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Chapter 1

Introduction

This course is about using statistical methods to draw conclusions from real data. It is
deliberately non-mathematical, relying on translations of statistical theory into English.
For the most part, formulas are avoided. This involves some loss of precision, it also makes
the course accessible to students from non-statistical disciplines (particularly graduate
students and advanced undergraduates on their way to graduate school) who need to use
statistics in their research. Even for students with strong training in theoretical statistics,
the use of plain English can help reveal the connections between theory and applications,
while also suggesting a useful way to communicate with non-statisticians.

We will avoid mathematics, but we will not avoid computers. Learning to apply
statistical methods to real data involves actually doing it, and the use of software is
not optional. Furthermore, we will not employ “user-friendly” menu-driven statistical
programs. Why?

• It’s just too easy to poke around in the menus trying different things, produce some
results that seem reasonable, and then two weeks later be unable to say exactly
what one did.

• Real data sets tend to be large and complex, and most statistical analyses involve
a sizeable number of operations. If you discover a tiny mistake after you produce
your results, you don’t want to go back and repeat two hours of menu selections
and mouse clicks, with one tiny variation.

• If you need to analyze a data set that is similar to one you have analyzed in the past,
it’s a lot easier to edit a program than to remember a collection of menu selections
from last year.

Don’t worry! The word “program” does not mean we are going to write programs in
some true programming language like C or Java. We’ll use statistical software in which
most of the actual statistical procedures have already been written by experts; usually,
all we have to do is invoke them by using high-level commands.

The statistical packages we will use in this course are SAS and S. These packages are
command-oriented rather than menu-oriented, and are very powerful. They are industrial
strength tools, and will be illustrated in an industrial strength environment — unix. This
is mostly for local convenience. There are Windows versions of both SAS and S that work
just as well as the unix versions, except for very big jobs.
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Applied Statistics really refers to two related enterprises. The first might be more
accurately termed “Applications of Statistics,” and consists of the appropriate application
of standard general techniques. The second enterprise is the development of specialized
techniques that are designed specifically for the data at hand. The difference is like
buying your clothes from Walmart versus sewing them yourself (or going to a tailor). In
this course, we will do both. We’ll maintain the non-mathematical nature of the course
in the second half by substituting computing power and random number generation for
statistical theory.

1.1 Vocabulary of data analysis

We start with a data file. Think of it as a rectangular array of numbers, with the rows
representing cases (units of analysis, observations, subjects, replicates) and the columns
representing variables (pieces of information available for each case).

• A physical data file might have several lines of data per case, but you can imagine
them listed on a single long line.

• Data that are not available for a particular case (for example because a subject fails
to answer a question, or because a piece of measuring equipment breaks down) will
be represented by missing value codes. Missing value codes allow observations with
missing information to be automatically excluded from a computation.

• Variables can be quantitative (representing amount of something) or categorical.
In the latter case the ”numbers” are codes representing category membership. Cate-
gories may be ordered (small vs. medium vs. large) or unordered (green vs. blue
vs. yellow). When a quantitative variable reflects measurement on a scale capable
of very fine gradation, it is sometimes described as continuous. Some statistical
texts use the term qualitative to mean categorical. When an anthropologist uses
the word “qualitative,” however, it usually means “non-quantitative.”

Another very important way to classify variables is

Independent Variable (IV): Predictor = X (actually Xi, i = 1, . . . , n)

Dependent Variable (DV): Predicted = Y (actually Yi, i = 1, . . . , n)

Example: X = weight of car in kilograms, Y = fuel efficiency in litres per kilometer

Sample Question 1.1.1 Why isn’t it the other way around?

Answer to Sample Question 1.1.1 Since weight of a car is a factor that probably in-
fluences fuel efficiency, it’s more natural to think of predicting fuel efficiency from weight.

The general principle is that if it’s more natural to think of predicting A from B, then
A is the dependent variable and B is the independent variable. This will usually be the
case when B is thought to cause or influence A. Sometimes it can go either way or it’s
not clear. Usually it’s easy to decide.
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Sample Question 1.1.2 Is it possible for a variable to be both quantitative and categor-
ical? Answer Yes or No, and either give an example or explain why not.

Answer to Sample Question 1.1.2 Yes. For example, the number of cars owned by a
person or family.

In some fields, you may hear about nominal, ordinal, interval and ratio variables,
or variables measured using “scales of measurement” with those names. Ratio means
the scale of measurement has a true zero point, so that a value of 4 represents twice as
much as 2. An interval scale means that the difference (interval) between 3 and 4 means
the same thing as the difference between 9 and 10, but zero does not necessarily mean
absence of the thing being measured. The usual examples are shoe size and ring size.
In ordinal measurement, all you can tell is that 6 is less than 7, not how much more.
Measurement on a nominal scale consists of the assignment of unordered categories. For
example, citizenship is measured on a nominal scale.

It is usually claimed that one should calculate means (and therefore, for example,
do multiple regression) only with interval and ratio data; it’s usually acknowledged that
people do it all the time with ordinal data, but they really shouldn’t. And it is obviously
crazy to calculate a mean on numbers representing unordered categories. Or is it?

Sample Question 1.1.3 Give an example in which it’s meaningful to calculate the mean
of a variable measured on a nominal scale.

Answer to Sample Question 1.1.3 Code males as zero and females as one. The mean
is the proportion of females.

It’s not obvious, but actually all this talk about what you should and shouldn’t do with
data measured on these scales does not have anything to do with statistical assumptions.
That is, it’s not about the mathematical details of any statistical model. Rather, it’s a set
of guidelines for what statistical model one ought to adopt. Are the guidelines reasonable?
It’s better to postpone further discussion until after we have seen some details of multiple
regression.

1.2 Statistical significance

We will often pretend that our data represent a random sample from some population.
We will carry out formal procedures for making inferences about this (usually fictitious)
population, and then use them as a basis for drawing conclusions about the data.

Why do we do all this pretending? As a formal way of filtering out things that happen
just by coincidence. The human brain is organized to find meaning in what it perceives,
and it will find apparent meaning even in a sequence of random numbers. The main
purpose of testing for statistical significance is to protect Science against this. Even when
the data do not fully satisfy the assumptions of the statistical procedure being used (for
example, the data are not really a random sample) significance testing can be a useful as
a way of restraining scientists from filling the scientific literature with random garbage.
This is such an important goal that we will spend almost the entire course on significance
testing.
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1.2.1 Definitions

Numbers that can be calculated from sample data are called statistics. Numbers that
could be calculated if we knew the whole population are called parameters. Usually
parameters are represented by Greek letters such as α, β and γ, while statistics are
represented by ordinary letters such as a, b, c. Statistical inference consists of making
decisions about parameters based on the values of statistics.

The distribution of a variable corresponds roughly to a histogram of the values of
the variable. In a large population for a variable taking on many values, such a histogram
will be indistinguishable from a smooth curve.

For each value x of the independent variable X, in principle there is a separate distri-
bution of the dependent variable Y . This is called the conditional distribution of Y
given X = x.

We will say that the independent and dependent variable are unrelated if the condi-
tional distribution of the dependent variable in the population is identical for each value
of the independent variable. That is, the histogram of the dependent variable does not
depend on the value of the independent variable. If the distribution of the dependent
variable does depend on the value of the independent variable, we will describe the two
variables as related.

Most research questions involvemore than one independent variable. It is also common
to have more than one dependent variable. When there is one dependent variable, the
analysis is called univariate. When more than one dependent variable is being considered
simultaneously, the analysis is called multivariate.

Sample Question 1.2.1 Give an example of a study with two categorical independent
variables, one quantitative independent variable, and two quantitative dependent variables.

Answer to Sample Question 1.2.1 In a study of success in university, the subjects are
first-year university students. The categorical independent variables are Sex and Immi-
gration Status (Citizen, Permanent Resident or Visa), and the quantitative independent
variable is family income. The dependent variables are cumulative Grade Point Average
at the end of first year, and number of credits completed in first year.

Many problems in data analysis reduce to asking whether one or more variables are
related – not in the actual data, but in some hypothetical population from which the
data are assumed to have been sampled. The reasoning goes like this. Suppose that the
independent and dependent variables are actually unrelated in the population. If this is
true, what is the probability of obtaining a sample relationship between the variables that
is as strong or stronger than the one we have observed? If the probability is small (say,
p < 0.05), then we describe the sample relationship as statistically significant, and it
is socially acceptable to discuss the results. In particular, there is some chance of having
the results taken seriously enough to publish in a scientific journal.

Here is another way to talk about p-values and significance testing. The p-value is
the probability of getting our results (or better) just by chance. If p is small enough (we
will use ) then the data are very unlikely to have arisen by chance, assuming there is
really no relationship between the independent variable and the dependent variable in the
population. In this case we will conclude there is a relationship between the independent
and dependent, and we will say our results are ”statistically significant.”
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If p > .05, we will not conclude anything. All we can say is that there is no evidence
of a relationship between the independent variable and the dependent variable.

For those who like precision, the formal definition is this. The p-value is the minimum
significance level α at which the null hypothesis (of no relationship between IV and DV
in the population) can be rejected.

1.2.2 Standard elementary significance tests

We will now consider some of the most common elementary statistical methods. For each
one, you should be able to answer the following questions.

1. Make up your own original example of a study in which the technique could be used.

2. In your example, what is the independent variable (or variables)?

3. In your example, what is the dependent variable (or variables)?

4. Indicate how the data file would be set up.

Independent observations One assumption shared by most standard methods is that
of ”independent observations.” The meaning of the assumption is this. Observations 13
and 14 are independent if and only if the conditional distribution of observation 14 given
observation 13 is the same for each possible value observation 13. For example if the
observations are temperatures on consecutive days, this would not hold. If the dependent
variable is score on a homework assignment and students copy from each other, the
observations will not be independent.

When significance testing is carried out under the assumption that observations are
independent but really they are not, results that are actually due to chance will often be
detected as significant with probability considerably greater than 0.05. This is sometimes
called the problem of inflated n. In other words, you are pretending you have more
separate pieces of information than you really do. When observations cannot safely be
assumed independent, this should be taken into account in the statistical analysis. We
will return to this point again and again.

Independent (two-sample) t-test

This is a test for whether the means of two independent groups are different. Assumptions
are independent observations, normality within groups, equal variances. For large samples
normality does not matter. For large samples with nearly equal sample sizes, equal
variance assumption does not matter. The assumption of independent observations is
always important.

Sample Question 1.2.2 Make up your own original example of a study in which a two-
sample t-test could be used.

Answer to Sample Question 1.2.2 An agricultural scientist is interested in compar-
ing two types of fertilizer for potatoes. Fifteen small plots of ground receive fertilizer A
and fifteen receive fertilizer B. Crop yield for each plot in pounds of potatoes harvested is
recorded.
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Sample Question 1.2.3 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.3 Fertilizer, a binary variable taking the values A
and B.

Sample Question 1.2.4 In your example, what is the dependent variable (or variables)?

Answer to Sample Question 1.2.4 Crop yield in pounds.

Sample Question 1.2.5 Indicate how the data file might be set up.

Answer to Sample Question 1.2.5

A 13.1
A 11.3
...

...
B 12.2
...

...

Matched (paired) t-test

Again comparing two means, but from paired observations. Pairs of observations come
from the same case (subject, unit of analysis), and presumably are non-independent.
Again, the data from a given pair are not really separate pieces of information, and if you
pretend they are, then you are pretending to have more accurate estimation of population
parameters — and a more sensitive test — than you really do. The probability of getting
results that are statistically significant will be greater than 0.05, even if nothing is going
on.

In a matched t-test, this problem is taken care of by computing a difference for each
pair, reducing the volume of data (and the apparent sample size) by half. This is our
first example of a repeated measures analysis. Here is a general definition. We will say
that there are repeated measures on an independent variable if a case (unit of analysis,
subject, participant in the study) contributes a value of the dependent variable for each
value of the independent variable in question. A variable on which there are repeated
measures is sometimes called a within-subjects variable. When this language is being
spoken, variables on which there are not repeated measures are called between-subjects.

The assumptions of the matched t-test are that the differences represent independent
observations from a normal population. For large samples, normality does not matter.
The assumption that different cases represent independent observations is always impor-
tant.

Sample Question 1.2.6 Make up your own original example of a study in which a
matched t-test could be used.

Answer to Sample Question 1.2.6 Before and after a 6-week treatment, participants
in a quit-smoking program were asked “On the average, how many cigarettes do you smoke
each day?”
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Sample Question 1.2.7 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.7 Presence versus absence of the program, a binary
variable taking the values “Absent” or “Present” (or maybe “Before” and “After”). We
can say there are repeated measures on this factor, or that it is a within-subjects factor.

Sample Question 1.2.8 In your example, what is the dependent variable (or variables)?

Answer to Sample Question 1.2.8 Reported number of cigarettes smoked per day.

Sample Question 1.2.9 Indicate how the data file might be set up.

Answer to Sample Question 1.2.9 The first column is “Before,” and the second col-
umn is “After.”

22 18
40 34
20 10
...

...

One-way Analysis of Variance

Extension of the independent t-test to two or more groups. Same assumptions, everything.
F = t2 for two groups.

Sample Question 1.2.10 Make up your own original example of a study in which a
one-way analysis of variance could be used.

Answer to Sample Question 1.2.10 Eighty branches of a large bank were chosen to
participate in a study of the effect of music on tellers’ work behaviour. Twenty branches
were randomly assigned to each of the following 4 conditions. 1=No music, 2=Elevator
music, 3=Rap music, 4=Individual choice (headphones). Average customer satisfaction
and worker satisfaction were assessed for each bank branch, using a standard question-
naire.

Sample Question 1.2.11 In your example, what are the cases?

Answer to Sample Question 1.2.11 Branches, not people answering the questionnaire.

Sample Question 1.2.12 Why do it that way?

Answer to Sample Question 1.2.12 To avoid serious potential problems with inde-
pendent observations within branches. The group of interacting people within social setting
is the natural unit of analysis, like an organism.

Sample Question 1.2.13 In your example, what is the independent variable (or vari-
ables)?
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Answer to Sample Question 1.2.13 Type of music, a categorical variable taking on 4
values.

Sample Question 1.2.14 In your example, what is the dependent variable (or vari-
ables)?

Answer to Sample Question 1.2.14 There are 2 dependent variables, average cus-
tomer satisfaction and average worker satisfaction. If they were analyzed simultaneously
the analysis would be multivariate (and not elementary).

Sample Question 1.2.15 Indicate how the data file might be set up.

Answer to Sample Question 1.2.15 The columns correspond to Branch, Type of Mu-
sic, Customer Satisfaction and Worker Satisfaction

1 2 4.75 5.31
2 4 2.91 6.82
...

...
...

...
80 2 5.12 4.06

Sample Question 1.2.16 How could this be made into a repeated measures study?

Answer to Sample Question 1.2.16 Let each branch experience each of the 4 music
conditions in a random order (or better, use only 72 branches, with 3 branches receiving
each of the 24 orders). There would then be 16 pieces of data for each bank.

Including all orders of presentation in each experimental condition is an example of
counterbalancing — that is, presenting stimuli in such a way that order of presentation
is unrelated to experimental condition. That way, the effects of the treatments are not
confused with fatigue or practice effects (on the part of the experimenter as well as the
subjects). In counterbalancing, it is often not feasible to include all possible orders of
presentation it each experimental condition, because sometimes there are two many. The
point is that order of presentation has to be unrelated to any manipulated independent
variable.

