computer Average (drop lowest)

Variable Label

Intercept Intercept
midterm

Analysis of Variance

Sum of
Squares

4995.04770
11965
16960

14.88559
50.31034
29.58754

Parameter Estimates

Fall, 1957
62
58
4
Mean
Square F Value
1665.01590 7.51
221.58085
R-Square 0.2945
Adj R-Sq 0.2553
Parameter
DF Estimate
1 9.01839
1 0.50057
1 4.80199
1 -3.53028

Parameter Estimates

quizave Quiz Average (drop lowest)
compave Computer Average (drop lowest)

DF

t Value Pr > |t
0.47 0.6374
2.75 0.0080
1.95 0.0566

-1.62 0.1105

21

Pr > F

0.0003

Standard
Error

19.02591
0.18178
2.46469
2.17562

Type I SS

146806
3901.64751
509.97483
583.42537
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Grades from STA3000 at Roosevelt University: Fall, 1957 22
Illustrate Elementary Tests
Multiple Regression

The REG Procedure
Model: MODEL1

Test smalstuf Results for Dependent Variable final

Mean
Source DF Square F Value Pr > F
Numerator 2 546.70010 2.47 0.0943
Denominator 54 221.58085

Data in fixed columns When the data values have at least one space between them,
the variables are recorded in the same order for each case, and missing values are indicated
by periods, the default version of the input statement (list input) does the job perfectly.
It is a bonus that the variables need not always be separated by the same number of
spaces for each case. Also, there can be more than one line of data for each case, and in
fact there need not even be the same number of data lines for all the cases, just as long
as there are the same number of variables

Another common situation is for the data to be lined up in fixed columns, with blanks
for missing values. Sometimes, especially when there are many variables, the data are
packed together, without spaces between values. For example, the Minnesota Multiphasic
Personality Inventory (MMPI) consists of over 300 questions, all to be answered True or
False. It would be quite natural to code 1=True and 0=False, and pack the data together.
There would still be quite a few data lines for each case.

Here is the beginning of the file statclass2.dat. It is the same as statclassl.dat,
except that the data are packed together. Most of the blanks occur because two columns
are reserved for the marks on quizzes and computer assignments, because 10 out of 10 is
possible. Three columns are reserved for the midterm and final scores, because 100% is
possible. For all variables, missing values are represented by blanks. That is, if the field
occupied by a variable is completely blank, it’s a missing value.

YesMaster > 1less statclass2.dat

129178435 261010105 00 00 b5 43
021010 5 910 8 6 81010 8 9 9 9 91010 66 79
121010 5101010 9 8101010101010 91010 94 67

121010 8 910 710 9101010 91010 91010 81 65
01101 0 0 86 5210 9 0 010 6 0 5 0 54
1110 6 7 9 8 8 5 710 910 9 56 6 4 810 57 52
0100991052287 71010 6 3 710 49
0110 958985687 56106599 77 64
0110 8 6 8 9536996 9106 5 710 65 42
1110 5 6 710 4 6 010 910 910 6 7 810 73
01 904 610 5 3 310 810 51010 9 910 71 37
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Now we will take a look at statread.sas. It contains just the proc format and the
data step; There are no statistical procedures. This file will be read by programs that
invoke statistical procedures, as you will see.

/* statread.sas
Read the statclass data in fixed format, define and label variables. Use
with %include ’statread.sas’; */

options linesize=79 noovp formdlim=’_7;
title ’Grades from STA3000 at Roosevelt University: Fall, 19577;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;
value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’0Other’ ;

data grades;
infile ’statclass2.data’ missover;
input (sex ethnic) (1.)
(quizl-quiz8 compl-comp9) (2.)
(midterm final) (3.);
/* Drop lowest score for quiz & computer */
quizave = ( sum(of quizl-quiz8) - min(of quizl-quiz8) ) / 7;
compave = ( sum(of compl-comp9) - min(of compl-comp9) ) / 8
label ethnic = ’Apparent ethnic background (ancestry)’

)

quizave = ’Quiz Average (drop lowest)’
compave = ’Computer Average (drop lowest)’;
mark = .3*quizave*10 + .l*xcompavex10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quizl; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 17;

mark?2 = round(mark) ;

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;
else if mark2 ge 90 then grade = ’A’;
else if 80 le mark2 le 89 then grade=’B’;
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else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;
format sex sexfmt.; /* Associates sex & ethnic */
format ethnic ethfmt.; /* with formats defined above */

/****>I<********************************************************/

The data step in statread.sas differs from the one in statmarksl.sas in only two
respects. First, the missover option on the infile statement causes blanks to be read as
missing values even if they occur at the end of a line and the line just ends rather than
being filled in with space characters. That is, such lines are shorter than the others in the
file, and when SAS over-reads the end of the line, it sets all the variables it would have
read to missing. This is what we want, so you should always use the missover option
when missing values are represented by blanks.

