
Centering and Interactions: The Training Data

A random sample of 150 technical support workers were first given a test of their technical skill and knowledge, and then randomly assigned to one of three training programmes. Six weeks later, their performance was assessed.

training.data

1 2 3 4 5 6 7 8	1 83 1 81 1 78 1 70 1 95 1 81 1 68	60 57 51 53 72 58	Performance
•••			
147 148 149 150	3 71 3 75 3 77 3 73		

There are 2 SAS programs. training1.sas illustrates some statistical ideas and SAS details. training2.sas is more focused on analyzing the data. Recall the idea of centering covariates at the mean.


```
/* training1.sas */
options linesize=79 pagesize=100 noovp formdlim=' ';
title 'Centering and Interactions (Customer Support Training)';
/* FIRST, DEMONSTRATE CENTERING THE SMART WAY, AND CREATION OF INTERACTION
   TERMS. */
data support;
     infile 'training.data' firstobs=2;
     input id Group Skill Performance;
     cskill = skill;
     label cskill = 'Skill Minus Mean'; /* Center it below in proc standard */
proc standard out=support2 mean=0; /* Could also say std=1 to standardize */
     var cskill;
proc means;
    var skill cskill;
data support3;
     set support2;
     if group=. then g1=.;
        else if group=1 then g1=1;
        else g1=0;
     if group=. then g2=.;
        else if group=2 then g2=1;
        else g2=0;
     g1skill = g1*skill; g2skill = g2*skill;
     glcskill = g1*cskill; g2cskill = g2*cskill;
/* NOW VERIFY THAT CENTERING AFFECTS ONLY THE INTERCEPTS, AND THAT FOR AN
   EQUAL SLOPES MODEL, PROC GLM GIVES THE SAME RESULTS WHETHER THE
   COVARIATE IS CENTERED OR NOT. */
proc reg;
     title2 'Equal slopes uncentered with proc reg';
     model performance = skill g1 g2;
     Group: test g1=g2=0;
proc reg;
     title2 'Equal slopes Centered with proc reg';
     model performance = cskill g1 g2;
     Group: test g1=g2=0;
proc glm;
     title2 'Equal slopes uncentered with proc glm';
     class group;
     model performance = skill group;
     lsmeans group / pdiff adjust=bon;
proc glm;
     title2 'Equal slopes Centered with proc glm';
     class group;
     model performance = cskill group;
     lsmeans group / pdiff adjust=bon;
```

/* NOW THE MODEL INCLUDES AN INTERACTION, ALLOWING FOR UNEQUAL SLOPES. COMPARE RESULTS WITH THE COVARIATE CENTERED AND UNCENTERED. THE MORAL OF THE STORY IS THAT YOU CAN GET WHAT YOU WANT EITHER WAY IF YOU KNOW WHAT YOU'RE DOING, BUT IT CAN BE EASIER WITH CENTERED IVs. */ proc reg; title2 'Unequal Slopes Uncentered with proc reg'; model performance = skill g1 g2 g1skill g2skill; GroupAtZero: test g1=g2=0; Interaction: test g1skill=g2skill=0; GroupAtMean: test g1 + 75*g1skill = g2 + 75*g2skill = 0; Group1vs2AtMean: test g1 + 75*g1skill = g2 + 75*g2skill; proc reg; title2 'Unequal Slopes Centered with proc reg'; model performance = cskill g1 g2 g1cskill g2cskill; GroupAtMean: test g1=g2=0; Group1vs2AtMean: test g1=g2; Interaction: test g1cskill=g2cskill=0; /* HERE, WE SEE THAT WHEN PROC GLM TESTS A CATEGORICAL INDEPENDENT VARIABLE IN THE PRESENCE OF COVARIATES, IT IS TESTING FOR DIFFERENCES BETWEEN INTERCEPTS. THIS IS TRUE EVEN IF THE MODEL HAS AN INTERACTION BETWEEN THE CATEGORICAL VARIABLE AND THE COVARIATE(S). WHEN THE COVARIATES ARE UNCENTERED, THIS IS SELDOM WHAT YOU WANT, AND YOU NEED TO WATCH OUT. */ proc glm; title2 'Unequal slopes uncentered with proc glm'; class group; model performance = skill group skill*group; lsmeans group / pdiff adjust=bon; proc glm; title2 'Unequal slopes Centered with proc glm'; class group; model performance = cskill group cskill*group;

lsmeans group / pdiff adjust=bon;

