STA442s04 Overheads Set Four (Multiple Regression)

```
/* tvreadl.sas */
options linesize = 79 noovp formdlim='_';
title 'TV Data simulated with SURVEY: Exploratory sample';
proc format;
    value locfmt 1 = 'Rural'
                2 = 'Small Town'
                3 = 'Urban';
data tv;
    infile 'tv1fixed.dat';
    input dist hsehold value q1-q9;
    label value = 'Value of house in $US'
            q1 = 'Number of persons 12 and older'
            q2 = 'Number of persons 11 and younger'
            q3 = 'Numbr TV sets in Household'
            q4 = 'Price willing to pay for cable TV'
            q5 = 'Total TV hours watched last week'
            q6 = 'Hours Public Affairs watched last week'
            q7 = 'Hours Sports watched last week'
            q8 = 'Hours Children''s programming last week'
            q9 = 'Hours Movies watched last week';
    people = q1+q2;
    label people = 'Number of persons in household';
    if 1 <= dist <= 25 then location=1;
        else if 26 <= dist <= 50 then location=2;
        else if 51 <= dist <= 75 then location=3;
        else location = . ;
    format location locfmt.;
    /* Dummy Variables for Location */
    if location = 1 then loc1 = 1;
        else if location = . then loc1 = .;
        else loc1 = 0;
    if location = 2 then loc2 = 1;
            else if location = . then loc2 = .;
            else loc2 = 0;
proc freq;
    tables (loc1 loc2) * location / norow nocol nopercent missing;
```

```
TV Data simulated with SURVEY: Exploratory sample
                                    1
                                    05:48 Monday, February 2, 2004
                                    TABLE OF LOC1 BY LOCATION
    LOC1 LOCATION
\begin{tabular}{|c|c|c|c|c|}
\hline Frequency & Rural & \[
\begin{aligned}
& \text { | Small } \\
& \text { | Town }
\end{aligned}
\] & | Urban & Total \\
\hline 0 & & 98 & 311 & 409 \\
\hline 1 & & 0 & 0 & 91 \\
\hline Total & & 98 & 311 & 500 \\
\hline
\end{tabular}
    LOC2 LOCATION
\begin{tabular}{|c|c|c|c|c|}
\hline Frequency & Rural & \[
\begin{aligned}
& \text { |Small } \\
& \text { | Town }
\end{aligned}
\] & & Total \\
\hline 0 & & & 311 & 402 \\
\hline 1 & & & 0 & 98 \\
\hline Total & & & 311 & 500 \\
\hline
\end{tabular}
```

```
/* 442s04tvreg1.sas */
title2 'Multiple Regression with TV data';
%include 'tvreadl.sas';
/* If you control for number of children in house, does number of TV sets
predict amount of kid's programming watched? */
proc reg;
    model q8 = q2 q3;
    sets: test q3=0;
/* Is location related to total number of TV hourse watched? Do it with both
proc glm and proc reg to check. */
proc glm;
    class location;
    model q5 = location;
    means location;
proc reg;
    model q5 = loc1 loc2;
/* Controlling for number of people in household, is location related to total
number of TV hours watched? */
proc reg;
    model q5 = people loc1 loc2;
    loctest: test loc1=loc2=0;
/* Re-do the preceding question to answer some additional questions, in more
than one way.
1. Using proc reg, fit a full and a reduced model to find the proportion of remaining variation explained by location, once number of people in the household is taken into account.
\[
(0.5836-0.5273) /(1-0.5273)=0.1191030
\]
2. Obtain the same information from Type I (sequential) sums of squares.
\[
\begin{aligned}
& {[\text { SS1 (loc1)+SS1 (loc2)]/(SSTO-SS1 (people) })=} \\
& (20938+28687) /(882258.52830-465254)=0.1190035
\end{aligned}
\]
3. Obtain the same information from the \(F\) statistic and degrees of freedom.
```

```
    F*S / ( F*S + n - p ) = 31.9456*2 / (31.9456*2 + 473) = 0.1190021
```