Two (and higher) way Analysis of Variance

Extension of One-Way ANOVA to allow assessment of the joint relationship of several
categorical independent variables to one quantitative dependent variable that is assumed
normal within treatment combinations. Tests for interactions between IVs are possible.
An interaction means that the relationship of one independent variable to the dependent
variable depends on the value of another independent variable. More on this later.
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Crosstabs and chisquared tests

Cross-tabulations (Crosstabs) are joint frequency distribution of two categorical variables.
One can be considered an IV, the other a DV if you like. In any case (even when the IV
is manipulated in a true experimental study) we will test for significance using the chi-
squared test of independence. Assumption is independent observations are drawn from a
multinomial distribution. Violation of the independence assumption is common and very
serious.

Sample Question 1.2.17 Make up your own original example of a study in which this
technique could be used.

Answer to Sample Question 1.2.17 For each of the prisoners in a Toronto jail, record
the race of the offender and the race of the victim. This is illegal; you could go to jail
for publishing the results. It’s totally unclear which is the IV and which is the DV, so I’ll
make up another example.

For each of the graduating students from a university, record main field of study and
and gender of the student (male or female).

Sample Question 1.2.18 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.18 Gender

Sample Question 1.2.19 In your example, what is the dependent variable (or vari-
ables)?

Answer to Sample Question 1.2.19 Main field of study (many numeric codes).

Sample Question 1.2.20 Indicate how the data file would be set up.

Answer to Sample Question 1.2.20 The first column is Gender (0=Male, 1=F). The
second column is Field.

1 2
0 14
0 9
...

...

Correlation and Simple Regression

Correlation Start with a scatterplot showing the association between two (quantita-
tive, usually continuous) variables. A scatterplot is a set of Cartesian coordinates with
a dot or other symbol showing the location of each (x, y) pair. If one of the variables
is clearly the independent variable, it’s traditional to put it on the x axis. There are n
points on the scatterplot, where n is the number of cases in the data file.

Often, the points in a scatterplot cluster around a straight line. The correlation
coefficient (Pearson’s r) expresses the extent to which the points cluster tightly around a
straight line.
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• −1 ≤ r ≤ 1

• r = +1 indicates a perfect positive linear relationship. All the points are exactly on
a line with a positive slope.

• r = −1 indicates a perfect negative linear relationship. All the points are exactly
on a line with a negative slope.

• r = 0 means no linear relationship (curve possible)

• r2 represents explained variation, reduction in (squared) error of prediction. For
example, the correlation between scores on the Scholastic Aptitude Test (SAT) and
first-year grade point average (GPA) is around +0.50, so we say that SAT scores
explain around 25% of the variation in first-year GPA.

The test of significance for Pearson’s r assumes a bivariate normal distribution for the
two variables; this means that the only possible relationship between them is linear. As
usual, the assumption of independent observations is always important.
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Here are some examples of scatterplots and the associated correlation coefficients.

MTB > plot c1 c3

- * *

C1 -

-

- *

60+ ** *

- * * * * 2* * *

- * ** * * *

- *

- * 2 2* ** * * *

45+ * * *2 *

- * * *

- *

- * * *

- * *

30+

- * *

-

+---------+---------+---------+---------+---------+------C3

20 30 40 50 60 70

MTB > corr c1 c3

Correlation of C1 and C3 = 0.004

MTB > plot c4 c6

75+ *

-

C4 -

-

- * * *

60+ *

- * * * * 2 * * *

- * ** **

- * * *2

- * ** * * * *

45+ * * ** * * *

- 2 *

- * 2 ***

- *

-

30+ * *

-

------+---------+---------+---------+---------+---------+C6

112 128 144 160 176 192

MTB > corr c4 c6

Correlation of C4 and C6 = 0.112

MTB > plot c3 c7

80+

- *

C3 - *

-

- * *

60+ * * * *

- * * * *

- * * ** *

- * * * * *2** * ** 2 * * *

- * 2 2 * *

40+ * * *
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- * **

- * *

-

- *

20+

-

--+---------+---------+---------+---------+---------+----C7

165 180 195 210 225 240

MTB > correlation between c3 and c7 please

Correlation of C3 and C7 = 0.368

MTB > plot c4 c7

75+ *

-

C4 -

-

- * * *

60+ *

- * * * *** * * *

- * * * **

- * * 2 *

- * * * * * * *

45+ * * ** * * *

- ** *

- * 2 ***

- *

-

30+ **

-

--+---------+---------+---------+---------+---------+----C7

165 180 195 210 225 240

MTB > corr c4 c7

Correlation of C4 and C7 = 0.547

MTB > plot c5 c7

-

C5 - * *

-

- * * * *

120+ *

- * *

- * * *

- * * 2

- * **

100+ * * * * ** * * *

- * * *

- * * * *

- * * * * *

- * * * *

80+ ** *

- *

- * *

--+---------+---------+---------+---------+---------+----C7

165 180 195 210 225 240
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MTB > corr c5 c7

Correlation of C5 and C7 = 0.733

MTB > plot c5 c9

-

C5 - **

-

- * * * *

120+ *

- * *

- * * *

- 2**

- * **

100+ * * 2 *2 * *

- ** *

- **2

- 2 * * *

- * * * *

80+ 2 *

- *

- * *

--+---------+---------+---------+---------+---------+----C9

-192 -176 -160 -144 -128 -112

MTB > corr c5 c9

Correlation of C5 and C9 = -0.822

MTB > plot c2 c1

-

- *

100+ * *2

- ** *

C2 - 2* * *

- ** * * **

- 2* 2 **

50+ * ** *2

- * ** *

- *** 2* ** * ***

- * * * * * *

- ** * 2 * * * * * *

0+ *** * 2 * * **

- * **

- * *

- *

-

--------+---------+---------+---------+---------+--------C1

-8.0 -4.0 0.0 4.0 8.0

MTB > corr c1 c2

Correlation of C1 and C2 = 0.025

200+

-

C2 - * ** *

- ** ** *** *

- * * * ** * * *

100+ * ** ** 2** ** * *

- **** * * 2 2

- * * *

- * * * *** *

- * *** *****2

0+ * * *

- *
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- * * *

- * **

- ******

-100+ *

-

--------+---------+---------+---------+---------+--------C1

-8.0 -4.0 0.0 4.0 8.0

Correlation of C1 and C2 = -0.811

Simple Regression One independent variable, one dependent. In the usual examples
both are quantitative (continuous). We fit a least-squares line to the cloud of points in
a scatterplot. The least-squares line is the unique line that minimizes the sum of squared
vertical distances between the line and the points in the scatterplot. That is, it minimizes
the total (squared) error of prediction.

Denoting the slope of the least-squares line by b1 and the intercept of the least-squares
line by b0,

b1 = r
sy
sx

and b0 = Y − b1X.

That is, the slope of the least squares has the same sign as the correlation coefficient, and
equals zero if and only if the correlation coefficient is zero.

Usually, you want to test whether the slope is zero. This is the same as testing
whether the correlation is zero, and mercifully yields the same p-value. Assumptions
are independent observations (again) and that within levels of the IV, the DV has a
normal distribution with the same variance (variance does not depend on value of the
DV). Robustness properties are similar to those of the 2-sample t-test. The assumption
of independent observations is always important.

Multiple Regression

Regression with several independent variables at once; we’re fitting a (hyper) plane rather
than a line. Multiple regression is very flexible; all the other techniques mentioned above
(except the chi-squared test) are special cases of multiple regression. More details later.

Choosing an Elementary Technique

Make a table in lecture.

1.3 Experimental versus observational studies

Why might someone want to predict a dependent variable from an independent variable?
There are two main reasons.

• There may be a practical reason for prediction. For example, a company might wish
to predict who will buy a product, in order to maximize the productivity of its sales
force. Or, an insurance company might wish to predict who will make a claim, or a
university computer centre might wish to predict the length of time a type of hard
drive will last before failing. In each of these cases, there will be some independent
variables that are to be used for prediction, and although the people doing the study
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may be curious and may have some ideas about how things might turn out and why,
they don’t really care why it works, as long as they can predict with some accuracy.
Does variation in the IV cause variation in the DV? Who cares?

• This may be science (of some variety). The goal may be to understand how the
world works — in particular, to understand the dependent variable. In this case,
most likely we are implicitly or explicitly thinking of a causal relationship between
the IV and DV. Think of attitude similarity and interpersonal attraction. . . .

Sample Question 1.3.1 A study finds that high school students who have a computer at
home get higher grades on average than students who do not. Does this mean that parents
who can afford it should buy a computer to enhance their children’s chances of academic
success?

Here is an answer that gets zero points. “Yes, with a computer the student can become
computer literate, which is a necessity in our competitive and increasingly technological
society. Also the student can use the computer to produce nice looking reports (neatness
counts!), and obtain valuable information on the World Wide Web.” ZERO.

The problem with this answer is that while it makes some fairly reasonable points, it
is based on personal opinion, and fails to address the real question, which is “Does this
mean . . . ” Here is an answer that gets full marks.

Answer to Sample Question 1.3.1 Not necessarily. While it is possible that some
students are doing better academically and therefore getting into university because of
their computers, it is also possible that their parents have enough money to buy them a
computer, and also have enough money to pay for their education. It may be that an
academically able student who is more likely to go to university will want a computer
more, and therefore be more likely to get one somehow. Therefore, the study does not
provide good evidence that a computer at home will enhance chances of academic success.

Note that in this answer, the focus is on whether the study provides good evidence
for the conclusion, not whether the conclusion is reasonable on other grounds. And
the answer gives specific alternative explanations for the results as a way of criticizing
the study. If you think about it, suggesting plausible alternative explanations is a very
damaging thing to say about any empirical study, because you are pointing out that the
investigators expended a huge amount of time and energy, but didn’t establish anything
conclusive. Also, suggesting alternative explanations is extremely valuable, because that
is how research designs get improved and knowledge advances.

Now here are the general principles. IfX and Y are measured at roughly the same time,
X could be causing Y , Y could be causing X, or there might be some third variable (or
collection of variables) that is causing both X and Y . Therefore we say that ”Correlation
does not necessarily imply causation.” Here, by correlation we mean association (lack of
independence) between variables. It is not limited to situations where you would compute
a correlation coefficient.

A confounding variable is a variable not included as an independent variable, that
might be related to both the independent variable and the dependent variable – and that
might therefore create a seeming relationship between them where none actually exists,

15



or might even hide a relationship that is present. Some books also call this a “lurking
variable.” You are responsible for the vocabulary “confounding variable.”

An experimental study is one in which cases are randomly assigned to the different
values of an independent variable (or variables). An observational study is one in which
the values of the independent variables are not randomly assigned, but merely observed.

Some studies are purely observational, some are purely experimental, and many are
mixed. It’s not really standard terminology, but in this course we will describe indepen-
dent variables as experimental (i.e., randomly assigned, manipulated) or observed.

In an experimental study, there is no way the dependent variable could be causing the
independent variable, because values of the IV are assigned by the experimenter. Also,
it can be shown (using the Law of Large Numbers) that when units of observation are
randomly assigned to values of an IV, all potential confounding variables are cancelled
out as the sample size increases. This is very wonderful. You don’t even have to know
what they are!

Sample Question 1.3.2 Is it possible for a continuous variable to be experimental, that
is, randomly assigned?

Answer to Sample Question 1.3.2 Sure. In a drug study, let one of the independent
variables consist of n equally spaced dosage levels spanning some range of interest, where
n is the sample size. Randomly assign one participant to each dosage level.

Sample Question 1.3.3 Give an original example of a study with one quantitative ob-
served independent variable and one categorical manipulated independent variable. Make
the study multivariate, with one dependent variable consisting of unordered categories and
two quantitative dependent variables. categorical

Answer to Sample Question 1.3.3 Stroke patients in a drug study are randomly as-
signed to either a standard blood pressure drug or one of three experimental blood pressure
drugs. The categorical dependent variable is whether the patient is alive or not 5 years
after the study begins. The quantitative dependent variables are systolic and diastolic blood
pressure one week after beginning drug treatment.

In practice, of course there would be a lot more variables; but it’s still a good answer.
Because of possible confounding variables, only an experimental study can provide

good evidence that an independent variable causes a dependent variable. Words like
effect, affect, leads to etc. imply claims of causality and are only justified for experimental
studies.

Sample Question 1.3.4 Design a study that could provide good evidence of a causal
relationship between having a computer at home and academic success.

Answer to Sample Question 1.3.4 High school students without computers enter a
lottery. The winners (50% of the sample) get a computer and modem to use at home.
The dependent variable is whether or not the student enters university.

Sample Question 1.3.5 Is there a problem with independent observations here? Can
you fix it?
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Answer to Sample Question 1.3.5 Oops. Yes. Students who win may be talking to
each other, sharing software, etc.. Actually, the losers will be communicating too. There-
fore their behaviour is non-independent and standard significance tests will be invalid. One
solution is to hold the lottery in n separate schools, with one winner in each school. If the
dependent variable were GPA, we could do a matched t-test comparing the performance
of the winner to the average performance of the losers.

Sample Question 1.3.6 What if the DV is going to university or not?

Answer to Sample Question 1.3.6 We are getting into deep water here. Here is how
I would do it. In each school, give a score of “1” to each student who goes to university,
and a “0” to each student who does not. Again, compare the scores of the winners to the
average scores of the losers in each school using a matched t-test. Note that the mean
difference that is to be compared with zero here is the mean difference in probability of
going to university, between students who get a computer to use and those who do not.
While the differences for each school will not be normally distributed, the central limit
theorem tells us that the mean difference will be approximately normal if there are more
than about 20 schools, so the t-test is valid. In fact, the t-test is conservative, because the
tails of the t distribution are heavier than those of the standard normal. This answer is
actually beyond the scope of the present course.

Artifacts and Compromises

Random assignment to experimental conditions will take care of confounding variables,
but only if it is done right. It is amazingly easy for for confounding variables to sneak
back into a true experimental study through defects in the procedure.

Placebo Effects

Experimenter Expectancy

Internal and external validity

Quasi-experimental designs
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Chapter 2

First set of tools: SAS running
under unix

The SAS language is the same regardless of what hardware you use or what operating
system is running on the hardware. SAS programs are simple text files that can be trans-
ported from one machine to another with minimal difficulty. In this course, everything
will be illustrated with SAS running under the unix operating system, but it’s not a prob-
lem even if the next place you go only has PCs. It should take you about an hour to
adjust to SAS-PC.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graphical shell that
runs on top of unix), but we won’t bother with it. Basically, you type a command, press
Enter, and unix does something for (or to) you. It may help to think of unix as DOS on
steroids, if you remember DOS. The table below has all the unix commands you will need
for this course. Throughout, fname stands for the name of a file.
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A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man more).

ls Lists names of the files in your directory.

more fname Displays fname on screen, one page at a time. Spacebar for next page, q
to quit.

laser fname Prints hard copy on a laser printer. This is a local UTM command. The
usual unix print command is lpr (for line printer).

draft fname Prints hard copy on a dot matrix printer. This is a local UTM command.

rm fname Removes fname, erasing it forever.

cp fname1 fname2 Makes a copy of fname1. The new copy is named fname2.

mv fname1 fname2 Moves (renames) fname1

pico fname Starts the pico text editor, editing fname (can be new file).

R Gets you into the R implementation of the S environment.

sas fname Executes SAS commands in the file fname.sas, yielding fname.log and (if
no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when you can’t log
off because there are stopped jobs. Use ps to see the job numbers.

This really is a minimal set of commands. The unix operating system is extremely
powerful, and has an enormous number of commands. You can’t really see the power
from the minimal set of commands above, but you can see the main drawback from
the standpoint of the new user. Commands tend to be terse, consisting of just a few
keystrokes. They make sense once you are familiar with them (like ls for listing the files
in a directory, or rm for remove), but they are hard to guess. The man command (short for
manual) gives very accurate information, but you have to know the name of the command
before you can use man to find out about it.

Just for future reference, here are a few more commands that you may find useful, or
otherwise appealing.