Centering and Interactions (Customer Support Training)

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum
Skill cskill	Skill Minus Mean	150 150	75.0000000 0	7.0320455 7.0320455	58.0000000 -17.0000000
	Variable	Label		Maximum	

Skill		95.0000000
cskill	Skill Minus Mean	20.0000000

Just display parameter estimates for centered and uncentered data. R², overall F tests and tests for Group are identical.

Equal slopes uncentered with proc reg Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-19.51425	4.70654	-4.15	<.0001
Skill	1	0.76152	0.06229	12.23	<.0001
g1	1	13.12694	1.06923	12.28	<.0001
g2	1	7.33355	1.06891	6.86	<.0001

Equal slopes Centered with proc reg Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept cskill g1 g2	Intercept Skill Minus Mean	1 1 1 1	37.59984 0.76152 13.12694 7.33355	0.75589 0.06229 1.06923 1.06891	49.74 12.23 12.28 6.86	<.0001 <.0001 <.0001 <.0001

For this equal slopes model, output from proc glm is identical whether the covariate is centered or uncentered. JUst show least squares means.

Group	Performance LSMEAN	LSMEAN Number
1	50.7267741	1
2	44.9333870	2
3	37.5998389	3

Group	x_2	x_3	$E(Y \mathbf{x})$
1	1	0	$(\beta_0 + \beta_2) + (\beta_1 + \beta_4)x_1$
2	0	1	$(\beta_0 + \beta_3) + (\beta_1 + \beta_5)x_1$
3	0	0	$\beta_0 + \beta_1 x_1$

proc reg;

title2 'Unequal Slopes Uncentered with proc reg'; model performance = skill g1 g2 g1skill g2skill; GroupAtZero: test g1=g2=0; Interaction: test g1skill=g2skill=0; GroupAtMean: test g1 + 75*g1skill = g2 + 75*g2skill = 0; Group1vs2AtMean: test g1 + 75*g1skill = g2 + 75*g2skill;

> Centering and Interactions (Customer Support Training) 12 Unequal Slopes Uncentered with proc reg

The REG Procedure Model: MODEL1 Dependent Variable: Performance

Number	of	Observations	Read	150
Number	of	Observations	Used	150

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	5 144 149	9194.71754 3929.82246 13125	1838.94351 27.29043	67.38	<.0001

Root MSE	5.22402	R-Square	0.7006
Dependent Mean	44.42000	Adj R-Sq	0.6902
Coeff Var	11.76052		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept Skill g1 g2 g1skill g2skill	1 1 1 1 1	-1.79639 0.52395 -21.30069 -10.37307 0.45954 0.23742	$\begin{array}{c} 8.41130\\ 0.11235\\ 11.75037\\ 11.17456\\ 0.15622\\ 0.14870\end{array}$	-0.21 4.66 -1.81 -0.93 2.94 1.60	0.8312 <.0001 0.0720 0.3548 0.0038 0.1125

Centering and Interactions (Customer Support Training) Unequal Slopes **Uncentered** with proc reg

The REG Procedure

Test GroupAtZero Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	44.88509 27.29043	1.64	0.1967

Test Interaction Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	118.07192 27.29043	4.33	0.0150

Test GroupAtMean Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	2171.92438 27.29043	79.59	<.0001

Test Grouplvs2AtMean Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 144	820.33666 27.29043	30.06	<.0001

