
Regression Part 2 

•  Residuals 
•  More about dummy variables 
•  Interactions 



Analysis of Residuals 

Data = Fit + Residual 

ei = Yi − Ŷi

Yi = b0 + b1 Xi,1 + ... + bp-1 Xi,p-1 + ei 



Mean residual equals zero 
(usually) 

•  Suppose a regression model has an intercept. 
•  Then the residuals add up to zero. Having an 

intercept in the model is a sufficient but not a 
necessary condition for the sum of residuals to 
be zero. 

•  That is, there are some models without 
intercepts for which the residuals still add to 
zero. 

•  Often these are equivalent to models with 
intercepts. 



Residual means left over 

•  Vertical distance of Yi from the regression 
hyper‐plane 

•  An error of “prediction” 
•  Big residuals merit further investigation 
•  Big compared to what? 
•  They are normally distributed 
•  Consider standardizing 
•  Maybe detect outliers 



Residuals are like estimated error terms 

Yi = b0 + b1 Xi,1 + ... + bp-1 Xi,p-1 + ei 

Yi = β0 + β1 Xi,1 + ... + βp-1 Xi,p-1 + εi 

Normal distribution of εi implies normal distribution of ei    



Standardized Residuals 

•  Could divide by square root of sample 
variance of e1, ..., en  

•  “Semi‐Studentized” (Kutner et al.) 

•  Studentized: Estimate Var(ei) (not all the 
same) and divide by square root of that 

e∗i =
ei√

MSE



Studentized deleted residuals 

•  An outlier will make MSE big 
•  In that case, the Studentized residual will be 
too small – less noticeable 

•  So calculate Y‐hat for each observation based 
on all the other observations, but not that one 

•  Basically, predict each observed Y based on all 
the others, and assess error of prediction 
(divide by standard error). 



Deleted residual 

Studentized deleted residual is
ti = di

s{di} ∼ t(n− p− 1)

Is it too big? Use a t-test.

di = Yi − Ŷi(i)

s2{di} = . . .



Prediction interval 

•  Apply the same technology 
•  Think of Studentized deleted residual for case 
n+1 

•  So  tn+1 =
dn+1

s{dn+1}
∼ t(n− p)

1− α = Pr

{
−tα/2(n− p) <

Yn+1 − Ŷn+1

s{dn+1}
< tα/2(n− p)

}

= Pr
{
−tα/2 s{dn+1} < Yn+1 − Ŷn+1 < tα/2 s{dn+1}

}

= Pr
{

Ŷn+1 − tα/2 s{dn+1} < Yn+1 < Ŷn+1 + tα/2 s{dn+1}
}



Plotting residuals 

•  Against independent variables not in the 
equation 

•  Against independent variables in the equation 
•  Test for approximate normality 



Plot Residuals Against Independent 
Variables Not in the Equation 



Plot Residuals Against Independent Variables in 
the Equation: E(Y|X)=β0+β1X1+β2X2  



Plot Residuals Against Independent 
Variables in the Equation 



More about Dummy Variables 

•  Indicator dummy variables with intercept 
•  Indicator dummy variables without 

intercept (Cell means coding) 
•  Effect coding 



Recall indicators with intercept 

•  x1 = Age 
•  x2 = 1 if Drug A, Zero otherwise 
•  x3 = 1 if Drug B, Zero otherwise 
•    



Can test contrasts controlling 
for covariates 

•  Valuable 
•  Sometimes very easy, sometimes can 

require a bit of algebra 
•  An easy example: Are responses to 

Drug A and B different, controlling for 
age? 



Are responses to Drug A and 
B different, controlling for 

age? 



Test whether the average response to 
Drug A and Drug B is different from 
response to the placebo, controlling for 
age. What is the null hypothesis? 



Show your work 

We want to avoid this kind of thing 



A common error 

•  Categorical IV with p categories 
•  p dummy variables (rather than p-1) 
•  And an intercept 

•  There are p population means 
represented by p+1 regression 
coefficients – representation is not 
unique 



But suppose you leave off the 
intercept 

•  Now there are p regression coefficients 
and p population means 

•  The correspondence is unique, and the 
model can be handy -- less algebra 

•  Called cell means coding 



Cell means coding: p 
indicators and no intercept 

(This model is equivalent to the one with the intercepts.) 



Add a covariate: x4 

•  Parallel regression lines 
•  Equivalent to the model with intercept 
•  Regression coefficients for the dummy vars 

are the intercepts 
•  Easy to specify contrasts 



Effect coding 
•  p-1 dummy variables for p categories 
•  Include an intercept 
•  Last category gets -1 instead of zero 
•  What do the regression coefficients 

mean? 



Meaning of the regression 
coefficients 



With effect coding 
•  Intercept is the Grand Mean 
•  Regression coefficients are deviations of 

group means from the grand mean 
•  Equal population means is equivalent to zero 

coefficients for all the dummy variables 
•  Last category is not a reference category 



Sometimes speak of the “main 
effect” of a categorical variable 

•  More than one categorical IV (factor) 
•  Marginal means are average group mean, 

averaging across the other factors 
•  This is loose speech: There are actually p 

main effects for a variable, not one 
•  Blends the “effect” of an experimental 

variable with the technical statistical meaning 
of effect. 