A Few More unix Commands

emacs fname Starts the emacs text editor, editing fname (can be new file). Emacs is
much more powerful than pico.
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mkdir dirname Makes a new sub-directory (like a folder) named dirname. You can
have sub-directories within sub-directories; it’s a good way to organize your work.

cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory dirname.

cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

ls > fname Sends the output of the ls command to the file fname instead of to the
screen.

cat fname Lists the whole file on your screen, not one page at a time. It goes by very
fast, but usually you can scroll back up to see the entire file, if it’s not too long.

cat fname1 fname2 > fname3

R –vanilla < fname1 > fname2

grep ERROR cartoon1.log

alias chk ”grep ERROR *.log ; grep WARN *.log”

cal

cal 1 3002

unset noclobber

rm -f fname

alias rm ”rm -f”

rm -r dirname

rm fname1 fname2

Printing files at home This is a question that always comes up. Almost surely, the
printer connected to your printer at home is not directly connected to the university
network. If you want to do something like print your SAS output at home, you have to
transfer the file on the unix machine to the hard drive of your home computer, and print
it from there. You’ll need to either use some kind of ftp (file transfer protocol) tool, or
use the more or cat command to list the file on your screen, select it with your mouse,
copy it, paste it to a word processing document, and print it from there.
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2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs and Macs as
well as on bigger computers, it is truly the last of the great old mainframe statistical
packages. The first beta release was in 1971, and the SAS Institute, Inc. was spun off
from North Carolina State University in 1976, the year after Bill Gates dropped out of
Harvard. This is a serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency is beyond any question. For
the purposes of this class, there are no bugs. The disadvantages of SAS are all related
to the fact that it was designed to run in a batch-oriented mainframe environment. So,
for example, the SAS Institute has tried hard to make SAS an “interactive” program,
but has not really worked. It’s as if someone painted an eighteen-wheel transport truck
yellow, and called it a school bus. Yes, you can take the children to school in that thing,
but would you want to?

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is called drp.dat.

• The Program File: This is also sometimes called a “command file,” because it’s
usually not much of a program. It consists of commands that the SAS software tries
to follow. You create this file with a text editor like pico or emacs. The command
file contains a reference to the raw data file (in the infile statement), so SAS knows
where to find the data. In the first example we will consider below, the command
file is called reading.sas. SAS expects program files to have the extension .sas,
and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is successful of
unsuccessful. It contains a listing of the command file, as well any error messages or
warnings. The name of the log file is automatically generated by SAS; it combines
the first part of the command file’s name with the extension .sas. So for exam-
ple, when SAS executes the commands in reading.sas, it writes a log file named
reading.log.

• The List File: The list file contains the output of the statistical procedures re-
quested by the command file. The list file has the extension .lst— so, for example,
running SAS on the command file reading.sas will produce reading.lst as well
as reading.log. A successful SAS run will almost always produce a list file. The
absence of a list file indicates that there was at least one fatal error. The presence
of a list file does not mean there were no errors; it just means that SAS was able to
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do some of what you asked it to do. Even if there are errors, the list file will usually
not contain any error messages; they will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. We will run SAS from the unix command line. In my
view, this way is simplest and best.

If, by accident or on purpose, you type SAS without a filename, then SAS assumes you
want to initiate an interactive session, and it tries to start the SAS Display Manager. If
you are logged in through an ordinary telnet or ssh session, SAS terminates with an error:
ERROR: Cannot open X display. Check display name/server access authorization. SAS
assumes you are using the unix X-window graphical interface, so it will not work if your
computer is emulating a (semi) dumb terminal. If you are in an X-window session, after
a while several windows will open up. The only suggestion I have is this: Make sure the
SAS Program Editor window is selected. From the File menu, choose Exit. Whew.

If you choose to ignore this advice and actually try to use the Display Manager, you
are on your own. You will have my sympathy, but not my help. The joke about painting
the transport truck yellow applies, and the joke is on you.

The following illustrates a simple SAS run from the command line. Initially, there are
only two files in the (sub)directory — reading.sas (the program file) and drp.dat (the
raw data file). The command sas reading produces two additional files — reading.log

and reading.lst. In this and other examples, the unix prompt is tuzo.erin (the name
of the unix machine used to produce the examples), followed by a > sign.

tuzo.erin > ls

drp.dat reading.sas

tuzo.erin > sas reading

tuzo.erin > ls

drp.dat reading.log reading.lst reading.sas

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

• Most SAS commands belong either in data step or in a proc step;they will generate
errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside of the data
and proc steps, but there are relatively few of these.

The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to the raw data file, telling SAS where to look for the
data. It specifies variable names and labels, and provides instructions about how to read
the data; for example, the data might be read from fixed column locations. Variables
from the raw data file can be modified, and new variables can be created.
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Each data step creates a SAS data set, a file consisting of the data (after modifica-
tions and additions), labels, and so on. Statistical procedures operate on SAS data sets,
so you must create a SAS data set before you can start computing any statistics.

A SAS data set is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data sets were always
written to temporary scratch files on the computer’s hard drive; these days, they may be
maintained in RAM if they are small enough. In any case, the default is that a SAS data
set disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data set on disk for later use. We won’t do this
much (there will be just one example), but it makes sense when the amount of processing
in a data step is large relative to the speed of the computer. As an extreme example, one
of my colleagues uses SAS to analyze data from Ontario hospital admissions; the data
files have millions of cases. Typically, it takes around 20 hours of CPU time on a very
strong unix machine just to read the data and create a SAS data set. The resulting file,
hundreds of gigabytes in size, is saved to disk, and then it takes just a few minutes to
carry out each analysis. You wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are distinct
concepts. A SAS data step is part of a SAS program; it generates a SAS data set, which
is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical procedures
can create SAS data sets, too. For example, proc univariate can take an ordinary SAS
data set as input, and produce an output data set that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data set containing residuals for plotting and use in further analysis;
there are many other examples.

The Proc Step “Proc” is short for procedure. Most procedures are statistical proce-
dures; the main exception is proc format, which is used to provide labels for the values
of categorical independent variables. The proc step is where you specify a statistical pro-
cedure that you want to carry out. A statistical procedures in the proc step will take a
SAS data sets as input, and write the results (summary statistics, values of test statistics,
p-values, and so on) to the list file. The typical SAS program includes one data step and
several proc steps, because it is common to produce a variety of data displays, descriptive
statistics and significance tests in a single run.

2.2.4 A First Example: reading.sas

Earlier, we ran SAS on the file reading.sas, producing reading.log and reading.lst.
Now we will look at reading.sas in some detail. This program is very simple; it has
just one data step and one proc step. More details will be given later, but it’s based on a
study in which one group of grade school students received a special reading programme,
and a control group did not. After a couple of months, all students were given a reading
test. We’re just going to do an independent groups t-test, but first take a look at the raw
data file. You’d do this with the unix more command.
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Actually, it’s so obvious that you should look at your data that nobody ever says it.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. It’s so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file is big, do it
anyway. At least page through it a screen at a time, looking for anything strange. Check
the values of all the variables for a few cases. Do they make sense? If you have obtained
the data file from somewhere, along with a description of what’s in it, never believe that
the description you have been given is completely accurate.

Anyway, here is the file drp.dat, with the middle cut out to save space.

Treatment 24
Treatment 43
Treatment 58

...
...

Control 55
Control 28
Control 48

...
...

Now we can look at reading.sas.

/******************* reading.sas **********************

* Simple SAS job to illustrate a two-sample t-test *

*******************************************************/

options linesize=79 noovp formdlim=’_’;

title ’More & McCabe (1993) textbook t-test Example 7.8’;

data reading;

infile ’drp.dat’;

input group $ score;

label group = ’Get Directed Reading Programme?’

score = ’Degree of Reading Power Test Score’;

proc ttest;

class group;

var score;

Here are some detailed comments about reading.sas.

• The first three lines are a comment. Anything between a /* and */ is a comment,
and will be listed on the log file but otherwise ignored by SAS. Comments can
appear anywhere in a program. You are not required to use comments, but it’s a
good idea.
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The most common error associated with comments is to forget to end them with
*/. In the case of reading.sas, leaving off the */ (or typing
by mistake) would cause the whole program to be treated as a comment. It would
generate no errors, and no output — because as far as SAS would be concerned,
you never requested any. A longer program would eventually exceed the default
length of a comment (it’s some large number of characters) and SAS would end the
“comment” for you. At exactly that point (probably in the middle of a command)
SAS would begin parsing the program. Almost certainly, the first thing it examined
would be a fragment of a legal command, and this would cause an error. The log
file would say that the command caused an error, and not much else. It would be
very confusing, because probably the command would be okay, and there would be
no indication that SAS was only looking at part of it.

• The next two lines (the options statement and the title statement) exist outside
the proc step and the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can extend for
several physical lines in the program file (for example, see the label statement).
Spacing, indentation, breaking up s statement into several lines of text – these are
all for the convenience of the human reader, and are not part of the SAS syntax.

• The most common error in SAS programming is to forget the semi-colon. When
this happens, SAS tries to interpret the following statement as part of the one you
tried to end. This often causes not one error, but a cascading sequence of errors.
The rule is, if you have an error and you do not immediately understand what it is,
look for a missing semi-colon. It will probably be before the portion of the program
that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a chain
reaction of errors (if the program is long enough for it to cause any error messages
at all). If you have a lot of errors in your log file, fix the first one and don’t waste
time trying to figure out the others. Some or all of them may well disappear.

• options linesize=79 noovp formdlim=’_’;

These options are highly recommended. The linesize=79 option is so highly rec-
ommended it’s almost obligatory. It causes SAS to write the output 79 columns
across, so it can be read on an ordinary terminal screen that’s 80 characters across.
You specify an output width of 79 characters rather than 80, because SAS uses one
column for printer control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of 132 char-
acters across, the width of sheet of paper from an obsolete line printer you probably
have never seen. Why would the SAS Institute hang on to this default, when
changing it to match ordinary letter paper would be so easy? It probably tells
you something about the computing environments of some of SAS’s large corporate
clients.
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• The noovp option makes the log files more readable if you have errors. When SAS
finds an error in your program, it tries to underline the word that caused the error.
It does this by going back and overprinting the offending word with a series of
“underscores” ( characters). On many printers this works, but when you try to
look at the log file on a terminal screen (one that is not controlled by the SAS
Display Manager), what often appears is a mess. The noovp option specifies no

overprinting. It causes the “underlining” to appear on a separate line under the
program line with the error. If you’re running SAS from the unix command line
and looking at your log files with the more command (or the less command or the
cat commmand), you will probably find the noovp option to be helpful.

• The formdlim=’_’ option specifies a “form delimiter” to replace most form feeds
(new physical pages) in the list file. This can save a lot of paper (and page printing
charges). You can use any string you want for a form delimiter. The underscore
(the one specified here) causes a solid line to be printed instead of going to a new
sheet of paper.

• title This is optional, but recommended. The material between the single quotes
will appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

• data reading; This begins the data step, specifying the name of the SAS data set
that is being created.

• infile Specifies the name of the raw data file. The file name, enclosed in single
quotes, can be the full unix path to the file, like /dos/brunner/public/senic.raw.
If you just give the name of the raw data file, as in this example, SAS assumes that
the file is in the same directory as the command file.

• input Gives the names of the variables.

– A character variable (the values of group are “Treatment’ and “Control”) must
be followed by a dollar sign.

– Variable names must be eight characters or less, and should begin with a letter.
They will be used to request statistical procedures in the proc step. They
should be meaningful (related to what the variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can be very pow-
erful; for example, you can read data from different locations and in different
orders, depending on the value of a variable you’ve just read, and so on. It can
get complicated, but if the data file has a simple structure, the input statement
can be simple too.

• label Provide descriptive labels for the variables; these will be used to label the
output, usually in very nice way. Labels can be quite useful, especially when you’re
trying to recover what you did a while ago. Notice how this statement extends over
two physical lines.

• proc ttest; Now the proc step begins. This program has only one data step and
one proc step. We are requesting a two-sample t-test.
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• class Specifies the independent variable.

• var Specifies the dependent variable(s). You can give a list of dependent variables.
A separate univariate test (actually, as you will see, collection of tests is performed
for each dependent variable.

reading.log Log files are not very interesting when everything is okay, but here is an
example anyway. Notice that in addition to a variety of technical information (where the
files are, how long each step took, and so on), it contains a listing of the SAS program —
in this case, reading.sas. If there were syntax errors in the program, this is where the
error messages would appear.

tuzo.erin > cat reading.log

1 The SAS System 11:08 Friday, January 2,

NOTE: Copyright (c) 1989-1996 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 6.12 TS020

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987001.

This message is contained in the SAS news file, and is presented upon

initialization. Edit the files "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is /local/sas612/autoexec.sas.

NOTE: SAS initialization used:

real time 0.780 seconds

cpu time 0.152 seconds

NOTE: AUTOEXEC processing completed.

1 /******************* reading.sas **********************

2 * Simple SAS job to illustrate a two-sample t-test *

3 *******************************************************/

4

5 options linesize=79 noovp formdlim=’_’;

6 title ’More & McCabe (1993) textbook t-test Example 7.8’;

7 data reading;

8 infile ’drp.dat’;

9 input group $ score;

10 label group = ’Get Directed Reading Programme?’

11 score = ’Degree of Reading Power Test Score’;

NOTE: The infile ’drp.dat’ is:

File Name=/res/jbrunner/442s04/notesSAS/drp.dat,

Owner Name=jbrunner,Group Name=research,

Access Permission=rw-------,

File Size (bytes)=660

NOTE: 44 records were read from the infile ’drp.dat’.

The minimum record length was 14.

The maximum record length was 14.

NOTE: The data set WORK.READING has 44 observations and 2 variables.

NOTE: DATA statement used:

real time 0.190 seconds

cpu time 0.051 seconds

12 proc ttest;
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13 class group;

14 var score;

NOTE: The PROCEDURE TTEST printed page 1.

NOTE: PROCEDURE TTEST used:

real time 0.030 seconds

cpu time 0.009 seconds

2 The SAS System 11:08 Friday, January 2, 2004

NOTE: The SAS System used:

real time 1.120 seconds

cpu time 0.233 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

reading.lst Here is the list file. Notice that the title specified in the title statement
appears at the top, along with the time and date the program was executed. Then we
get means and standard deviations, and several statistical tests — including the one we
wanted. We get other stuff too, whether we want it or not. This is typical of SAS, and
most other mainstream statistical packages as well. The default output from any given
statistical procedures will contain more information than you wanted, and probably some
stuff you don’t understand at all. There are usually numerous options that can add more
information, but almost never options to reduce the default output. So, you just learn
what to ignore. It is helpful, but not essential,to have at least a superficial understanding
of everything in the default output from procedures you use a lot.

_______________________________________________________________________________

More & McCabe (1993) textbook t-test Example 7.8 1

11:08 Friday, January 2, 2004

TTEST PROCEDURE

Variable: SCORE Degree of Reading Power Test Score

GROUP N Mean Std Dev Std Error

-------------------------------------------------------------------------------

Control 23 41.52173913 17.14873323 3.57575806

Treatmen 21 51.47619048 11.00735685 2.40200219

Variances T DF Prob>|T|

---------------------------------------

Unequal -2.3109 37.9 0.0264

Equal -2.2666 42.0 0.0286

For H0: Variances are equal, F’ = 2.43 DF = (22,20) Prob>F’ = 0.0507

Now here are some comments about reading.lst.

• Variable: SCORE This tells you what the dependent variable is – particularly
useful if you have more than one. Notice the nice use of the variable label that was
supplied in the label statement.