Group	x_2	x_3	$E(Y \mathbf{x})$
1	1	0	$(\beta_0 + \beta_2) + (\beta_1 + \beta_4)x_1$
2	0	1	$(\beta_0 + \beta_3) + (\beta_1 + \beta_5)x_1$
3	0	0	$\beta_0 + \beta_1 x_1$

proc reg;

title2 'Unequal Slopes Centered with proc reg'; model performance = cskill g1 g2 g1cskill g2cskill; GroupAtMean: test g1=g2=0; Group1vs2AtMean: test g1=g2; Interaction: test g1cskill=g2cskill=0;

> Centering and Interactions (Customer Support Training) Unequal Slopes **Centered** with proc reg

> > The REG Procedure Model: MODEL1 Dependent Variable: Performance

Number	of	Observations	Read	150
Number	of	Observations	Used	150

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	5 144 149	9194.71754 3929.82246 13125	1838.94351 27.29043	67.38	<.0001

Root MSE	5.22402	R-Square	0.7006
Dependent Mean	44.42000	Adj R-Sq	0.6902
Coeff Var	11.76052		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept cskill g1 g2 g1cskill g2cskill	Intercept Skill Minus Mean	1 1 1 1 1	37.50006 0.52395 13.16456 7.43335 0.45954 0.23742	0.74029 0.11235 1.04631 1.04596 0.15622 0.14870	50.66 4.66 12.58 7.11 2.94 1.60	<.0001 <.0001 <.0001 <.0001 0.0038 0.1125

Centering and Interactions (Customer Support Training) Unequal Slopes Centered with proc reg

The REG Procedure Model: MODEL1

Test GroupAtMean Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	2171.92438 27.29043	79.59	<.0001

Test Grouplvs2AtMean Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 144	820.33666 27.29043	30.06	<.0001

Test Interaction Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	118.07192 27.29043	4.33	0.0150

	Uncentered with proc reg	Centered with proc reg
GroupAtZero	F = 1.64	
Interaction	F = 4.33	F = 4.33
GroupAtMean	F = 79.59	F = 79.59
Group1vs2AtMean	F = 30.06	F = 30.06

Compare tests based on Type III Sums of Squares from proc glm

Unequal slopes uncentered with proc glm

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Skill	1	4144.661016	4144.661016	151.87	<.0001
Group	2	89.770177	44.885088	1.64	0.1967
Skill*Group	2	236.143846	118.071923	4.33	0.0150

Unequal slopes Centered with proc glm

Source	DF	Type III SS	Mean Square	F Value	Pr > F
cskill	1	4144.661016	4144.661016	151.87	<.0001
Group	2	4343.848752	2171.924376	79.59	<.0001
cskill*Group	2	236.143846	118.071923	4.33	0.0150

	Uncentered with proc reg	Centered with proc reg
GroupAtZero	F = 1.64	
Interaction	F = 4.33	F = 4.33
GroupAtMean	F = 79.59	F = 79.59
Group1vs2AtMean	F = 30.06	F = 30.06

So proc glm is testing differences between intercepts, even when there is an interaction.

Centering and Interactions (Customer Support Training)

26

Least Squares Means Adjustment for Multiple Comparisons: Bonferroni

Group	Performance LSMEAN	LSMEAN Number
1 2	50.6646230 44.9334080	1 2
3	37.5000601	3

Least Squares Means for effect Group
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Performance

i/j	1	2	3
1		<.0001	<.0001
2	<.0001		<.0001
3	<.0001	<.0001	

And the multiple comparison tests of differences between least squares means are <u>not</u> follow-ups to the test for Group.