 F*S / (F*S + n - p) = 31.9456*2 / (31.9456*2 + 473) = 0.1190021
 */

```

STA442s04 Overheads4: Page 3
```

proc reg simple;
model q5 = people;
model q5 = people loc1 loc2 / ss1;
/*
4. Using output from proc reg, find the mean number of TV hours watched
for each location, CORRECTED for number of people in the household. Use proc
iml as a calculator.
*/
proc iml;
b0 = -5.851272 ; b1 = 15.852576;
b2 = 21.967611 ; b3 = 20.362185;
xbar = 3.4088;
rural = b0 + b1*xbar + b2*1 + b3*0;
small = b0 + b1*xbar + b2*0 + b3*1;
urban = b0 + b1*xbar + b2*0 + b3*0;
print rural small urban;
/*
5. Obtain the same information from proc glm, using lsmeans.
*/
proc glm;
class location;
model q5 = people location;
lsmeans location;
/* If we allow for number of children, number of adults, number of TVs,
location and value of house, is amount of kids TV related to amount(s) of
other TV watched? */
proc reg;
model q8 = q2 q1 q3 loc1 loc2 value
q6 q7 q9 / ss1;
otherTV: test q6=q7=q9=0;
/* Using proc iml as a calculator, find the proportion of remaining variation
explained by hours of Public Affairs, Sports and Movies, once we control for
the other variables in the model. */
proc iml;
F = 18.6178; ndf = 3; ddf = 468;
a = F*ndf / (F*ndf + ddf);
print a;

```
```

/* If you control for number of children in house, does number of TV sets
predict amount of kid's programming watched? */
proc reg;
model q8 = q2 q3;
sets: test q3=0;
TV Data simulated with SURVEY: Exploratory sample
1
13:21 Monday, February 2, 2004
Model: MODEL1
Dependent Variable: Q8 Hours Children's programming last week

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Prob $>$ F
Model	2	15272.06369	7636.03184	590.441	0.0001
Error	474	6130.12499	12.93275		
C Total	476	21402.18868			

Root MSE	3.59621	R-square	0.7136
Dep Mean	4.78616	Adj R-sq	0.7124
C.V.	75.13771		

```

```

/* Is location related to total number of TV hourse watched? Do it with both
proc glm and proc reg to check. */
proc glm;
class location;
model q5 = location;
means location;
proc reg;
model q5 = loc1 loc2;

```
```

TV Data simulated with SURVEY: Exploratory sample

```
TV Data simulated with SURVEY: Exploratory sample
                            3
                            3
                                    13:21 Monday, February 2, 2004
                                    13:21 Monday, February 2, 2004
                General Linear Models Procedure
                General Linear Models Procedure
                    Class Level Information
                    Class Level Information
                    Class Levels Values
                    Class Levels Values
                    LOCATION 3 Rural Small Town Urban
                    LOCATION 3 Rural Small Town Urban
                    Number of observations in data set = 500
                    Number of observations in data set = 500
NOTE: Due to missing values, only 477 observations can be used in this
    analysis.
```


STA442s04 Overheads4: Page 6

Source	DF	Type I SS	Mean Square	F	Value	$\mathrm{Pr}>\mathrm{F}$
LOCATION	2	100416.66787	50208.33393		30.44	0.0001
Source	DF	Type III SS	Mean Square	F	Value	$\mathrm{Pr}>\mathrm{F}$
LOCATION	2	100416.66787	50208.33393		30.44	0.0001

TV Data simulated with SURVEY: Exploratory sample 5
13:21 Monday, February 2, 2004
General Linear Models Procedure

Level of LOCATION	N	Mean	SD
Rural	90	72.8333333	45.9017637
Small Town	93	76.3870968	47.5936222
Urban	294	44.8877551	36.2926715