•  It’s harmless 



Add a covariate: Age = x1 

Regression coefficients are deviations from the 
average conditional population mean (conditional on 
x1). 

So if the regression coefficients for all the dummy 
variables equal zero, the categorical IV is unrelated 
to the DV, controlling for the covariates. 



We will see later that effect coding is very 
useful when there is more than one 
categorical independent variable and we 
are interested in interactions --- ways in 
which the relationship of an independent 
variable with the dependent variable 
depends on the value of another 
independent variable. 



What dummy variable coding 
scheme should you use? 

•  Whichever is most convenient, and 
gives you the information you want most 
directly 

•  They are all equivalent, if done correctly 
•  Same test statistics, same conclusions 



Interactions 

•  Interaction between independent 
variables means “It depends.” 

•  Relationship between one IV and the 
DV depends on the value of another IV.  

•  Can have 
– Quantitative by quantitative 
– Quantitative by categorical 
– Categorical by categorical 



General principle 

•  Interaction between A and B means 
– Relationship of A to Y depends on value of 

B 
– Relationship of B to Y depends on value of 

A 
•  The two statements are formally 

equivalent 



Quantitative by Quantitative 

Y = β0 + β1x1 + β2x2 + β3x1x2 + ε

E(Y |x) = β0 + β1x1 + β2x2 + β3x1x2

For fixed x2 

E(Y |x) = (β0 + β2x2) + (β1 + β3x2)x1

Both slope and intercept depend on value of x2 

And for fixed x1, slope and intercept relating x2 to E(Y) depend  
on the value of x1 



Quantitative by Categorical 
•  Separate regression line for each value of 

the categorical independent variable.  
•  Interaction means slopes of regression 

lines are not equal. 



One regression Model 
•  Form a product of quantitative variable 

times each dummy variable for the 
categorical variable 

•  For example, three treatments and one 
covariate: x1 is the covariate and x2, x3 are 
dummy variables 

Y = β0 + β1x1 + β2x2 + β3x3

+β4x1x2 + β5x1x3 + ε



E(Y |x) = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3

Group x2 x3 E(Y |x)
1 1 0 (β0 + β2) + (β1 + β4)x1

2 0 1 (β0 + β3) + (β1 + β5)x1

3 0 0 β0 + β1 x1



Group x2 x3 E(Y |x)
1 1 0 (β0 + β2) + (β1 + β4)x1

2 0 1 (β0 + β3) + (β1 + β5)x1

3 0 0 β0 + β1 x1

What null hypothesis would you test for 

•  Parallel slopes 
•  Compare slopes for group one vs three 
•  Compare slopes for group one vs two 
•  Equal regressions 
•  Interaction between group and x1 



What to do if H0: β4=β5=0 is rejected 

•  How do you test Group “controlling” for x1? 
•  A popular choice is to set x1 to its sample 

mean, and compare treatments at that 
point. SAS calls the estimates (Y-hat 
values) “Least Squares Means.” 

•  Or, test equal regressions, in which mean 
response is the same for all values of the 
covariate(s).  



Test for differences at mean of x1? 



“Centering” the independent variables 
•  Subtract mean (for entire sample) from 

each quantitative independent variable. 



Properties of Centering 
•  When independent variables are 

centered, estimates and tests for 
intercepts are affected. 

•  Relationships between independent 
variables and dependent variables are 
unaffected. 

•  Estimates and tests for slopes are 
unaffected.  

•  R2 is unaffected. 
•  Predictions and prediction intervals are 

unaffected. 



More Properties 

•  Suppose a regression model has an intercept. 
•  Then the residuals add up to zero. But there are 

models without intercepts where the sum of residuals 
is zero. These are often equivalent to models with 
intercepts. 

•  Suppose the residuals do add to zero. Then if each 
independent variable is set to its sample mean value, 
Y-hat equals Y-bar, the sample mean of all the Y 
values. 

•  In this case, if all independent variables are centered 
by subtracting off their means, then the intercept 
equals Y-bar, exactly. 



Comments 

•  Often, X=0 is outside the range of independent 
variable values, and it is hard to say what the 
intercept means in terms of the data. 

•  When independent variables are centered, the 
intercept is the average Y value for average value(s) 
of X. 

•  If there are both quantitative variables and 
categorical variables (represented by dummy 
variables), it can help to center just the quantitative 
variables. 



“Centering” just the quantitative 
independent variables 

•  Subtract mean (for entire sample) from each 
quantitative independent variable. 

•  Then, comparing intercepts is the same as 
comparing expected values for “average” X 
values.  It’s more convenient than testing 
linear combinations. 

Group x2 x3 E(Y |x)
1 1 0 (β0 + β2) + (β1 + β4)x1

2 0 1 (β0 + β3) + (β1 + β5)x1

3 0 0 β0 + β1 x1



For Example 

•  Suppose you want to test for differences 
among population mean Y values when x1 
equals its sample mean value. 

•  You could test H0:  
•  Or, center x1 and test H0: β2=β3=0 

Group x2 x3 E(Y |x)
1 1 0 (β0 + β2) + (β1 + β4)x1

2 0 1 (β0 + β3) + (β1 + β5)x1

3 0 0 β0 + β1 x1

β2 + β4x1 = β3 + β5x1 = 0



Categorical by Categorical 

•  Soon 
•  But first, some examples 