• GROUP The independent variable. Underneath are the values of the independent
variable. We also have the sample size n for each group, and the group mean,
standard deviation, and also the standard error or the mean ( s√

n
, the estimated

standard deviation of the sampling distribution of the sample mean).
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• Well actually, if you look carefully, you see that we do not quite get the val-
ues of the independent variable under GROUP. The values of the (alphanumeric,
or character-valued) variable group are Control and Treatment, but the printout
says “Treatmen.” This is not a printing error; it is a subtle error in the reading of
the data. The default length of an alphanumeric data value is 8 characters, but
“Treatment” has 9 characters. So SAS just read the first eight. No error message
was generated and no harm was done in this case, but in other circumstances this
error can turn a data file into a giant pile of trash, without warning. Later we will
see how to override the default and read longer strings if necessary.

• Next we get a table whose first column is entitled “Variances.” This gives t statistics
for testing equality of means, which was what we are interested in. The traditional
t-test assumes equal variances, and it is given in the column entitled “Equal.”

– The value of the test statistic is -2.2666.

– The degrees of freedom n1 + n2 − 2 is given in the DF column.

– The column Prob>|T| gives the two-tailed (two-sided) p-value. It is less than
the traditional value of 0.05, so the results are statistically significant.

Sample Question 2.2.1 What do we conclude from this study? Say something about
reading, using non-technical language.

Answer to Sample Question 2.2.1 Students who received the Directed Reading Pro-
gram got higher average reading scores than students in the control condition.

It’s worth emphasizing here that the main objective of doing a statistical analysis is to
draw conclusions about the data — or to refrain from drawing such conclusions, for good
reasons. The question “What do we conclude from this study?” will always be asked. The
right answer will always be either “Nothing; the results were not statistically significant,”
or else it will be something about reading, or fish, or potatoes, or AIDS, or whatever is
being studied. Many students, even when they have been warned, respond with a barrage
of statistical terminology. They go on and on about the null hypothesis and Type I error,
and usually say nothing that would tell a reasonable person what actually happened in
the study. In the working world, a memo filled with such garbage could get you fired.
Here, it will get you a zero for the question, even if the technical details you give are
correct.

Remember, the purpose of writing up a statistical analysis is not to sound impressive
and technical, but to impart information. To say things in a simple way is a virtue. It
shows you understand what is going on. Now back to the printout.

• The row entitled “Unequal” gives a sort of t-test that does not assume equal vari-
ances. Well, it’s not really a t-test, because the test statistic does not really have a
t distribution, even when the data are exactly normal. But, the (very unpleasant)
distribution of the test statistic is well approximated by a t distribution with the
right degrees of freedom — not n1 + n2 − 2, but something messy that depends on
the data. See the odd fractional degrees of freedom? See [2] for details. In any case,
it does not matter much in this case, because the p-value is almost the same as the
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p-value from the traditional test. They lead to the same conclusions, and there is
no problem. What should you do when they disagree? I’d go with the test that
makes fewer assumptions.

• Next we see For H0: Variances are equal and an F -test. This is the traditional
test for whether the variances of two groups are equal, and it’s almost significant.
This test is provided so people can test for differences between variances; if it is
significantly different they can use the unequal variance t-test, and otherwise they
can use the traditional test. This seems reasonable, except for the following.

Both the two-sample t-test and the F -test for equality of variances assume that
the data are normally distributed. However, the normality assumption does not
matter much for the t-test when the sample sizes are large, while for the variance
test it matters a lot, regardless of how much data you have. When the data are
non-normal, the test for variances will be significant more than 5% of the time even
when the population variances are equal. If you have equal population variances
and a large sample of non-normal data, the F -test for variances could easily be
significant, leading you to worry unnecessarily about the validity of the t-test.

2.2.5 Background of the First Example

We don’t do statistical analysis in a vacuum. Before proceeding with more computing
details, let’s find out more about the reading data. This first example is from an introduc-
tory text. It’s Example 7.8 (p. 534) in More and McCabe’s excellent Introduction to the
practice of statistics [2]. We are interested in analyzing real data, not in doing textbook
exercises. But we will not turn up our noses just yet, because

Data Analysis Hint 2 When learning how to carry out a procedure using unfamiliar
statistical software, always do a textbook example first, and compare the output to the
material in the text. Regardless of what the manual might say, never assume you know
what the software is doing until you see an example.

More and McCabe do a great job of explaining the t-test with unequal variances, some-
thing SAS produces (along with usual t-test that assumes equal variances) without being
asked when you request a t-test. Besides, the data actually come from someone’s Ph.D.
thesis, so there is an element of realism. Here is Moore and McCabe’s description of the
study.

An educator believes that new directed reading activities in the classroom will
help elementary school pupils improve some aspects of their reading ability.
She arranges for a third grade class of 21 students to take part in these ac-
tivities. A control classroom of 23 third graders follows the same curriculum
without the activities. At the end of 8 weeks, all students are given a Degree
of Reading Power (DRP) test, which measures the aspects of reading ability
that the program is designed to improve.

Sample Question 2.2.2 What’s wrong with this study?
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Answer to Sample Question 2.2.2 The independent variable was manipulated by the
experimenter, but it is not an experimental study. Even if classrooms were assigned ran-
domly to conditions (it is impossible to tell whether they were, from this brief description),
a large number of unobserved variables are potentially confounded with treatment. The
teacher in the classroom that received the treatment might be better than the teacher in
the control classroom, or possibly there was a particularly aggressive bully in the control
classroom, or maybe a mini-epidemic of some childhood disease hit the control classroom
—vdots. The list goes on. The point here is that there are many ways in which the
classroom experiences of children in the treatment group differ systematically from the
experiences of children in the control group.

Sample Question 2.2.3 How could the problem be fixed?

Answer to Sample Question 2.2.3 Assign classrooms at random to treatments. The
unit of analysis should be the classroom, not the individual student.

2.2.6 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns not aligned.

tuzo.erin > more statclass.dat

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 29

...

Here is the SAS program.
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tuzo.erin > cat statmarks.sas

options linesize=79 pagesize=35;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass.dat’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

proc freq;

tables sex ethnic;

proc means n mean std;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title ’Independent t-test’;

class sex;

var mark;

proc means n mean std t;

title ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;

proc glm;

title ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title ’Chi-squared Test of Independence’;

tables sex*ethnic / chisq;

proc freq; /* Added after seeing warning from chisq test above */

32



title ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic / norow nopercent chisq expected;

proc corr;

title ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */

proc reg;

title ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc reg simple;

title ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

Noteworthy features of this program include

• options linesize=79 pagesize=35; Good for 81
2
by 11 paper.

• title2 Subtitle

• proc format

• quiz1-quiz8

• Creating new variables with assignment statements

• sum(of quiz1-quiz8)

• diff = quiz8-quiz1

• format sex sexfmt.;

• quiz1 -- mark

• Title inside a procedure labels just that procedure

• proc freq For frequency distributions

• proc means To get means and standard deviations

• proc ttest We’ve seen

• proc means n mean std t A matched t-test is just a single-variable t-test carried
out on differences, testing whether the mean difference is equal to zero.

• proc glm

– class Tells SAS that ethnic is categorical.
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– model Dependent variable(s) = independent variable(s)

– means ethnic / Tukey Bon Scheffe

• chisq option on proc freq

• chisq option on proc freq

• tables sex*ethnic / norow nopercent chisq expected; In version 2 of proc
freq

• proc corr

• proc plot; plot final*midterm; Scatterplot: First variable named goes on the
y axis.

• proc reg: model Dependent variable(s) = independent variable(s) again

• simple option on proc reg gives simple descriptive statistics. This last procedure
is an example of multiple regression, and we will return to it later once we have
more background.

statmarks.lst

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

10:20 Friday, January 4, 2002

Cumulative Cumulative

SEX Frequency Percent Frequency Percent

----------------------------------------------------

Male 39 62.9 39 62.9

Female 23 37.1 62 100.0

Apparent ethnic background (ancestry)

Cumulative Cumulative

ETHNIC Frequency Percent Frequency Percent

------------------------------------------------------

Chinese 41 66.1 41 66.1

European 15 24.2 56 90.3

Other 6 9.7 62 100.0

^L Grades from STA3000 at Roosevelt University: Fall, 1957

2

Illustrate Elementary Tests

10:20 Friday, January 4, 2002

Variable Label N Mean Std Dev

------------------------------------------------------------------------

QUIZ1 62 9.0967742 2.2739413

QUIZ2 62 5.8870968 3.2294995

QUIZ3 62 6.0483871 2.3707744

QUIZ4 62 7.7258065 2.1590022

QUIZ5 62 9.0645161 1.4471109

QUIZ6 62 7.1612903 1.9264641

QUIZ7 62 5.7903226 2.1204477

QUIZ8 62 6.3064516 2.3787909

COMP1 62 9.1451613 1.1430011

COMP2 62 8.8225806 1.7604414

COMP3 62 8.3387097 2.5020880

COMP4 62 7.8548387 3.2180168

COMP5 62 9.4354839 1.7237109

COMP6 62 7.8548387 2.4350364
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COMP7 62 6.6451613 2.7526248

COMP8 62 8.8225806 1.6745363

COMP9 62 8.2419355 3.7050497

MIDTERM 62 70.1935484 13.6235557

FINAL 62 49.4677419 17.5141327

QUIZAVE Quiz Average (drop lowest) 62 7.6751152 1.1266917

COMPAVE Computer Average (drop lowest) 62 8.8346774 1.1204997

MARK Final Mark 62 67.7584101 11.0235746

------------------------------------------------------------------------

^L Independent t-test

3

10:20 Friday, January 4, 2002

TTEST PROCEDURE

Variable: MARK Final Mark

SEX N Mean Std Dev Std Error Minimum Maximum

-------------------------------------------------------------------------------

Male 39 67.62097070 10.11112521 1.61907581 43.61428571 89.93214286

Female 23 67.99145963 12.65945704 2.63967927 48.48214286 95.45714286

Variances T DF Prob>|T|

---------------------------------------

Unequal -0.1196 38.5 0.9054

Equal -0.1268 60.0 0.8995

For H0: Variances are equal, F’ = 1.57 DF = (22,38) Prob>F’ = 0.2190

^L Matched t-test: Quiz 1 versus 8

4

10:20 Friday, January 4, 2002

Variable Label N Mean Std Dev T

---------------------------------------------------------------------------

QUIZ1 62 9.0967742 2.2739413 31.4995252

QUIZ8 62 6.3064516 2.3787909 20.8749114

DIFF Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.9576965

---------------------------------------------------------------------------

^L One-way anova

5

10:20 Friday, January 4, 2002

General Linear Models Procedure

Class Level Information

Class Levels Values

ETHNIC 3 Chinese European Other

Number of observations in data set = 62

^L One-way anova

6

10:20 Friday, January 4, 2002

General Linear Models Procedure

Dependent Variable: MARK Final Mark

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 1478.9595320 739.4797660 7.35 0.0014

Error 59 5933.7115164 100.5713816

Corrected Total 61 7412.6710484

R-Square C.V. Root MSE MARK Mean

0.199518 14.80042 10.028528 67.758410
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Source DF Type I SS Mean Square F Value Pr > F

ETHNIC 2 1478.9595320 739.4797660 7.35 0.0014

Source DF Type III SS Mean Square F Value Pr > F

ETHNIC 2 1478.9595320 739.4797660 7.35 0.0014

^L One-way anova

7

10:20 Friday, January 4, 2002

General Linear Models Procedure

Tukey’s Studentized Range (HSD) Test for variable: MARK

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of Studentized Range= 3.400

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.108 6.539 18.185

European - Chinese 4.252 11.528 18.803 ***

Other - European -18.185 -6.539 5.108

Other - Chinese -5.550 4.989 15.528

Chinese - European -18.803 -11.528 -4.252 ***

Chinese - Other -15.528 -4.989 5.550

^L One-way anova

8

10:20 Friday, January 4, 2002

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: MARK

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of T= 2.46415

Comparisons significant at the 0.05 level are indicated by ’***’.
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Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.398 6.539 18.476

European - Chinese 4.071 11.528 18.985 ***

Other - European -18.476 -6.539 5.398

Other - Chinese -5.813 4.989 15.790

Chinese - European -18.985 -11.528 -4.071 ***

Chinese - Other -15.790 -4.989 5.813

^L One-way anova

9

10:20 Friday, January 4, 2002

General Linear Models Procedure

Scheffe’s test for variable: MARK

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of F= 3.15312

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.626 6.539 18.704

European - Chinese 3.928 11.528 19.127 ***

Other - European -18.704 -6.539 5.626

Other - Chinese -6.019 4.989 15.997

Chinese - European -19.127 -11.528 -3.928 ***

Chinese - Other -15.997 -4.989 6.019
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^L Chi-squared Test of Independence 1

0

10:20 Friday, January 4, 2002

TABLE OF SEX BY ETHNIC

SEX ETHNIC(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Chi-squared Test of Independence 13

10:20 Friday, January 4, 2002

STATISTICS FOR TABLE OF SEX BY ETHNIC

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.921 0.232

Likelihood Ratio Chi-Square 2 2.996 0.224

Mantel-Haenszel Chi-Square 1 0.000 0.995

Phi Coefficient 0.217

Contingency Coefficient 0.212

Cramer’s V 0.217

Sample Size = 62

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Correlation Matrix 14

10:20 Friday, January 4, 2002

Correlation Analysis

4 ’VAR’ Variables: FINAL MIDTERM QUIZAVE COMPAVE

Simple Statistics

Variable N Mean Std Dev Sum

FINAL 62 49.467742 17.514133 3067.000000

MIDTERM 62 70.193548 13.623556 4352.000000

QUIZAVE 62 7.675115 1.126692 475.857143

COMPAVE 62 8.834677 1.120500 547.750000

Simple Statistics

Variable Minimum Maximum Label

FINAL 15.000000 89.000000

MIDTERM 44.000000 103.000000

QUIZAVE 4.571429 9.714286 Quiz Average (drop lowest)
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COMPAVE 5.000000 10.000000 Computer Average (drop lowest)

Correlation Matrix 15

10:20 Friday, January 4, 2002

Correlation Analysis

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 62

FINAL MIDTERM QUIZAVE COMPAVE

FINAL 1.00000 0.51078 0.47127 0.14434

0.0 0.0001 0.0001 0.2630

MIDTERM 0.51078 1.00000 0.59294 0.41277

0.0001 0.0 0.0001 0.0009

QUIZAVE 0.47127 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0001 0.0001 0.0 0.0001

COMPAVE 0.14434 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.2630 0.0009 0.0001 0.0
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Scatterplot 16

10:20 Friday, January 4, 2002

Plot of FINAL*MIDTERM. Legend: A = 1 obs, B = 2 obs, etc.
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Simple regression 17

10:20 Friday, January 4, 2002

Model: MODEL1

Dependent Variable: FINAL

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 4881.79529 4881.79529 21.180 0.0001

Error 60 13829.64019 230.49400

C Total 61 18711.43548

Root MSE 15.18203 R-square 0.2609

Dep Mean 49.46774 Adj R-sq 0.2486

C.V. 30.69077

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 3.375101 10.19938324 0.331 0.7419

MIDTERM 1 0.656651 0.14268372 4.602 0.0001

Multiple regression output was deleted.
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2.2.7 SAS Example Two: The SENIC data

These data are from a disk that comes with Neter et al’s [3] Applied linear statistical
models. The acronym SENIC stands for “Study of Nosocomial Infection Control.” “Noso-
comial” means acquired in hospital. Sometimes, patients go to hospital with a broken leg
or something, and catch a severe respiratory infection, presumably from other patients.
The observations here are hospitals, and the dependent variable is infrisk, the proba-
bility of catching an infection while in hospital (multiplied by 100). The other variables
are explained fairly well by the labels statement.

First we will look at the file senic0.sas. This is a very basic program that just reads
the data and does frequency distributions of everything (even identification number; you
don’t want to print this!). The idea is that you start out this way, checking for data
errors, and then gradually build up the program, adding labels, printing formats and new
variables a little bit at a time. This makes it easier to catch your errors.