TV Data simulated with SURVEY: Exploratory sample

Model: MODELI
Dependent Variable: Q5 Total TV hours watched last week

STA442s04 Overheads4: Page 7
/* Controlling for number of people in household, is location related to total number of TV hours watched? */

```
proc reg;
    model q5 = people loc1 loc2;
    loctest: test loc1=loc2=0;
```

TV Data simulated with SURVEY: Exploratory sample

Model: MODEL1
Dependent Variable: Q5 Total TV hours watched last week

> Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	3	514878.66820	171626.22273	220.968	0.0001
Error	473	367379.86010	776.70161		
C Total	476	882258.52830			
Root MSE		27.86937 R	R -square	0.5836	
Dep Mean		56.30189 A	Adj R-sq	0.5810	
C.V.		49.49988			

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H} 0 \text { : } \\ & \text { Parameter=0 } \end{aligned}$	Prob > $\|T\|$
INTERCEP	1	-5.851272	2.73246377	-2.141	0.0328
PEOPLE	1	15.852576	0.68625352	23.100	0.0001
LOC1	1	21.967611	3.36731784	6.524	0.0001
LOC2	1	20.362185	3.35050985	6.077	0.0001
Variable					
Variable	DF	Label			
INTERCEP	1				
PEOPLE	1 Number of persons in household				
LOC1	1				
LOC2	1				

TV Data simulated with SURVEY: Exploratory sample

Test: LOCTEST Numerator: 24812.1707 DF: 2 F value: 31.9456
Denominator: 776.7016 DF: 473 Prob>F: 0.0001

STA442s04 Overheads4: Page 8
/* Re-do the preceding question to answer some additional questions, in more than one way.

1. Using proc reg, fit a full and a reduced model to find the proportion of remaining variation explained by location, once number of people in the household is taken into account.

$$
(0.5836-0.5273) /(1-0.5273)=0.1191030
$$

2. Obtain the same information from Type I (sequential) sums of squares.

$$
\begin{aligned}
& {[\text { SS1 (loc1) +SS1 (loc2)] /(SSTO-SS1 (people) })=} \\
& (20938+28687) /(882258.52830-465254)=0.1190035
\end{aligned}
$$

3. Obtain the same information from the F statistic and degrees of freedom.
```
    F*S / ( F*S + n - p ) = 31.9456*2 / (31.9456*2 + 473) = 0.1190021
```

*/
proc reg simple;
model q5 = people;
model q5 = people loc1 loc2 / ss1;

TV Data simulated with SURVEY: Exploratory sample
9 13:21 Monday, February 2, 2004

Descriptive Statistics

Variables	Sum	Mean	
INTERCEP	477	1	Intercept
PEOPLE	1626	3.4088050314	Number of persons in household
Q5	26856	56.301886792	Total TV hours watched last week
LOC1	90	0.1886792453	
LOC2	93	0.1949685535	

Variables	Uncorrected SS	Variance	
		0	Intercept
INTERCEP	477	7230	3.5447122245
PEOPLE	2394302	1853.4843032	Number of persons in household
Q5	90	0.153400983	
LOC1	93	0.1572855557	

STA442s04 Overheads4: Page 9

```
Variables Std Deviation
INTERCEP 0 Intercept
PEOPLE 1.8827406153 Number of persons in household
Q5 43.052111483 Total TV hours watched last week
LOC1 0.3916643755
LOC2 0.3965924303
\begin{tabular}{lr} 
Variables & Std Deviation \\
INTERCEP & 0 \\
PEOPLE & 1.8827406153 \\
Q5 & 43.052111483 \\
LOC1 & 0.3916643755 \\
LOC2 & 0.3965924303
\end{tabular}
```

(Reduced model - just people)
TV Data simulated with SURVEY: Exploratory sample 10
13:21 Monday, February 2, 2004

Model: MODEL1
Dependent Variable: Q5 Total TV hours watched last week

Analysis of Variance

Sum of Mean

Source	DF	Squares	Square	F Value	Prob>F
Model	1	465254.32676	465254.32676	529.961	0.0001
Error	475	417004.20154	877.90358		
C Total	476	882258.52830			
Root MSE		29.62944	R -square	0.5273	
Dep Mean		56.30189	Adj R-sq	0.5263	
C.V.		52.62601			