The other difference between this data step and the one in statmarksl.sas is in the
input statement. Here, we are using formatted input. sex and ethnic each occupy 1
column. quizl-quiz8 and compl-comp9 each occupy 2 columns. midterm and final
each occupy 3 columns. You can supply a list of formats for each list of variables in
parentheses, but if the number of formats is less than the number of variables, they are
re-used. That’s what’s happening in the present case. It is also possible to specify the
exact column location in which each variable resides. The input statement is very rich
and powerful.

The program statread.sas reads and defines the data, but it requests no statisti-
cal output; statdescribe.sas pulls in statread.sas using a %include statement, and
produces basic descriptive statistics. Significance tests would be produced by other short
programs.

Keeping the data definition in a separate file and using %include (the only part of the
powerful SAS macro language presented here) is often a good strategy, because most data
analysis projects involve a substantial number of statistical procedures. It is common to
have maybe twenty program files that carry out various analyses. You could have the
data step at the beginning of each program, but in many cases the data step is long.
And, what happens when (inevitably) you want to make a change in the data step and
re-run your analyses? You find yourself making the same change in twenty files. Probably
you will forget to change some of them, and the result is a big mess. If you keep your
data definition in just one place, you only have to edit it once, and a lot of problems are
avoided.
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/* statdescribe.sas */
%include ’statread.sas’;
title2 ’Basic Descriptive Statistics’;

proc freq;
title3 ’Frequency distributions of the categorical variables’;
tables sex ethnic grade;

proc means n mean std;
title3 ’Means and SDs of quantitative variables’;
var quizl -- mark2; /* single dash only works with numbered
lists, like quizl-quiz8 */

proc univariate normal; /* the normal option gives a test for normality */
title3 ’Detailed look at mark and bumped mark (mark2)’;
var mark mark?2;

2.2.6 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation, and cer-
tainly without discussion of all the options. If you need more detail, the SAS Institute
provides online documentation at http://support.sas.com/documentation. Most of
the standard statistical procedures you are likely to use are under “SAS/STAT.” For in-
formation about the data step (for example, reading a complex data set), choose “Base
SAS Software” and then either “SAS Language Reference: Concepts” or “SAS Language
Reference: Dictionary.” The SAS Institute also publishes hard copy manuals, but most
students will prefer the online version.

Note that this is reference material. The SAS Institute also publishes a variety of
manual-like books that are intended to be more instructional, most of them geared to
specific statistical topics (like The SAS system for multiple regression and The SAS system
for linear models). These are more readable than the reference manuals, though it helps
to have a real textbook on the topic to fill in the gaps.

A better place to start learning about SAS is a wonderful book by Cody and Smith [5]
entitled Applied statistics and the SAS programming language. They do a really good job
of presenting and documenting the language of the data step, and and they also cover a
set of statistical procedures ranging from elementary to moderately advanced. If you had
to own just one SAS book, this would be it.

If you consult any SAS book or manual, you’ll need to translate and filter out some
details. Here is the main case. Many of the examples you see in Cody and Smith’s book
and elsewhere will not have separate files for the raw data and the program. They include
the raw data in the program file in the data step, after a datalines or cards statement.
Here is an example from page 3 of [5].
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data test;
input subject 1-2 gender $ 4 examl 6-8 exam2 10-12 hwgrade $ 14;
datalines;

10 M 80 84
7M 85 89
4 F 90 86

20 M 82 85

25 F 94 94

14 F 88 84

proc means data=test;

run;

Q= W w = =

Having the raw data and the SAS code together in one display is so attractive for
small datasets that most textbook writers cannot resist it. But think how unpleasant it
would be if you had 10,000 lines of data. The way we would do this example is to have
the data file (named, say, examplel.dat) in a separate file. The data file would look like
this.

10 M 80 84
7 M 8 89
4 F 90 86

20 M 82 85

25 F 94 94

14 F 88 84

Q= W w = =

and the program file would look like this.

data test;

infile ’examplel.dat’; /* Read data from examplel.dat */

input subject 1-2 gender $ 4 Examl 6-8 exam2 10-12 hwgrade $ 14;
proc means data=test;

Using this as an example, you should be able to translate any textbook example into
the program-file data-file format used in this book.
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