/* senic0.sas */

options linesize = 79;

data simple;

infile ’senic.dat’;

input id stay age infrisk culratio xratio nbeds medschl

region census nurses service;

proc freq;

tables _all_;

Now suppose we discovered that the file has some weird missing value codes. The next
version of the program might look like this.

/* senic0.1.sas */

options linesize = 79;

data simple;

infile ’senic.dat’;

input id stay age infrisk culratio xratio nbeds medschl

region census nurses service;

/*** sas doesn’t like numeric missing value codes. a period . is

best for missing. however .... ***/

if stay eq 9999 then stay = . ;

if age eq 9999 then age = . ;

if xratio eq 9999 then xratio = . ;

if culratio eq 9999 then culratio = . ;

if infrisk = 999 then infrisk = . ;

if nbeds = 9 then nbeds = . ;

if medschl = 9 then medschl = . ;

if region = 9 then region = . ;

if census = 9 then census = . ;

if service = 9 then service = . ;
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if nurses eq (0 or .999) then nurses = . ;

proc freq;

tables _all_;

The process continues. On the way, we switch to a version of the data file that has the
data lined up in fixed columns, with blanks for missing values (a common situation). We
wind up with a program called senicread.sas. Notice that is consists of just a proc

format and a data step. There are no statistical procedures, except a proc freq that is
commented out. This file will be read by programs that invoke statistical procedures, as
you will see.
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/******* senicread.sas Just reads and labels data ***********/

title ’SENIC data’;

options linesize=79;

proc format; /* value labels used in data step below */

value yesnofmt 1 = ’Yes’ 2 = ’No’ ;

value regfmt 1 = ’Northeast’

2 = ’North Central’

3 = ’South’

4 = ’West’ ;

value acatfmt 1 = ’53 & under’ 2 = ’Over 53’;

data senic;

infile ’senic.raw’ missover ;

/* in senic.raw, missing=blank */

/* missover causes all blanks to be missing,

even at the end of a line. */

input

#1 id 1-5

stay 7-11

age 13-16

infrisk 18-20

culratio 22-25

xratio 27-31

nbeds 33-35

medschl 37

region 39

census 41-43

nurses 45-47

service 49-52 ;

label id = ’Hospital identification number’

stay = ’Av length of hospital stay, in days’

age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’

culratio = ’# cultures / # no hosp acq infect’

xratio = ’# x-rays / # no signs of pneumonia’

nbeds = ’Average # beds during study period’

medschl = ’Medical school affiliation’

region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’

nurses = ’Aver # nurses during study period’

service = ’% of 35 potential facil. & services’ ;

/* associating variables with their value labels */

format medschl yesnofmt.;

format region regfmt.;

/***** recodes, computes & ifs *****/
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if 0<age<=53 then agecat=1;

else if age>53 then agecat=2;

label agecat = ’av patient age category’;

format agecat acatfmt.;

/* compute ad hoc index of hospital quality */

quality=(2*service+nurses+nbeds+10*culratio

+10*xratio-2*stay)/medschl;

if (region eq 3) then quality=quality-100;

label quality = ’jerry’’s bogus hospital quality index’;

/* Commented out

proc freq;

tables _all_;

*/

Here are some comments.

• Notice that we are reading the variables from specified columns. This allows data
to be packed into adjacent columns (some data files are like this), and also allows
missing data to be represented by blanks. But it means that the data must be
perfectly aligned into columns. Don’t assume this is true just because you were told
by someone who should know. Check!

• The missover option is highly recommended if missing values are represented by
blanks.

• if 0<age<=53 means “if 0 < age ≤ 53.’

• Age = 0 or negative would result in a missing value for agecat.

• a missing value for xratio (or any other variable in the formula) would result in a
missing value for quality.

• The double quotation mark in the middle of the label for quality is how you get
an apostrophe in a label.

• tables all in proc freq: The reserved name all means all the variables in
the data set.

Here is a program that pulls in senicread.sas with a %include statement, and then
does some statistical tests. Keeping the data definition in a separate file is often a good
strategy, because most data analysis projects involve a substantial number of statistical
procedures. It is common to have maybe twenty program files that carry out various
analyses. You could have the data step at the beginning of each program, but what
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happens when (inevitably) you want to make a change in the data step and re-run your
analyses? You find yourself making the same change in twenty files. Probably you will
forget to change some of them, and the result is a big mess. If you keep your data definition
in just one place, you only have to edit it once, and a lot of problems are avoided.

/******************* basicsenic.sas ****************/

/* Basic stats on SENIC Data */

/***************************************************/

%include ’senicread.sas’; /* senicread.sas reads data, etc. */

proc univariate plot normal ; /* Plots and a test for normality */

title2 ’Describe Quantitative Variables’;

var stay -- nbeds census nurses service;

/* single dash only works with numbered lists, like item1-item50 */

proc freq;

title2 ’Frequency distributions of categorical variables’;

tables medschl region agecat;

proc chart;

title2 ’Vertical bar charts’;

vbar region medschl agecat /discrete ;

proc chart ;

title2 ’Pie chart’;

pie region/type=freq;

proc chart;

title2 ’Pseudo 3-d chart - just playing around’;

block region / sumvar=infrisk type=mean group=medschl discrete;

/* Now elementary tests */

proc freq; /* use freq to do crosstabs */

tables region*medschl / nocol nopercent expected chisq;

proc ttest;

class medschl;

var infrisk age ;

proc glm; /* one-way anova */

class region;

model infrisk=region;

means region/ snk scheffe;

proc plot;

plot infrisk * nurses

infrisk * nurses = medschl;

proc corr;

var stay -- nbeds census nurses service;

proc glm; /* simple regression with glm*/
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model infrisk=nurses;

The list file from this job is long, so we will just look at the proc univariate output for
the dependent variable.

^L SENIC data

6

Describe Quantitative Variables

11:47 Friday, January 4, 2002

Univariate Procedure

Variable=INFRISK Prob of acquiring infection in hospital

Moments

N 113 Sum Wgts 113

Mean 4.354867 Sum 492.1

Std Dev 1.340908 Variance 1.798034

Skewness -0.11976 Kurtosis 0.182355

USS 2344.41 CSS 201.3798

CV 30.79102 Std Mean 0.126142

T:Mean=0 34.52353 Pr>|T| 0.0001

Num ^= 0 113 Num > 0 113

M(Sign) 56.5 Pr>=|M| 0.0001

Sgn Rank 3220.5 Pr>=|S| 0.0001

W:Normal 0.970897 Pr<W 0.1280

Quantiles(Def=5)

100% Max 7.8 99% 7.7

75% Q3 5.2 95% 6.4

50% Med 4.4 90% 5.8

25% Q1 3.7 10% 2.6

0% Min 1.3 5% 1.8

1% 1.3

Range 6.5

Q3-Q1 1.5

Mode 4.3

Extremes

Lowest Obs Highest Obs

1.3( 93) 6.5( 47)

1.3( 40) 6.6( 104)

1.4( 107) 7.6( 53)

1.6( 2) 7.7( 13)

1.7( 85) 7.8( 54)

^L SENIC data

7

Describe Quantitative Variables

11:47 Friday, January 4, 2002

Univariate Procedure

Variable=INFRISK Prob of acquiring infection in hospital

Stem Leaf # Boxplot

7 678 3 0

7

6 56 2 |

6 12334 5 |

5 5555666777889 13 |

5 0000112233344 13 +-----+

4 5555555666778888999 19 | |

4 0111122222333333344444 22 *--+--*
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3 5577778999 10 +-----+

3 011244 6 |

2 5677899999 10 |

2 0013 4 |

1 678 3 |

1 334 3 0

----+----+----+----+--

Normal Probability Plot

7.75+ * * +*

| ++++

| +*+*

| +***

| ******

| ****

| *****

| ******+

| ***++

| +**+

| ****

| +***

| ++*+**

1.25+*++* *

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

2.2.8 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation, and certainly
without discussion of all the options. If you need more detail, there are several approaches
you can take. The most obvious is to consult the SAS manuals. The full set of manuals
runs to over a dozen volumes, and most of them look like telephone directories. For a
beginner, it is hard to know where to start. And even if you know where to look, the SAS
manuals can be hard to read, because they assume you already understand the statistical
procedures fairly thoroughly, and on a mathematical level. They are really written for
professional statisticians. The SAS Institute also publishes a variety of manual-like books
that are intended to be more instructional, most of them geared to specific topics (like
The SAS system for multiple regression and the SAS system for linear models). These
are a bit more readable, though it helps to have a real textbook on the topic to fill in the
gaps.

A better place to start is a wonderful book by Cody and Smith [1] entitled Applied
statistics and the SAS programming language. They do a really good job of presenting
and documenting the language of the data step, and and they also cover a set of statistical
procedures ranging from elementary to moderately advanced. If you had to own just one
SAS book, this would be it.

If you consult any SAS book or manual (Cody and Smith’s book included), you’ll need
to translate and filter out some details. First, you’re advised to ignore anything about
the SAS Display Manager. In this course, there are raw data file, program files, log files
and list files; that’s it.

Second, many of the examples you see in Cody and Smith’s book and elsewhere will
not have separate files for the raw data and the program. They include the raw data
in the program file in the data step, after a datalines or cards statement. Here is an
example from page 3 of [1].

data test;
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input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so attractive for
small datasets that most textbook writers cannot resist it. But think how unpleasant it
would be if you had 10,000 lines of data. The way we would do this example is to have
the data file (named, say, example1.dat) in a separate file. The data file would look like
this.

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.

data test;

infile ’example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook example into
the program-file data-file format used in this course.
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Chapter 3

Multiple Regression: Part One

3.1 Three Meanings of Control

In this class, we will use the word control to refer to procedures designed to reduce
the influence of extraneous variables on our results. The definition of extraneous is “not
properly part of a thing,” and we will use it to refer to variables we’re not really inter-
ested in, and which might get in the way of understanding the relationship between the
independent variable and the dependent variable.

There are two ways an extraneous variable might get in the way. First, it could
be a confounding variable – related to both the independent variable and the dependent
variable, and hence capable of creating masking or even reversing relationships that would
otherwise be evident. Second, it could be unrelated to the independent variable and
hence not a confounding variable, but it could still have a substantial relationship to the
dependent variable. If it is ignored, the variation that it could explain will be part of the
”background noise,” making it harder to see the relationship between IV and DV, or at
least causing it to appear relatively weak, and possibly to be non-significant.

The main way to control potential extraneous variables is by holding them constant. In
experimental control, extraneous variables are literally held constant by the procedure
of data collection or sampling of cases. For example, in a study of problem solving
conducted at a high school, background noise might be controlled by doing the experiment
at the same time of day for each subject ( and not when classes are changing). In learning
experiments with rats, males are often employed because their behavior is less variable
than that of females.

An alternative to experimental control is statistical control, which takes two main
forms. One version, subdivision, is to subdivide the sample into groups with identical
or nearly identical values of the extraneous variable(s), and then to examine the relation-
ship between independent and dependent variable separately in each subgroup – possibly
pooling the subgroup analyses in some way. For example, the relationship between edu-
cation and income might be studied separately for men and women. The drawback of this
subdivision approach is that if extraneous variables have many values or combinations of
values, you need a very large sample.

The second form of statistical control,model-based control, is to exploit details of the
statistical model to accomplish the same thing as the subdivision approach, but without
needing a huge sample size. The primary example is multiple linear regression, which is
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the topic of this chapter.

3.2 Population Parameters

Recall we said two variables are “related” if the distribution of the dependent variable
depends on the value of the independent variable. Classical regression and analysis of
variance are concerned with a particular way in which the independent and dependent
variables might be related, one in which the population mean of Y depends on the value
of X.

Think of a population histogram manufactured out of a thin sheet of metal. The
point (along the horizontal axis) where the histogram balances is called the expected
value or population mean; it is usually denoted by E[Y ] or µ (the Greek letter mu). The
conditional population mean of Y given X = x is just the balance point of the conditional
distribution. It will be denoted by E[Y |X = x]. The vertical bar — should be read as
”given.”

Again, for every value of X, there is a separate distribution of Y , and the expected
value (population mean) of that distribution depends on the value ofX. Furthermore, that
dependence takes a very specific and simple form. When there is only one independent
variable, the population mean of Y is

E[Y |X = x] = β0 + β1x. (3.1)

This is the equation of a straight line. The slope (rise over run) is β1 and the intercept
is β0. If you want to know the population mean of Y for any given x value, all you need
are the two numbers β0 and β1.

But in practice, we never know β0 and β1. To estimate them, we use the slope and
intercept of the least-squares line:

Ŷ = b0 + b1x. (3.2)

If you want to estimate the population mean of Y for any given x value, all you need are
the two numbers b0 and b1, which are calculated from the sample data.

This has a remarkable implication, one that carries over into multiple regression. Ordi-
narily, if you want to estimate a population mean, you need a reasonable amount of data.
You calculate the sample mean of those data, and that’s your estimate of the population
mean. If you want to estimate a conditional population mean, that is, the population
mean of the conditional distribution of Y given a particular X = x, you need a healthy
amount of data with that value of x. For example, if you want to estimate the average
weight of 50 year old women, you need a sample of 50 year old women — unless you are
willing to make some assumptions.

What kind of assumptions? Well, the simple structure of (3.1) means that you can use
formula (3.2) to estimate the population mean of Y for a given value of X = x without
having any data at that x value. This is not “cheating,” or at any rate, it need not be. If

• the x value in question is comfortably within the range of the data in your sample,
and if

• the straight-line model is a reasonable approximation of reality within that range,
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then the estimate can be quite good.
The ability to estimate a conditional population mean without a lot of data at any

given x value means that we will be able to control for extraneous variables, and remove
their influence from a given analysis without having the massive amounts of data required
by the subdivision approach to statistical control.

We are getting away with this because we have adopted a model for the data that
makes reasonably strong assumptions about the way in which the population mean of Y
depends on X. If those assumptions are close to the truth, then the conclusions we draw
will be reasonable. If the assumptions are badly wrong, we are just playing silly games.
There is a general principle here, one that extends far beyond multiple regression.

Data Analysis Hint 3 There is a direct tradeoff between amount of data and the strength
(restrictiveness) of model assumptions. If you have a lot of data, you do not need to as-
sume as much. If you have a small sample size, you will probably have to adopt fairly
restrictive assumptions in order to conclude anything from your data.

Multiple Regression Now consider the more realistic case where there is more than
one independent variable. With two independent variables, the model for the population
mean of Y is

E[Y |X = x] = β0 + β1x1 + β2x2,

which is the equation of a plane in 3 dimensions (x1, x2, y). The general case is

E[Y |X = x] = β0 + β1x1 + . . .+ βp−1xp−1,

which is the equation of a hyperplane in p dimensions.

Comments

• Since there is more than one independent variable, there is a conditional distribu-
tion of Y for every combination of independent variable values. Matrix notation
(boldface) is being used to denote a collection of independent variables.

• There are p − 1 independent variables. This may seem a little strange, but we’re
doing this to keep the notation consistent with that of standard regression texts
such as [3]. If you want to think of an independent variable X0 = 1, then there are
p independent variables.

• What is β0? It’s the height of the population hyperplane when all the independent
variables are zero, so it’s the intercept.

• Most regression models have an intercept term, but some do not (X0 = 0); it
depends on what you want to accomplish.

• β0 is the intercept. We will now see that the other β values are slopes.

Consider
E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4
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What is β3? If you speak calculus, ∂
∂x3

E[Y ] = β3, so β3 is the rate at which the population
mean is increasing as a function of x3, when other independent variables are held constant
(this is the meaning of a partial derivative).