With proc glm, you should almost always center the covariates if the model includes interactions between factors and covariates.

```
/* training2.sas */
options linesize=79 noovp formdlim=' ';
title 'Customer Support Training';
/* THIS PROGRAM IS FOCUSED ON UNDERSTANDING THE DATA. trainingl.sas WAS
   MORE ABOUT STATISTICAL IDEAS AND SOME SAS DETAILS */
data support;
     infile 'training.data' firstobs=2;
     input id Group Skill Performance;
     cskill = skill;
     label cskill = 'Skill Minus Mean'; /* Center it below in proc standard */
proc standard out=support2 mean=0; /* Could also say std=1 to standardize */
     var cskill;
data support3;
     set support2;
     if group=. then g1=.;
        else if group=1 then g1=1;
        else g1=0;
     if group=. then g2=.;
        else if group=2 then g2=1;
        else g2=0;
     q1skill = q1*skill; q2skill = q2*skill;
     glcskill = g1*cskill; g2cskill = g2*cskill;
/* EQUAL REGRESSIONS SAYS THAT THE THREE REGRESSION LINES ARE RIGHT ON TOP
   OF EACH OTHER. THAT IS, THERE ARE NO DIFFERENCES AMONG TRAINING
   PROGRAMMES FOR ANY SKILL LEVEL. THIS IS THE NULL HYPOTHESIS FOR THE
   EQUAL SLOPES MODEL, TOO. */
proc reg data = support3;
     title2 'Test Equal Regressions (and equal slopes)';
     model performance = skill q1 q2 q1skill q2skill;
     EqualRegressions: test g1=g2=g1skill=g2skill = 0;
     Interaction: test g1skill=g2skill = 0;
proc iml;
     title2 'Proportion of remaining variation explained by';
     title3 'Unequal regressions and Unequal slopes';
      F = 41.74; s = 4; NminusP = 144; a1 = s*F/(NminusP + s*F);
      F = 4.33; s = 2; NminusP = 144; a2 = s*F/(NminusP + s*F);
      print "Unequal Regressions: " a1 ", Unequal Slopes: " a2;
/* LOOK TO SEE WHAT'S GOING ON. A CONVENIENT WAY TO GET THE THREE
   REGRESSIONS IS TO JUST FIT THEM DIRECTLY. ONLY THE ESTIMATED REGRESSION
   COEFFICIENTS ARE WHAT WE WOULD GET FROM A SINGLE REGRESSION MODEL WITH
   PRODUCT TERMS. EVERYTHING ELSE IS "WRONG." */
proc sort;
     by group;
proc reg;
     title2 'Separate regressions';
     model performance = skill;
     by group; /* Data must be sorted by this varIale. */
/* LOOK AT A ROUGH PLOT OF THE REGRESSION LINES OVER THE RANGE OF THE
   DATA. OUTPUT FROM THE SEPARATE REGRESSIONS GIVES
   Group 1: Yhat = -23.09708 + 0.98349*X
Group 2: Yhat = -12.16946 + 0.76137*X
   Group 3: Yhat = -1.79639 + 0.52395*X
```

```
WHAT IS THE RANGE OF THE DATA? A REAL DATA ANALYSIS JOB
  WOULD START WITH DESCRIPTIVE STATISTICS AND YOU'D KNOW THIS ALREADY. */
proc univariate;
    var skill;
/* CREATE A SAS DATA SET OF POINTS TO PLOT. THIS WOULD BE BETTER IN R. */
data pts;
    do skill = 60 to 95;
        group = 1; Yhat = -23.09708 + 0.98349*skill; output;
        group = 2; Yhat = -12.16946 + 0.76137*skill; output;
        group = 3; Yhat = -1.79639 + 0.52395*skill; output;
     end;
     label Yhat = 'Predicted Performance';
options pagesize=500;
proc print;
     title2 'Look at the data set pts';
options pagesize=35;
proc plot;
     title2 'Rough Plot of the Three Regression Lines';
    plot Yhat * skill = group; /* Plotting symbol is the value of group. */
/* ARE THE DIFFERENCES BETWEEN TRAINING PROGRAMMES SIGNIFICANT EVEN AT LOW
SKILL LEVELS? FROM PROC UNIVARIATE, MINIMUM IS 58 AND 25TH PERCENTILE IS 71. */
proc reg data = support3;
     title2 'Test group differences at lower skill levels';
    model performance = skill g1 g2 g1skill g2skill;
    DiffAt58: test g1 + 58*g1skill = g2 + 58*g2skill = 0;
    DiffAt71: test g_1 + 71*g_1skill = g_2 + 71*g_2skill = 0;
     /* 67 is the 10th percentile. */
    DiffAt67: test g1 + 67*g1skill = g2 + 67*g2skill = 0;
     /* 64 is the 5th percentile. */
    DiffAt64: test g1 + 64*g1skill = g2 + 64*g2skill = 0;
    Group1vs2At64: test g1 + 64*g1skill = g2 + 64*g2skill;
     Group1vs3At64: test q1 + 64*q1skill = 0;
    Group2vs3At64: test g_2 + 64*g_2skill = 0;
/* HOW MIGHT THESE RESULTS BE DESCRIBED IN PLAIN LANGUAGE? YOU DON'T HAVE
TO (AND SHOULD NOT) SAY EVERYTHING. HERE'S A POSSIBILITY.
"Average job performance depends on level of skill and technical
knowledge prior to training. Naturally, those with higher prior levels of
skill tend to perform better. Overall, average job performance was best for
employees receiving Training Programme 1, followed by 2 and 3 in that
order. The advantage of Programme 1 was greatest for those with higher
levels of prior skill, but was still apparent for those with relatively low
skill levels."
A HIGH-RESOLUTION PLOT OF THE THREE REGRESSION LINES WOULD BE GOOD, EVN FOR
A NON-TECHNICAL AUDIENCE.
THERE ARE SOME MORE INTERESTIG ISSUES THAT COULD BE EXPLORED WITH THESE
DATA. ONE EXAMPLE IS TESTS OF PAIRWISE DIFFERENCES BETWEEN SLOPES. ANOTHER
ONE IS TO LOCATE THE EXACT SKILL LEVEL AT WHICH GROUP DIFFERNCES BECOME
```