Full model - people and location

```
TV Data simulated with SURVEY: Exploratory sample

Model: MODEL2
Dependent Variable: Q5 Total TV hours watched last week
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & Prob>F \\
\hline Model & 3 & 514878.66820 & 171626.22273 & 220.968 & 0.0001 \\
\hline Error & 473 & 367379.86010 & 776.70161 & & \\
\hline C Total & 476 & 882258.52830 & & & \\
\hline Root MSE & & 27.86937 & R -square & 0.5836 & \\
\hline Dep Mean & & 56.30189 & Adj R-sq & 0.5810 & \\
\hline C.V. & & 49.49988 & & & \\
\hline
\end{tabular}

Parameter Estimates
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable & DF & Parameter Estimate & Standard Error & \[
\begin{aligned}
& \mathrm{T} \text { for } \mathrm{HO}: \\
& \text { Parameter=0 }
\end{aligned}
\] & Prob \(>|T|\) \\
\hline INTERCEP & 1 & -5.851272 & 2.73246377 & -2.141 & 0.0328 \\
\hline PEOPLE & 1 & 15.852576 & 0.68625352 & 23.100 & 0.0001 \\
\hline LOC1 & 1 & 21.967611 & 3.36731784 & 6.524 & 0.0001 \\
\hline LOC2 & 1 & 20.362185 & 3.35050985 & 6.077 & 0.0001 \\
\hline Variable & DF & Type I SS & Variable Label & & \\
\hline INTERCEP & 1 & 1512043 & Intercept & & \\
\hline PEOPLE & 1 & 465254 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Number of persons in household}} \\
\hline LOC1 & 1 & 20938 & & & \\
\hline LOC2 & 1 & 28687 & & & \\
\hline
\end{tabular}
/*
4. Using output from proc reg, find the mean number of TV hours watched for each location, CORRECTED for number of people in the household. Use proc iml as a calculator.
*/
```