If you speak high school algebra, β3 is the change in the population mean of Y when
x3 is increased by one unit and all other independent variables are held constant. Look at

β0 + β1x1 + β2x2 +β3(x3 + 1) +β4x4

− (β0 + β1x1 + β2x2 +β3x3 +β4x4)

= β0 + β1x1 + β2x2 + β3x3 +β3 +β4x4

− β0 − β1x1 − β2x2 − β3x3 −β4x4

= β3

The mathematical device of holding other variables constant is very important. This
is what is meant by statements like “Controlling for parents’ education, parents’ in-
come and number of siblings, quality of day care is still positively related to academic
performance in Grade 1.” We have just seen the prime example of model-based statistical
control — the third type of control in the “Three meanings of control” section that began
this chapter.

We will describe the relationship between Xk and Y as positive (controlling for the
other independent variables) if βk > 0 and negative if βk < 0.

Here is a useful definition. A quantity (say w) is a linear combination of quantities
z1, z2 and z3 if w = a1z1+a2z2+a3z3, where a1, a2 and a3 are constants. Common multiple
regression is linear regression because the population mean of Y is a linear combination
of the β values. It does not refer to the shape of the curve relating x to E[Y |X = x]. For
example,

E[Y |X = x] = β0 + β1x Simple linear regression
E[Y |X = x] = β0 + β1x

2 Also simple linear regression
E[Y |X = x] = β0 + β1x+ β2x

2 + β3x
3 Polynomial regression – still linear

E[Y |X = x] = β0 + β1x+ β2 cos(1/x) Still linear in the β values
E[Y |X = x] = β0 + β1 cos(β2x) Truly non-linear

When the relationship between the independent and dependent variables is best rep-
resented by a curve, we’ll call it curvilinear, whether the regression model is linear or
not. All the examples just above are curvilinear, except the first one.

Notice that in the polynomial regression example, there is really only one independent
variable, x. But in the regression model, x, x2 and x3 are considered to be three separate
independent variables in a multiple regression. Here, fitting a curve to a cloud of points in
two dimensions is accomplished by fitting a hyperplane in four dimensions. The origins of
this remarkable trick are lost in the mists of time, but whoever thought of it was having
a good day.

3.3 Estimation by least squares

In the last section, the conditional population mean of the dependent variable was mod-
elled as a (population) hyperplane. It is natural to estimate a population hyperplane
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with a sample hyperplane. This is easiest to imagine in three dimensions. Think of a
three-dimensional scatterplot, in a room. The independent variables are X1 and X2. The
(x1, x2) plane is the floor, and the value of Y is height above the floor. Each subject
(case) in the sample contributes three coordinates (x1, x2, y), which can be represented
by a soap bubble floating in the air.

In simple regression, we have a two-dimensional scatterplot, and we seek the best-
fitting straight line. In multiple regression, we have a three (or higher) dimensional
scatterplot, and we seek the best fitting plane (or hyperplane). Think of lifting and
tilting a piece of plywood until it fits the cloud of bubbles as well as possible.

What is the “best-fitting” plane? We’ll use the least-squares plane, the one that
minimizes the sum of squared vertical distances of the bubbles from the piece of plywood.
These vertical distances can be viewed as errors of prediction.

It’s hard to visualize in higher dimension, but the algebra is straightforward. Any
sample hyperplane may be viewed as an estimate (maybe good, maybe terrible) of the
population hyperplane. Following the statistical convention of putting a hat on a popu-
lation parameter to denote an estimate of it, the equation of a sample hyperplane is

β̂0 + β̂1x1 + . . .+ β̂p−1xp−1,

and the error of prediction (vertical distance) is the difference between y and the quantity
above. So, the least squares plane must minimize

Q =
n∑
i=1

(
yi − β̂0 − β̂1xi,1 − . . .− β̂p−1xi,p−1

)2

over all combinations of β̂0, β̂1, . . . , β̂p−1.
Provided that no independent variable (including the peculiar X0 = 1) is a perfect

linear combination of the others, the β̂ quantities that minimize the sum of squares Q
exist and are unique. We will denote them by b0 (the estimate of β0, b1 (the estimate of
β1), and so on.

Again, a population hyperplane is being estimated by a sample hyperplane.

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

Ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

• Ŷ means predicted Y . It is the height of the best-fitting (least squares) piece of
plywood above the floor, at the point represented by the combination of x values.
The equation for Ŷ is the equation of the least-squares hyperplane.

• “Fitting the model” means calculating the b values.

3.3.1 Residuals

The residual, or error of prediction, is

e = Y − Ŷ .

The residuals (there are n) represents errors in prediction. A positive residual means
over-performance (or under-prediction). A negative residual means under-performance.
Examination of residuals can reveal a lot, since we can’t look at 12-dimensional scatter-
plots.
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• Single variable plots (histograms, box plots, stem and leaf diagrams etc.) can iden-
tify outliers. (Data errors? Source of new ideas? What might a bimodal distribution
of residuals indicate?)

• Plot (scatterplot) of residuals versus potential independent variables not in the
model might suggest they be included, or not. How would you plot residuals vs a
categorical IV?

• Plot of residuals vs. variables that are in the model may reveal

– Curvilinear trend (may need transformation of x, or polynomial regression, or
even real non-linear regression)

– Non-constant variance over the range of x, so the DV may depend on the IV
not just through the mean. May need transformation of Y , or weighted least
squares, or a different model.

• Plot of residuals vs. Ŷ may also reveal unequal variance.

3.3.2 Categorical Independent Variables

Independent variables need not be continuous – or even quantitative. For example, sup-
pose subjects in a drug study are randomly assigned to either an active drug or a placebo.
Let Y represent response to the drug, and

x =

{
1 if the subject received the active drug, or
0 if the subject received the placebo.

The model is E[Y |X = x] = β0 + β1x. For subjects who receive the active drug (so
x = 1), the population mean is

β0 + β1x = β0 + β1

For subjects who receive the placebo (so x = 0), the population mean is

β0 + β1x = β0.

Therefore, β0 is the population mean response to the placebo, and β1 is the difference
between response to the active drug and response to the placebo. We are very interested
in testing whether β1 is different from zero, and guess what? We get exactly the same
t value as from a two-sample t-test, and exactly the same F value as from a one-way
ANOVA for two groups.

Exercise Suppose a study has 3 treatment conditions. For example Group 1 gets Drug
1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that the Independent Variable is
Group (taking values 1,2,3) and there is some Dependent Variable Y (maybe response to
drug again).

Sample Question 3.3.1 Why is E[Y |X = x] = β0 + β1x (with x = Group) a silly
model?
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Answer to Sample Question 3.3.1 Designation of the Groups as 1, 2 and 3 is com-
pletely arbitrary.

Sample Question 3.3.2 Suppose x1 = 1 if the subject is in Group 1, and zero otherwise,
and x2 = 1 if the subject is in Group 2, and zero otherwise, and E[Y |X = x] = β0 +
β1x1 + β2x2. Fill in the table below.

Group x1 x2 β0 + β1x1 + β2x2

1 µ1 =
2 µ2 =
3 µ3 =

Answer to Sample Question 3.3.2

Group x1 x2 β0 + β1x1 + β2x2

1 1 0 µ1 = β0 + β1

2 0 1 µ2 = β0 + β2

3 0 0 µ3 = β0

Sample Question 3.3.3 What does each β value mean?

Answer to Sample Question 3.3.3 β0 = µ3, the population mean response to the
placebo. β1 is the difference between mean response to Drug 1 and mean response to
the placebo. β2 is the difference between mean response to Drug 21 and mean response to
the placebo.

Sample Question 3.3.4 Why would it be nice to simultaneously test whether β1 and β2

are different from zero?

Answer to Sample Question 3.3.4 This is the same as testing whether all three pop-
ulation means are equal; this is what a one-way ANOVA does. And we get the same F
and p values (not really part of the sample answer).

It is worth noting that all the traditional one-way and higher-way models for analysis
of variance and covariance emerge as special cases of multiple regression, with dummy
variables representing the categorical independent variables.

More about Dummy Variables The exercise above was based on indicator dummy
variables, which take a value of 1 for observations where a categorical independent vari-
able takes a particular value, and zero otherwise. Notice that x1 and x2 contain the same
information as the three-category variable Group. If you know Group, you know x1 and
x2, and if you know x1 and x2, you know Group. In models with an intercept term, a
categorical independent variable with k categories is always represented by k− 1 dummy
variables. If the dummy variables are indicators, the category that does not get an in-
dicator is actually the most important. The intercept is that category’s mean, and it is
called the reference category, because the remaining regression coefficients represent
differences between the reference category and the other category. To compare several
treatments to a control, make the control group the reference category by not giving it
an indicator.

55



Sample Question 3.3.5 What would happen if you used k indicator dummy variables
instead of k − 1?

Answer to Sample Question 3.3.5 The dummy variables would add up to the inter-
cept; the independent variables would be linearly dependent, and the least-squares estima-
tors would not exist.

Your software might try to save you by throwing one of the dummy variables out, but
which one would it discard?

3.3.3 Explained Variation

Before considering any independent variables, there is a certain amount of variation in the
dependent variable. The sample mean is the value around which the sum of squared errors
of prediction is at a minimum, so it’s a least squares estimate of the population mean of
Y when there are no independent variables. We will measure the total variation to be
explained by the sum of squared deviations around the mean of the dependent variable.

When we do a regression, variation of the data around the least-squares plane repre-
sents errors of prediction. It is variation that is unexplained by the regression. But it’s
always less than the variation around the sample mean (Why? Because the least-squares
plane could be horizontal). So, the independent variables in the regression have explained
some of the variation in the dependent variable. Variation in the residuals is variation
that is still unexplained.

Variation to explain: Total Sum of Squares

SSTO =
n∑
i=1

(Yi − Y )2

Variation that the regression does not explain: Error Sum of Squares

SSE =
n∑
i=1

(ei − e)2 =
n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)
2

Variation that is explained: Regression (or Model) Sum of Squares

SSR =
n∑
i=1

(Yi − Y )2 −
n∑
i=1

(Yi − Ŷi)
2 =

n∑
i=1

(Ŷi − Y )2

Regression software (including SAS) displays the sums of squares above in an analysis
of variance summary table. “Analysis” means to “split up,” and that’s what we’re doing
here — splitting up the variation in dependent variable into explained and unexplained
parts.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model p− 1 SSR MSR = SSR/(p− 1) F = MSR
MSE

p-value
Error n− p SSE MSE = SSE/(n− p)
Total n− 1 SSTO
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Variance estimates consist of sums of squares divided by degrees of freedom. “DF”
stands for Degrees of Freedom. Sums of squares and degrees of freedom each add up to
Total. The F -test is for whether β1 = β2 = . . . = βp−1 = 0 – that is, for whether any of
the independent variables makes a difference.

The proportion of variation in the dependent variable that is explained by the inde-
pendent variables (representing strength of relationship) is

R2 =
SSR

SSTO

The R2 from a simple regression is the same as the square of the correlation coefficient:
R2 = r2.

What is a good value of R2? Well, the weakest relationship I can visually perceive
in a scatterplot is around r = .3, so I am unimpressed by R2 values under 0.09. By this
criterion, most published results in the social sciences, and many published results in the
biological sciences are not strong enough to be scientifically interesting. But this is just
my opinion.

3.4 Testing for Statistical Significance in Regression

We are already assuming that there is a separate population defined by each combination
of values of the independent variables (the conditional distributions of Y given X), and
that the conditional population mean is a linear combination of the β values; the weights
of this linear combination are 1 for β0, and the x values for the other β values. The
classical assumptions are that in addition,

• Sample values of Y represent independent observations, conditionally upon the val-
ues of the independent variables.

• Each conditional distribution is normal.

• Each conditional distribution has the same population variance.

How important are the assumptions? Well, important for what? The main thing we
want to avoid is incorrect p-values, specifically ones that appear smaller than they are –
so that we conclude a relationship is present when really we should not. This ”Type I
error” is very undesirable, because it tends to load the scientific literature with random
garbage.

For large samples, the assumption of normality is not important provided no single
observation has too much influence. What is meant by a “large” sample? It depends on
how severe the violations are. What is “too much” influence? The influence of the most
influential observation must tend to zero as the sample size approaches infinity. You’re
welcome.

The assumption of equal variances can be safely violated provided that the numbers
of observations at each combination of IV values are large and close to equal. This is most
likely to be the case with designed experiments having categorical independent variables.

The assumption of independent observations is very important, almost always. Ex-
amples where this does not hold is if a student takes a test more than once, members of
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the same family respond to the same questionnaire about eating habits, litter-mates are
used in a study of resistance to cancer in mice, and so on.

When you know in advance which observations form non-independent sets, one option
is to average them, and let n be the number of independent sets of observations. There
are also ways to incorporate non-independence into the statistical model. We will discuss
repeated measures designs, multivariate analysis and other examples later.

3.4.1 The standard F and t-tests

SAS proc reg (like other programs) usually starts with an overall F -test, which tests all
the independent variables in the equation simultaneously. If this test is significant, we
can conclude that one or more of the independent variables is related to the dependent
variable.

Again like most programs that do multiple regression, SAS produces t-tests for the
individual regression coefficients. If one of these is significant, we can conclude that
controlling for all other independent variables in the model, the independent variable in
question is related to the dependent variable. That is, each variable is tested controlling
for all the others.

It is also possible to test subsets of independent variables, controlling for all the others.
For example, in an educational assessment where students use 4 different textbooks, the
variable ”textbook” would be represented by 3 dummy variables. These variables could
be tested simultaneously, controlling for several other variables such as parental education
and income, child’s past academic performance, experience of teacher, and so on.

In general, to test a subset A of independent variables while controlling for another
subset B, fit a model with both sets of variables, and simultaneously test the b coefficients
of the variables in subset A; there is an F test for this.

This is 100% equivalent to the following. Fit a model with just the variables in subset
B, and calculate R2. Then fit a second model with the A variables as well as the B
variables, and calculate R2 again. Test whether the increase in R2 is significant. It’s the
same F test.

Call the regression model with all the independent variables the Full Model, and
call the model with fewer independent variables (that is, the model without the variables
being tested) the Reduced Model. Let SSRF represent the explained sum of squares
from the full model, and SSRR represent the explained sum of squares from the reduced
model.

Sample Question 3.4.1 Why is SSRF ≥ SSRR?

Answer to Sample Question 3.4.1 In the full model, if the best-fitting hyperplane had
all the b coefficients corresponding to the extra variables equal to zero, it would fit exactly
as well as the hyperplane of the reduced model. It could not do any worse.

Since R2 = SSR
SSTO

, it is clear that SSRF ≥ SSRR implies that adding independent
variables to a regression model can only increase R2. When these additional independent
variables are correlated with independent variables already in the model (as they usually
are in an observational study),
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• Statistical significance can appear when it was not present originally, because the
additional variables reduce error variation, and make estimation and testing more
precise.

• Statistical significance that was originally present can disappear, because the new
variables explain some of the variation previously attributed to the variables that
were significant, so when one controls for the new variables, there is not enough
explained variation left to be significant. This is especially true of the t-tests, in
which each variable is being controlled for all the others.

• Even the signs of the bs can change, reversing the interpretation of how their vari-
ables are related to the dependent variable. This is why it’s very important not to
leave out important independent variables in an observational study.

The F -test for the full versus reduced model is based on the test statistic

F =
(SSRF − SSRR)/s

MSEF
, (3.3)

where MSEF is the mean square error for the full model: MSEF = SSEF
n−p . Equation 3.3

is a very general formula. As we will see, all the standard tests in regression and the usual
(fixed effects) Analysis of Variance are special cases of this F -test.