CLEAR, TREATING ALL TESTS AS SCHEFFE FOLLOW-UPS TO THE INITIAL TEST OF EQUAL REGRESSIONS. IT'S LIKELY NOT GOING TO BE AT THE 5TH PERCENTILE, BECAUSE OF THE PENALTY FOR PROTECTING INFINITELY MANY TESTS AT A SINGLE JOINT SIGNIFICANCE LEVEL. */

Customer Support Training Test Equal Regressions (and equal slopes)

The REG Procedure Model: MODEL1 Dependent Variable: Performance

Number	of	Observations	Read	150
Number	of	Observations	Used	150

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	5 144 149	9194.71754 3929.82246 13125	1838.94351 27.29043	67.38	<.0001

Root MSE	5.22402	R-Square	0.7006
Dependent Mean	44.42000	Adj R-Sq	0.6902
Coeff Var	11.76052		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-1.79639	8.41130	-0.21	0.8312
Skill	1	0.52395	0.11235	4.66	<.0001
g1	1	-21.30069	11.75037	-1.81	0.0720
g2	1	-10.37307	11.17456	-0.93	0.3548
g1skill	1	0.45954	0.15622	2.94	0.0038
g2skill	1	0.23742	0.14870	1.60	0.1125

Customer Support Training Test Equal Regressions (and equal slopes)

The REG Procedure Model: MODEL1

Test EqualRegressions Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	4 144	1139.07990 27.29043	41.74	<.0001

Test Interaction Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	118.07192 27.29043	4.33	0.0150