proc iml;
b0 = -5.851272 ; b1 = 15.852576;
b2 = 21.967611 ; b3 = 20.362185;
xbar = 3.4088;
rural = b0 + b1*xbar + b2*1 + b3*0;
small = b0 + b1*xbar + b2*0 + b3*1;
urban = b0 + b1*xbar + b2*0 + b3*0;
print rural small urban;
/*

```
TV Data simulated with SURVEY: Exploratory sample

RURAL SMALL URBAN
70.154668 .54917448 .186989
5. Obtain the same information from proc glm, using lsmeans.
*/
proc glm;
class location;
model q5 = people location;
lsmeans location;

TV Data simulated with SURVEY: Exploratory sample

General Linear Models Procedure
Class Level Information
Class Levels Values

LOCATION 3 Rural Small Town Urban

Number of observations in data set \(=500\)

STA442s04 Overheads4: Page 12

NOTE: Due to missing values, only 477 observations can be used in this analysis.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{TV Data simulated with SURVEY: Exploratory sample 14} \\
\hline \multicolumn{7}{|c|}{General Linear Models Procedure} \\
\hline \multirow[t]{2}{*}{Dependent Variab
Source} & : Q5 To & \multicolumn{5}{|l|}{Total TV hours watched last week} \\
\hline & DF & Squares & Square & F Value & & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 514878.66820 & 171626.22273 & 220.97 & & 0.0001 \\
\hline Error & 473 & 367379.86010 & 776.70161 & & & \\
\hline \multirow[t]{3}{*}{Corrected Total} & 476 & 882258.52830 & & & & \\
\hline & R-Square & C.V. & \multicolumn{2}{|l|}{Root MSE} & \multicolumn{2}{|r|}{Q5 Mean} \\
\hline & 0.583592 & 49.49988 & 27.869367 & \multicolumn{3}{|r|}{56.301887} \\
\hline Source & DF & Type I SS & Mean Square & F Value & & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline PEOPLE & 1 & 465254.32676 & 465254.32676 & 599.01 & & 0.0001 \\
\hline LOCATION & 2 & 49624.34144 & 24812.17072 & 31.95 & & 0.0001 \\
\hline Source & DF & Type III SS & Mean Square & F Value & & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline PEOPLE & 1 & 414462.00034 & 414462.00034 & 533.62 & & 0.0001 \\
\hline \multicolumn{7}{|l|}{\(\begin{array}{llllll}\text { LOCATION } & 2 & 49624.34144 & 24812.17072 & 31.95 & 0.0001\end{array}\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{LOCATION}} & Q5 \\
\hline & & LSMEAN \\
\hline Rural & & 70.1546800 \\
\hline Small & Town & 68.5492539 \\
\hline Urban & & 48.1870687 \\
\hline
\end{tabular}
/* If we allow for number of children, number of adults, number of TVs, location and value of house, is amount of kids TV related to amount (s) of other TV watched? */
proc reg;
model \(q 8=q 2\) q1 q3 loc1 loc2 value
q6 q7 q9 / ss1;
otherTV: test \(q 6=q 7=q 9=0\);

TV Data simulated with SURVEY: Exploratory sample

Model: MODEL1
Dependent Variable: Q8 Hours Children's programming last week

> Analysis of Variance
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & DF & Sum of Squares & Mean Square & F Value & Prob \(>\) F \\
\hline Model & 9 & 15763.21411 & 1751.46823 & 145.050 & 0.0001 \\
\hline Error & 467 & 5638.97457 & 12.07489 & & \\
\hline C Total & 476 & 21402.18868 & & & \\
\hline Root MSE & & 3.47489 & R -square & 0.7365 & \\
\hline Dep Mean & & 4.78616 & Adj R-sq & 0.7314 & \\
\hline C.V. & & 72.60292 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Parameter Estimates \\
Variable & DF & \begin{tabular}{r} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & \begin{tabular}{c} 
T for H0: \\
Parameter \(=0\)
\end{tabular} & Prob > \(|T|\) \\
INTERCEP & 1 & 1.288128 & 0.79658863 & 1.617 & 0.1065 \\
Q2 & 1 & 4.367102 & 0.16914647 & 25.818 & 0.0001 \\
Q1 & 1 & -0.791774 & 0.16207500 & -4.885 & 0.0001 \\
Q3 & 1 & 0.372331 & 0.16861744 & 2.208 & 0.0277 \\
LOC1 & 1 & -1.111007 & 0.47197706 & -2.354 & 0.0190 \\
LOC2 & 1 & -0.805423 & 0.49157217 & -1.638 & 0.1020 \\
VALUE & 1 & -0.000006785 & 0.00001151 & -0.590 & 0.5557 \\
Q6 & 1 & 0.174388 & 0.09668258 & 1.804 & 0.0719 \\
Q7 & 1 & 0.022382 & 0.01593602 & 1.404 & 0.1608 \\
Q9 & 1 & 0.075467 & 0.03546210 & 2.128 & 0.0339
\end{tabular}
\begin{tabular}{lrrl} 
Variable & DF & \multicolumn{2}{c}{ Type I SS } \\
Variable \\
Label
\end{tabular}

TV Data simulated with SURVEY: Exploratory sample
13:21 Monday, February 2, 2004
Dependent Variable: Q8
Test: OTHERTV Numerator: 141.3393 DF: 3 F value: 11.7052
Denominator: 12.07489 DF: 467 Prob>F: 0.0001
```

/* Using proc iml as a calculator, find the proportion of remaining variation
explained by hours of Public Affairs, Sports and Movies, once we control for
the other variables in the model. */
proc iml;
F = 18.6178; ndf = 3; ddf = 468;
a = F*ndf / (F*ndf + ddf);
print a;

```
```