Examples of Full and Reduced Models

At this point, it might help to have some concrete examples. Recall the SENIC data
set (catching infection in hospital) that was used to illustrate a collection of elementary
significance tests in Section 2.2.7. For reference, here is the label statement again.

label id = ’Hospital identification number’

stay = ’Av length of hospital stay, in days’

age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’

culratio = ’# cultures / # no hosp acq infect’

xratio = ’# x-rays / # no signs of pneumonia’

nbeds = ’Average # beds during study period’

medschl = ’Medical school affiliation’

region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’

nurses = ’Aver # nurses during study period’

service = ’% of 35 potential facil. & services’ ;

The SAS program senicread.sas could have defined dummy variables for region

and medschl in the data step as follows:

if region = 1 then r1=1; else r1=0;

if region = 2 then r2=1; else r2=0;

if region = 3 then r3=1; else r3=0;

if medschl = 2 then mschool = 0; else mschool = medschl;

/* mschool is an indicator for medical school = yes */
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The definition of r1, r2 and r2 above is correct, but it is risky. It works only because
the data file happens to have no missing values for region. If there were missing values
for region, the else statements would assign them to zero for r1, r2 and r3, because
else means anything else. The definition of mschool is a bit more sophisticated; missing
values for medschl will also be missing for mschool.

Here is what I’d recommend for region. It’s more trouble, but it’s worth it.

/* Indicator dummy variables for region */

if region = . then r1=.;

else if region = 1 then r1 = 1;

else r1 = 0;

if region = . then r2=.;

else if region = 2 then r2 = 1;

else r2 = 0;

if region = . then r3=.;

else if region = 3 then r3 = 1;

else r3 = 0;

When you create dummy variables with if statements, always do crosstabulations of
the new dummy variables by the categorical variable they represent, to make sure you
did it right. Use the option of proc freq to see what happened to the missing values
(missprint makes “missing” a value of the variables).

proc freq;

tables region * (r1-r3) / missprint nocol norow nopercent ;

Sample Question 3.4.2 Controlling for hospital size as represented by number of beds
and number of patients, is average patient age related to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.2

1. nbeds, census, age

2. nbeds, census

I would never ask for SAS syntax on a test, but for completeness,

proc reg;

model infrisk = nbeds, census, age;

size: test age=0;

Sample Question 3.4.3 Controlling for average patient age and hospital size as repre-
sented by number of beds and number of patients, does infection risk differ by region of
the country?

1. What are the variables in the full model?
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2. What are the variables in the reduced model?

Answer to Sample Question 3.4.3

1. age, nbeds, census, r1, r2, r3

2. age, nbeds, census

To test the full model versus the reduced model,

proc reg;

model infrisk = age nbeds census r1 r2 r3;

regn: test r1=r2=r3=0;

Sample Question 3.4.4 Controlling for number of beds, number of patients, average
length of stay and region of the country, are number of nurses and medical school affiliation
(considered simultaneously) significant predictors of infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.4

1. nbeds, census, stay, r1, r2, r3, nurses, mschool

2. nbeds, census, stay, r1, r2, r3

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

nursmeds: test nurses=mschool=0;

Sample Question 3.4.5 Controlling for average age of patient, average length of stay
and region of the country, is hospital size (as represented by number of beds and number
of patients) related to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.5

1. age, stay, r1, r2, r3, nbeds, census

2. age, stay, r1, r2, r3

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

size2: test nurses=mschool=0;
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Sample Question 3.4.6 Controlling for region of the country and medical school affilia-
tion, are average length of stay and average patient age (considered simultaneously) related
to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.6

1. r1, r2, r3, mschool, stay age

2. r1, r2, r3, mschool

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

agestay: test age=stay=0;

The pattern should be clear. You are “controlling for” the variables in the reduced
model. You are testing for the additional variables that appear in the full model but not
the reduced model.

Looking at the Formula for F

Formula 3.3 reveals some important properties of the F -test. Bear in mind that the
p-value is the area under the F -distribution curve above the value of the F statistic.
Therefore, anything that makes the F statistic bigger will make the p-value smaller, and
if it is small enough, the results will be significant. And significant results are what we
want, if in fact the full model is closer to the truth than the reduced model.

• Since there are s more variables in the full model than in the reduced model, the
numerator of (3.3) is the average improvement in explained sum of squares when
we compare the full model to the reduced model. Thus, some of the extra variables
might be useless for prediction, but the test could still be significant at least one of
them contributes a lot to the explained sum of squares, so that the average increase
is substantially more than one would expect by chance.

• On the other hand, useless extra independent variables can dilute the contribution
of extra independent variables with modest but real explanatory power.

• The denominator is a variance estimate based on how spread out the residuals are.
The smaller this denominator is, the larger the F statistic is, and the more likely it
is to be significant. Therefore, control extraneous sources of variation.

– If possible, always collect data on any potential independent variable that is
known to have a strong relationship to the dependent variable, and include it
in both the full model and the reduced model. This will make the analysis
more sensitive, because increasing the explained sum of squares will reduce the
unexplained sum of squares. You will be more likely to detect a real result
as significant, because it will be more likely to show up against the reduced
background noise.
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– On the other hand, the denominator of formula (3.3) for F is MSEF = SSEF
n−p ,

where the number of independent variables is p−1. Adding useless independent
variables to the model will increase the explained sum of squares by at least
a little, but the denominator of MSEF will go down by one, making MSEF
bigger, and F smaller. The smaller the sample size n, the worse the effect of
useless independent variables. You have to be selective.

– The (internal) validity of most experimental research depends on experimental
designs and procedures that balance sources of extraneous variation evenly
across treatments. But even better are careful experimental procedures that
eliminate random noise altogether, or at least hold it to very low levels. Reduce
sources of random variation, and the residuals will be smaller. The MSEF will
be smaller, and F will be bigger if something is really going on.

– Most dependent variables are just indirect reflections of what the investigator
would really like to study, and in designing their studies, scientists routinely
make decisions that are tradeoffs between expense (or convenience) and data
quality. When dependent variables represent low-quality measurement, they
essentially contain random variation that cannot be explained. This variation
will show up in the denominator of (3.3), reducing the chance of detecting
real results against the background noise. An example of a dependent variable
that might have too much noise would be a questionnaire or subscale of a
questionnaire with just a few items.

The comments above sneaked in the topic of statistical power by discussing the
formula for the F -test. Statistical power is the probability of getting significant results
when something is really going on in the population. It should be clear that high power is
good. We have just seen that statistical power can be increased by including important
explanatory variables in the study, by carefully controlled experimental conditions, and
by quality measurement. Power can also be increased by increasing the sample size. All
this is true in general, and does not depend on the use of the traditional F test.

3.4.2 Connections between Explained Variation and Significance

Testing

If you divide numerator and denominator of Equation (3.3) by SSTO, the numerator
becomes (R2

F − R2
R)/s, so we see that the F test is based on change in R2 when one

moves from the reduced model to the full model. But the F test for the extra variables
(controlling for the ones in the reduced model) is based not just on R2

F − R2
R, but on a

quantity I’ll denote by a =
R2
F−R2

R

1−R2
R
. This expresses change in R2 as a proportion of the

variation left unexplained by the reduced model. That is, it’s the proportion of remaining
variation that the additional variables explain.

This is actually a more informative quantity than simple change in R2. For example,
suppose you’re controlling for a set of variables that explain 80% of the variation in the
dependent variable, and you test a variable that accounts for an additional 5%. You have
explained 25% of the remaining variation – much more impressive than 5%.

The a notation is non-standard. It’s sometimes called a squared multiple partial
correlation, but the usual notation for partial correlations is intricate and hard to look
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at, so we’ll just use a.
You may recall that an F test has two degree of freedom values, a numerator degrees

of freedom and a denominator degrees of freedom. In the F test for a full versus reduced
model, the numerator degrees of freedom is s, the number of extra variables. The denom-
inator degrees of freedom is n− p. Recall that the sample size is n, and if the regression
model has an intercept, there are p − 1 independent variables. Applying a bit of high
school algebra to Equation (3.3), we see that the relationship between F and a is

F =
(
n− p

s

)(
a

1− a

)
. (3.4)

so that for any given sample size, the bigger a becomes, the bigger F is. Also, for a given
value of a �= 0, F increases as a function of n. This means you can get a large F (and if
it’s large enough it will be significant) from strong results and a small sample, or from
weak results and a large sample. Again, examining the formula for the F statistic yields
a valuable insight.

Expression (3.4) for F can be turned around to express a in terms of F , as follows:

a =
sF

n− p+ sF
(3.5)

This is a useful formula, because scientific journals often report just F values, degrees
of freedom and p-values. It’s easy to tell whether the results are significant, but not
whether the results are strong in the sense of explained variation. But the equality (3.5)
above lets you recover information about strength of relationship from the F statistic and
its degrees of freedom. For example, based on a three-way ANOVA where the dependent
variable is rot in potatoes, suppose the authors write “The interaction of bacteria by
temperature was just barely significant (F=3.26, df=2,36, p=0.05).” What we want to
know is, once one controls for other effects in the model, what proportion of the remaining
variation is explained by the temperature-by-bacteria interaction?

We have s=2, n − p = 36, and a = 2×3.26
36+(2×3.26)

= 0.153. So this effect is explaining

a respectable 15% of the variation that remains after controlling for all the other main
effects and interactions in the model.

3.5 Multiple Regression with SAS

It is always good to start with a textbook example, so that interested students can locate
a more technical discussion of what is going on. The following example is based on
the “Dwaine Studios” Example from Chapter 6 of [3]. The observations correspond to
photographic portrait studios in 21 towns. In addition to sales (the dependent variable),
the data file contains number of children 16 and younger in the community (in thousands
of persons), and per capita disposable income in thousands of dollars. Here is the SAS
program.

/* appdwaine1.sas */

options linesize=79;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’Just the defaults’;
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data portrait;

infile ’dwaine.dat’;

input kids income sales;

proc reg;

model sales = kids income;

/* model DV(s) = IV(s); */

Here is the list file appdwaine1.lst.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

Just the defaults 15:52 Sunday, January 13, 2002

Model: MODEL1

Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 24015.28211 12007.64106 99.103 0.0001

Error 18 2180.92741 121.16263

C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663

KIDS 1 1.454560 0.21178175 6.868 0.0001

INCOME 1 9.365500 4.06395814 2.305 0.0333

Here are some comments on the list file.

• First the ANOVA summary table for the overall F -test, testing all the independent
variables simultaneously. In C Total, C means corrected for the sample mean. The
p-value of 0.0001 actually means p < 0.0001, in this version of SAS. It’s better in
later versions.

• Root MSE is the square root of MSE.

• Dep Mean is the mean of the dependent variable.

• C.V. is the coefficient of variation – the standard deviation divided by the mean.
Who cares?

• R-square is R2

• Adj R-sq: Since R2 never goes down when you add independent variables, models
with more variables always look as if they are doing better. Adjusted R2 is an
attempt to penalize the usual R2 for the number of independent variables in the
model. It can be useful if you are trying to compare the predictive usefulness of
models with different numbers of variables.

• Parameter Estimates are the b values. Standard Error is the (estimated) stan-
dard deviation of the sampling distribution of b. It’s the denominator of the t test
in the next column.

• The last column is a two-tailed p-value for the t-test.

Here are some sample questions based on the list file.
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Sample Question 3.5.1 Suppose we wish to test simultaneously whether number of kids
16 and under and average family income have any relationship to sales. Give the value of
the test statistic, and the associated p-value.

Answer to Sample Question 3.5.1 F = 99.103, p < 0.0001

Sample Question 3.5.2 What can you conclude from just this one test?

Answer to Sample Question 3.5.2 Sales is related to either number of kids 16 and
under, or average family income, or both. But you’d never do this. You have to look at
the rest of the printout to tell what’s happening.

Sample Question 3.5.3 What percent of the variation in sales is explained by number
of kids 16 and under and average family income?

Answer to Sample Question 3.5.3 91.67%

Sample Question 3.5.4 Controlling for average family income, is number of kids 16
and under related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 3.5.4

1. t = 6.868

2. p < 0.0001

3. Yes.

4. Positive.

Sample Question 3.5.5 Controlling for number of kids 16 and under is average family
income related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 3.5.5

1. t = 2.305
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2. p = 0.0333

3. Yes.

4. Positive.

Sample Question 3.5.6 What do you conclude from this entire analysis? Direct your
answer to a statistician or researcher.

Answer to Sample Question 3.5.6 Number of kids 16 and under and average family
income are both related to sales, even when each variable is controlled for the other.

Sample Question 3.5.7 What do you conclude from this entire analysis? Direct your
answer to a person without statistical training.

Answer to Sample Question 3.5.7 Even when you allow for the number of kids 16
and under in a town, the higher the average family income in the town, the higher the
average sales. When you allow for the average family income in a town, the higher the
number of children under 16, the higher the average sales.

Sample Question 3.5.8 A new studio is to be opened in a town with 65,400 children
16 and under, and an average household income of $17,600. What annual sales do you
predict?

Answer to Sample Question 3.5.8 Ŷ = b0+b1x1+b2x2 = -68.857073 + 1.454560*65.4
+ 9.365500*17.6 = 191.104, so predicted annual sales = $191,104.

Sample Question 3.5.9 For any fixed value of average income, what happens to pre-
dicted annual sales when the number of children under 16 increases by one thousand?

Answer to Sample Question 3.5.9 Predicted annual sales goes up by $1,454.

Sample Question 3.5.10 What do you conclude from the t-test for the intercept?

Answer to Sample Question 3.5.10 Nothing. Who cares if annual sales equals zero
for towns with no children under 16 and an average household income of zero?

The final two questions ask for a proportion of remaining variation, the quantity we
are denoting by a. If you were doing an analysis yourself and wanted this statistic, you’d
likely fit a full and a reduced model (or obtain sequential sums of squares; we’ll see how
to do this in the next example), and calculate the answer directly. But in the published
literature, sometimes all you have are reports of t-tests for regression coefficients.

Sample Question 3.5.11 Controlling for average household income, what proportion of
the remaining variation is explained by number of children under 16?

Answer to Sample Question 3.5.11 Using F = t2 and plugging into (3.5), we have
a = 1×6.8682

21−3+1×6.8682 = 0.691944, or around 70% of the remaining variation.

Sample Question 3.5.12 Controlling for number of children under 16, what proportion
of the remaining variation is explained by average household income?

Answer to Sample Question 3.5.12 a = 2.3052

18+2.3052 = 0.2278994, or about 23%.

These a values are large, but the sample size is small; after all, it’s a textbook example,
not real data. Now here is a program file that illustrates some options, and gives you a
hint of what a powerful tool SAS can be.
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/* appdwaine2.sas */

options linesize=79 pagesize=35;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’With bells and whistles’;

data portrait;

infile ’dwaine.dat’;

input kids income sales;

proc reg simple corr; /* "simple" prints simple descriptive statistics */

model sales = kids income / ss1; /* "ss1" prints Sequential SS */

output out=resdata predicted=presale residual=resale;

/* Creates new SAS data set with Y-hat and e as additional variables*/

/* Now all the default F-test, in order */

allivs: test kids = 0, income = 0;

inter: test intercept=0;

child: test kids=0;

money: test income=0;

proc iml; /* Income controlling for kids: Full vs reduced by "hand" */

fcrit = finv(.95,1,18); print fcrit;

/* Had to look at printout from an earlier run to get these numbers*/

f = 643.475809 / 121.16263; /* Using the first F formula */

pval = 1-probf(f,1,18);

tsq = 2.305**2; /* t-squared should equal F*/

a = 643.475809/(26196.20952 - 23372);

print f tsq pval;

print "Proportion of remaining variation is " a;

proc glm; /* Use proc glm to get a y-hat more easily */

model sales=kids income;

estimate ’Xh p249’ intercept 1 kids 65.4 income 17.6;

proc print; /* To see the new data set with residuals*/

proc univariate normal plot;

var resale;

proc plot;

plot resale * (kids income sales);

Here are some comments on appdwaine2.sas.

• simple corr You could get means and standard deviations from proc means and
correlations from proc corr, but this is convenient.