Customer Support Training Proportion of remaining variation explained by Unequal regressions and Unequal slopes						
		al			a2	
Unequ	al Regressi	ons: 0.5369179	, Unequal	Slopes:	0.0567274	
		Customer Suppo Separate red	ort Trainin gressions	g		5
		Grou	p=1			
	Dej	The REG P: Model: I pendent Variable	MODEL1	nce		
		r of Observation r of Observation		50 50		
		Analysis of	Variance			
Source	:	Sum o DF Square	of es	Mean Square	F Value	Pr > F
Model Error Corrected Tota		1 2240.231 48 1044.588 49 3284.820	53 21	.23137 .76226	102.94	<.0001
D	oot MSE ependent Me oeff Var	4.665 an 50.940 9.157	00 R-Squ 00 Adj R 34	are (-Sq (0.6820 0.6754	
		Parameter E	stimates			
Variable	DF	Parameter Estimate			lue Pr>	t
Intercept Skill	1 1	-23.09708 0.98349	7.32694 0.09693			0028 0001
		Customer Suppo Separate red		g		6
		Grou	p=2			
	The REG Procedure Model: MODEL1 Dependent Variable: Performance					
		r of Observation r of Observation		50 50		

Page 13 of 18

Analysis of Variance

Source	D	Sum of F Squares		
Model Error Corrected Tot	4	1 1667.19066 8 1604.72934 9 3271.92000		49.87 <.0001
	Root MSE Dependent Mea Coeff Var	5.78203 n 45.04000 12.83754	R-Square Adj R-Sq	0.5095 0.4993
		Parameter Est	imates	
Variable	DF	Parameter Estimate	Standard Error t	Value Pr > t
Intercept Skill	: 1 1	-12.16946 0.76137		-1.49 0.1416 7.06 <.0001
		Customer Suppor Separate regr		7
		Group=	3	
	Dep	The REG Pro Model: MO endent Variable:	DEL1	
		of Observations of Observations		50 50
		Analysis of V	ariance	
Source	D	Sum of F Squares	Mean Square	
Model Error Corrected Tot	4	1 593.57551 8 1280.50449 9 1874.08000		22.25 <.0001
	Root MSE Dependent Mea Coeff Var	5.16500 n 37.28000 13.85460	R-Square Adj R-Sq	0.3167 0.3025
		Parameter Est	imates	
Variable	DF	Parameter Estimate	Standard Error t	Value Pr > t
Intercept Skill	: 1 1	-1.79639 0.52395	8.31626 0.11108	-0.22 0.8299 4.72 <.0001

Skipping proc univariate output except for the quantiles ...


Quantile	Estimate
100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	95 91 87 84 80 74 71 67 64 59 58

Customer Support Training Look at the data set pts

Obs	skill	group	Yhat
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	60 60 61 61 62 62 62 63 63 63 63 64 64 65 65 65 66	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1	35.9123 33.5127 29.6406 36.8958 34.2741 30.1646 37.8793 35.0355 30.6885 38.8628 35.7969 31.2125 39.8463 36.5582 31.7364 40.8298 37.3196 32.2604 41.8133
100 101 102 103 104 105 106 107 108	93 93 94 94 94 95 95 95	1 2 3 1 2 3 1 2 3	68.3675 58.6380 46.9310 69.3510 59.3993 47.4549 70.3345 60.1607 47.9789

10

Skipping ...

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1 Dependent Variable: Performance

Number	of	Observations	Read	150
Number	of	Observations	Used	150

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tot	5 144 al 149	9194.71754 3929.82246 13125	1838.94351 27.29043	67.38	<.0001
	Root MSE Dependent Mean Coeff Var	5.22402 44.42000 11.76052	R-Square Adj R-Sq	0.7006 0.6902	

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test DiffAt58 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	49.76774 27.29043	1.82	0.1651

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test DiffAt71 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	1204.88567 27.29043	44.15	<.0001

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test DiffAt67 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	474.61887 27.29043	17.39	<.0001

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test DiffAt64 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 144	227.79970 27.29043	8.35	0.0004

18

Page 17 of 18

20

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test Group1vs2At64 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 144	78.28716 27.29043	2.87	0.0925

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test Grouplvs3At64 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 144	448.28484 27.29043	16.43	<.0001

Customer Support Training Test group differences at lower skill levels

The REG Procedure Model: MODEL1

Test Group2vs3At64 Results for Dependent Variable Performance

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	$1\\144$	172.31830 27.29043	6.31	0.0131

21