• ss1 These are Type I Sums of Squares, produced by default in proc glm. In proc

reg, you must request them is you want to see them. The independent variables in
the model statement are added to the model in order, so that for each variable, the
reduced model has all the variables that come before it, and the full model has all
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those variables plus the current one. The ss1 option shows the increase in explained
sum of squares that comes from adding each variable to the model, in the order they
appear in the model statement.

• output creates a new sas data set called resdata. It has all the variables in the
data set portrait, and in addition it has Ŷ (named presale for predicted sales)
and e (named resale for residual of sales).

• Then we have some custom tests, all of them equivalent to what we would get by
testing a full versus reduced model. SAS takes the approach of testing whether s
linear combinations of β values equal s specified constants (usually zero). Again,
this is the same thing as testing a full versus a reduced model. The form of a custom
test in proc reg is

1. A name for the test, 8 characters or less, followed by a colon; this name will
be used to label the output.

2. the word test.

3. s linear combinations of independent variable names, each set equal to some
constant, separated by commas.

4. A semi-colon to end, as usual.

If you want to think of the significance test in terms of a collection of linear com-
binations that specify constraints on the β values (this is what a statistician would
appreciate), then we would say that the names of the independent variables (includ-
ing the weird variable “intercept”) are being used to refer to the corresponding βs.
But usually, you are testing a subset of independent variables controlling for some
other subset. In this case, include all the variables in the model statement, and
set the variables you are testing equal to zero in the test statement. Commas are
optional. As an example, for the test allivs (all independent variables) we could
have written allivs: test kids = income = 0;.

• Now suppose you wanted to use the Sequential Sums of Squares to test income con-
trolling for kids. You could use a calculator and a table of the F distribution from
a textbook, but for larger sample sizes the exact denominator degrees of freedom
you need are seldom in the table, and you have to interpolate in the table. With
proc iml (Interactive Matrix Language), which is actually a nice programming en-
vironment, you can use SAS as your calculator. Among other things, you can get
exact critical values and p-values quite easily. Statistical tables are obsolete.

In this example, we first get the critical value for F ; if the test statistic is bigger
than the critical value, the result is significant. Then we calculate F using formula
3.3 and its p-value. This F should be equal to the square of the t statistic from the
printout, so we check. Then we use (3.5) to calculate a, and print the results.

• proc glm The glm procedure is very useful when you have categorical independent
variables, because it makes your dummy variables for you. But it also can do
multiple regression. This example calls attention to the estimate command, which
lets you calculate Ŷ values more easily and with less chance of error than with a
calculator or proc iml.
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• proc print prints all the data values, for all the variables. This is a small data
set, so it’s not producing a telephone book here. You can limit the variables and
the number of cases it prints; see the manual or Applied statistics and the SAS
programming language [1]. By default, all SAS procedures use the most recently
created SAS data set; this is resdata, which was created by proc reg – so the
predicted values and residuals will be printed by proc print.

• You didn’t notice, but proc glm also used resdata rather than portrait. But it
was okay, because resdata has all the variables in portrait, and also the predicted
Y and the residuals.

• proc univariate produces a lot of useful descriptive statistics, along with a fair
amount of junk. The normal option gives some tests for normality, and textttplot
generates some line-printer plots like boxplots and stem-and-leaf displays. These are
sometimes informative. It’s a good idea to run the residuals (from the full model)
through proc univariate if you’re starting to take an analysis seriously.

• proc plot This is how you would plot residuals against variables in the model. It
the data file had additional variables you were thinking of including in the analysis,
you could plot them against the residuals too, and look for a correlation. My
personal preference is to start plotting residuals fairly late in the exploratory game,
once I am starting to get attached to a regression model.

Here is the list file appdwaine2.lst.

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

With bells and whistles

10:58 Saturday, January 19, 2002

Descriptive Statistics

Variables Sum Mean Uncorrected SS

INTERCEP 21 1 21

KIDS 1302.4 62.019047619 87707.94

INCOME 360 17.142857143 6190.26

SALES 3820 181.9047619 721072.4

Variables Variance Std Deviation

INTERCEP 0 0

KIDS 346.71661905 18.620328113

INCOME 0.9415714286 0.9703460355

SALES 1309.8104762 36.191303875

Correlation

CORR KIDS INCOME SALES

KIDS 1.0000 0.7813 0.9446

INCOME 0.7813 1.0000 0.8358

SALES 0.9446 0.8358 1.0000

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

2

With bells and whistles

10:58 Saturday, January 19, 2002

Model: MODEL1
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Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 24015.28211 12007.64106 99.103 0.0001

Error 18 2180.92741 121.16263

C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663

KIDS 1 1.454560 0.21178175 6.868 0.0001

INCOME 1 9.365500 4.06395814 2.305 0.0333

Variable DF Type I SS

INTERCEP 1 694876

KIDS 1 23372

INCOME 1 643.475809

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

3

With bells and whistles

10:58 Saturday, January 19, 2002

Dependent Variable: SALES

Test: ALLIVS Numerator: 12007.6411 DF: 2 F value: 99.1035

Denominator: 121.1626 DF: 18 Prob>F: 0.0001

Dependent Variable: SALES

Test: INTER Numerator: 159.4843 DF: 1 F value: 1.3163

Denominator: 121.1626 DF: 18 Prob>F: 0.2663

Dependent Variable: SALES

Test: CHILD Numerator: 5715.5058 DF: 1 F value: 47.1722

Denominator: 121.1626 DF: 18 Prob>F: 0.0001

Dependent Variable: SALES

Test: MONEY Numerator: 643.4758 DF: 1 F value: 5.3108

Denominator: 121.1626 DF: 18 Prob>F: 0.0333

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

4

With bells and whistles

10:58 Saturday, January 19, 2002

FCRIT

4.4138734

F TSQ PVAL

5.3108439 5.313025 0.0333214

A

Proportion of remaining variation is 0.2278428

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
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5

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Number of observations in data set = 21

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

6

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015.282112 12007.641056 99.10 0.0001

Error 18 2180.927411 121.162634

Corrected Total 20 26196.209524

R-Square C.V. Root MSE SALES Mean

0.916746 6.051183 11.007390 181.90476

Source DF Type I SS Mean Square F Value Pr > F

KIDS 1 23371.806303 23371.806303 192.90 0.0001

INCOME 1 643.475809 643.475809 5.31 0.0333

Source DF Type III SS Mean Square F Value Pr > F

KIDS 1 5715.5058347 5715.5058347 47.17 0.0001

INCOME 1 643.4758090 643.4758090 5.31 0.0333

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

7

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

Xh p249 191.103930 69.07 0.0001 2.76679783

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

INTERCEPT -68.85707315 -1.15 0.2663 60.01695322

KIDS 1.45455958 6.87 0.0001 0.21178175

INCOME 9.36550038 2.30 0.0333 4.06395814

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 8

With bells and whistles

11:32 Tuesday, January 15, 2002

OBS KIDS INCOME SALES PRESALE RESALE

1 68.5 16.7 174.4 187.184 -12.7841

2 45.2 16.8 164.4 154.229 10.1706

3 91.3 18.2 244.2 234.396 9.8037
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4 47.8 16.3 154.6 153.329 1.2715

5 46.9 17.3 181.6 161.385 20.2151

6 66.1 18.2 207.5 197.741 9.7586

7 49.5 15.9 152.8 152.055 0.7449

8 52.0 17.2 163.2 167.867 -4.6666

9 48.9 16.6 145.4 157.738 -12.3382

10 38.4 16.0 137.2 136.846 0.3540

11 87.9 18.3 241.9 230.387 11.5126

12 72.8 17.1 191.1 197.185 -6.0849

13 88.4 17.4 232.0 222.686 9.3143

14 42.9 15.8 145.3 141.518 3.7816

15 52.5 17.8 161.1 174.213 -13.1132

16 85.7 18.4 209.7 228.124 -18.4239

17 41.3 16.5 146.4 145.747 0.6530

18 51.7 16.3 144.0 159.001 -15.0013

19 89.6 18.1 232.6 230.987 1.6130

20 82.7 19.1 224.1 230.316 -6.2161

21 52.3 16.0 166.5 157.064 9.4356

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 9

With bells and whistles

9

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Moments

N 21 Sum Wgts 21

Mean 0 Sum 0

Std Dev 10.44253 Variance 109.0464

Skewness -0.09705 Kurtosis -0.79427

USS 2180.927 CSS 2180.927

CV . Std Mean 2.278746

T:Mean=0 0 Pr>|T| 1.0000

Num ^= 0 21 Num > 0 13

M(Sign) 2.5 Pr>=|M| 0.3833

Sgn Rank 1.5 Pr>=|S| 0.9599

W:Normal 0.955277 Pr<W 0.4190

Quantiles(Def=5)

100% Max 20.21507 99% 20.21507

75% Q3 9.435601 95% 11.51263

50% Med 0.744918 90% 10.17057

25% Q1 -6.21606 10% -13.1132

0% Min -18.4239 5% -15.0013

1% -18.4239

Range 38.63896

Q3-Q1 15.65166

Mode -18.4239

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

0

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Extremes

Lowest Obs Highest Obs

-18.4239( 16) 9.758578( 6)

-15.0013( 18) 9.803676( 3)

-13.1132( 15) 10.17057( 2)

-12.7841( 1) 11.51263( 11)

-12.3382( 9) 20.21507( 5)
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Stem Leaf # Boxplot

2 0 1 |

1 |

1 0002 4 |

0 99 2 +-----+

0 011124 6 *--+--*

-0 | |

-0 665 3 +-----+

-1 332 3 |

-1 85 2 |

----+----+----+----+

Multiply Stem.Leaf by 10**+1

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

1

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Normal Probability Plot

22.5+ *++++

| +++++

| ++*+*

| **+*+*

2.5+ *****+*

| *+++

| +++**

| ++*+* *

-17.5+ *++++*

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

9

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*KIDS. Legend: A = 1 obs, B = 2 obs, etc.

|

20 + A

|

|

|

| A

10 + A A A A A

R |

e |

s | A

i | A A

d 0 + A A A

u |

a | A

l | A A

|

-10 +

| A A

| A

| A

| A

-20 +

|

-+---------+---------+---------+---------+---------+---------+---------+-

30 40 50 60 70 80 90 100

KIDS

75



Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 12

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*INCOME. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 13

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*SALES. Legend: A = 1 obs, B = 2 obs, etc.
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Here are some comments.

• proc reg

– In the descriptive statistics produced by the simple option, one of the “vari-
ables” is INTERCEP; it’s our friend X0 = 1. The SAS programmers (or the
statisticians directing them) are really thinking of this as an independent vari-
able.

– The Type I (sequential) sum of squares starts with INTERCEP, and a really
big number for the explained sum of squares. Well, think of a reduced model
that does not even have an intercept — that is, one in which there are not
only no independent variables, but the population mean is zero. Then add an
intercept, so the full model is E[Y ] = β0. The least squares estimate of β0 is
Y , so the improvement in explained sum of squares is

∑n
i=1(Yi−Y )2 = SSTO.

That’s the first line. It makes sense, in a twisted way.

– Then we have the custom tests, which reproduce the default tests, in order.
See how useful the names of the custom tests can be?

• proc iml: Everything works as advertised. F = t2 except for rounding error, and
a is exactly what we got as the answer to Sample Question 3.5.12.

• proc glm

– After an overall test, we get tests labelled Type I SS and Type III SS. As
mentioned earlier, Type One sums of squares are sequential. Each variable is
added in turn to the model, in the order specified by the model statement.
Each one is tested controlling for the ones that precede it.

– When independent variables are correlated with each other and with the depen-
dent variable, some of the variation in the dependent variable is being explained
by the variation shared by the correlated independent variables. Which one
should get credit? If you use sequential sums of squares, the variable named
first by you gets all the credit. And your conclusions can change radically as
a result of the order in which you name the independent variables. This may
be okay, if you have strong reasons for testing A controlling for B and not the
other way around.

In Type Three sums of squares, each variable is controlled for all the others.
This way, nobody gets credit for the overlap. It’s conservative, and valuable.
Naturally, the last lines of Type I and Type III summary tables are identical,
because in both cases, the last variable named is being controlled for all the
others.

– I can never remember what Type II and Type IV sums of squares are.

– The estimate statement yielded an Estimate, that is, a |widehatY value, of
191.103930, which is what we got with a calculator as the answer to Sample
Question 3.5.8. We also get a t-test for whether this particular linear combina-
tion differs significantly from zero — insane in this particular case, but useful
at other times. The standard error would be very useful if we were construct-
ing confidence intervals or prediction intervals around the estimate, but we are
not.
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– Then we get a display of the b values and associated t-tests, as in proc reg.
I believe these are produced by proc glm only when none of the independent
variables is declared categorical with the class statement.

• proc print output is self-explanatory. If you are using proc print to print a large
number of cases, consider specifying a large page size in the options statement.
Then, the logical page length will be very long, as if you were printing on a long roll
of paper, and SAS will not print a new page header with the date and title and so
on every 24 line or 35 lines or whatever.

• proc univariate: There is so much output to explain, I almost can’t stand it. I’ll
do most of it in class, and just hit a few high points here.

– T:Mean=0 A t-test for whether the mean is zero. If the variable consisted of
difference scores, this would be a matched t-test. Here, because the mean of
residuals from a multiple regression is always zero as a by-product of least-
squares, t is exactly zero and the p-value is exactly one.

– M(Sign) Sign test, a non-parametric equivalent to the matched t.

– Sgn Rank Wilcoxon’s signed rank test, another non-parametric equivalent to
the matched t.

– W:Normal A test for normality. As you might infer from Pr<W, the associated
p-valuelower tail area of some distribution. If p < 0.05, conclude that the data
are not normally distributed.

The assumptions of the hypothesis tests for multiple regression imply that the
residuals are normally distributed, though not quite independent. The lack of
independence makes theW test a bit too likely to indicate lack of normality. If
the test is non-significant, can one conclude that the data are normal? This is
an example of a more general question: When can one conclude that the null
hypothesis is true?

To answer this question “Never” is just plain stupid, but still I don’t want to
go there right now. Instead, just two comments:

∗ Like most tests, the W test for normality is much more sensitive when
the sample size is large. So failure to observe a significant departure from
normality does not imply that the data really are normal, for a small
sample like this one (n=21).

∗ In an observational study, residuals can appear non-normal because im-
portant independent variables have been omitted from the full model.

– Extremes are the 5 highest and 5 lowest scores. Very useful for locating outliers.
The largest residual in this data set is 20.21507; it’s observation 5.

– Normal Probability Plot is supposed to be straight-line if the data are nor-
mal. Even though I requested pagesize=35, this plot is pretty squashed. Basi-
cally it’s useless.

• proc plot Does not show much of anything in this case. This is basically good
news, though again the data are artificial. The default plotting symbol is A; if two
points get too close together, they are plotted as B, and so on.
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Here are a few sample questions.

Sample Question 3.5.13 What is the mean of the average household incomes of the 21
towns?

Answer to Sample Question 3.5.13 $17,143

Sample Question 3.5.14 Is this the same as the average income of all the households
in the 21 towns?

Answer to Sample Question 3.5.14 No way.

Sample Question 3.5.15 The custom test labelled MONEY is identical to what default
test?

Answer to Sample Question 3.5.15 The t-test for INCOME. F = t2, and the p-value
is the same.

Sample Question 3.5.16 In the proc iml output, what can you learn from comparing
F to FCRIT?

Answer to Sample Question 3.5.16 p < 0.05

Sample Question 3.5.17 For a town with 68,500 children 16 and under, and an average
household income of $16,700, does the full model overpredict or underpredict sales? By
how much?

Answer to Sample Question 3.5.17 Underpredict by $12,784. This is the first resid-
ual produced by proc print.
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