
Chapter 7

Computer-intensive Tests

This chapter covers two methods of statistical inference in which computing
power and random number generation largely substitute for statistical theory:
randomization tests and tests based on the bootstrap. These methods allow
the creation of customized non-parametric tests without having to produce
a new statistical theory each time.

7.1 Permutation Tests and Randomization Tests

7.1.1 Permutation Tests

Randomization tests use the Law of Large Numbers to approximate permu-
tation tests, so we will begin with permutation tests. A permutation is an
arrangement of a set of objects in some order; so for example, we say there
are 5! = 5× 4× 3× 2× 1 permutations of 5 objects. That is, 5 objects may
be arranged in 120 different orders.
Permutation tests are most natural in the setting of a true experimental

study with random assignment of subjects to treatments, so that all possible
assignments are equally likely. The reasoning goes like this. If the treatment
is completely ineffective, then the data are what they are, and the only reason
that some test statistic might differ between treatments is by chance, because
of the random assignment. This is the null hypothesis.
The set of all possible permutations of the data yields the set of all possible

assignments to experimental conditions. Under the null hypothesis, these
are equally likely. This does not mean that all values of the test statistic
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are equally likely; not at all! Depending on the particular values of the data,
there might be quite a few ties, and the distribution of the test statistic might
have an arbitrarily peculiar shape. However, if we had enough time, we could
calculate exactly what it is, as follows.
Generate all possible permutations of the data. For each permutation,

compute the value of the test statistic. The histogram of the test statistic’s
values (to be precise, the relative frequency histogram of those values) is
called the permutation distribution of the test statistic.
If the null hypothesis holds, the test statistic has the permutation distri-

bution. If not, it has some other distribution. Suppose the observed value
of the test statistic (that is, the one that we computed from the unscram-
bled data) is far out on the tail of the permutation distribution. Then the
data may be deemed unlikely given the hull hypothesis — possibly unlikely
enough so that the null hypothesis may be rejected, and we may conclude
that the treatment has some effect.
In particular, the proportion of the permutation distribution at or beyond

the observed test statistic will be called the permutation p-value. As
usual,if p < 0.05, we’ll claim statistical significance.
Don’t you think this is more reasonable than doing an experiment with

random assignment, and then proceeding to assume a normal distribution
in some hypothetical “population” of subjects who might have received the
various experimental treatments? Fisher (who came up with permutation
tests as well as the F -test) thought so. In his classic Statistical Methods for
Research Workers (1936) he wrote, after describing how to do a permutation
test,

Actually, the statistician does not carry out this very tedious
process but his conclusions have no justification beyond the fact
they could have been arrived at by this very elementary method.

To summarize, a permutation test is conducted by following these three
steps.

1. Compute some test statistic using the set of original observations

2. Re-arrange the observations in all possible orders, computing the test
statistic each time.

3. Calculate the permutation test p-value, which is the proportion of test
statistic values from the re-arranged data that equal or exceed the value
of the test statistic from the original data.
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Several comments about permutation tests are in order.

• Please notice that no distribution at all is being assumed for the data.
They are what they are, period. In fact, for observational data as well
as experimental data, permutation tests are distribution-free under the
null hypothesis. In this sense, permutation tests are non-parametric.

• For observational studies too, the null hypothesis is that the indepen-
dent variable(s) and dependent variable(s) are independent.

• It’s even better than that. Bell and Doksum (1967) proved that any
valid distribution test of independence must be a permutation test
(maybe a permutation test in disguise).

• Some non-parametric methods depend on large sample sizes for their
validity. Permutation tests do not. Even for tiny samples, the chance
of false significance cannot exceed 0.05.

• It doesn’t matter if data are categorical or quantitative. By scrambling
the data, any possible relationship between IV and DV is destroyed.

• If either IV or DV is multivariate, scramble vectors of data.

• The explanation of permutation tests referred to “the” test statistic,
without indicating what that test statistic might be. In fact, the test
statistic is up to you. No matter what you choose, the chance of false
significance is limited to 0.05.

What choice is best? It depends on the exact way in which the in-
dependent and dependent variables are related. A test statistic that
captures the nature of the dependence will yield a more powerful, and
hence a better test. So one option is to use your intuition, and make
something up. Another option is to look in a book like Good’s Permu-
tation Tests. There, you’ll find good suggestions for a lot of common
hypothesis-testing problems. These suggestions are not just based on
hunches. They are based on research, in which the statistical researcher
has tried to derive a test statistic with maximum power for some class
of alternative hypotheses. If you think the null hypothesis might be
false in the specified way, such a test statistic will likely perform better
than anything you happen to come up with.
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Many scientists who use permutation tests just compute something
traditional like an F statistic, but compare it to a permutation distri-
bution rather than the F distribution. You usually can’t go too far
wrong with this approach. It’s optimal when the traditional assump-
tions hold, quite good when they almost hold, and the resulting tests
tend to become very powerful for a broad range of alternative hypothe-
ses as the sample size increases.

Another advantage of using traditional test statistics is that everyone
has heard of them, and they do not arouse suspicion. If you make up
something strange, people may think that you tried more traditional
quantities first, and then eventually found a statistic that made the
test significant. There’s no doubt about it; you can fraudulently obtain
significance with a permutation test by fishing for a test statistic until
you find one that exploits a chance pattern in the data.

• Even with some combinatoric simplification (you can often get away
without listing all the permutations) and a lot of computing power,
permutation tests are not easy to do in practice. Fisher himself consid-
ered permutation tests to be entirely hypothetical, but that was before
computers.

• One way around the computational problem is to convert the data to
ranks, and then do it. Then, permutation distributions can be figured
out in advance, by a combination of cleverness and brute force. All the
common non-parametric rank tests are permutation tests carried out
on ranks. Fisher’s exact test is a permutation test for categorical data.

Often, you’ll see Z or chi-square statistics for the rank tests. Since the
normal and chi-square distributions are continuous, while permutation
distributions are always discrete, you know these have to be large-
sample approximations based somehow on the Central Limit Theorem.
But aren’t permutation tests valid for small samples? Yes! The way it
works is that good nonparametric books have tables that give exact crit-
ical values for small samples; the Z and chi-square approximations are
used once the sample size becomes big enough for the approximations
to be valid – and big enough so that the exact permutation distribution
(even of the ranks) is hard to compute. But statistical software often
gives you p-values based on the large-sample approximation, regardless
of what the sample size is. This throws away the small-sample virtues
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of the tests. If you use rank tests with small samples, it’s up to you to
find the appropriate table and learn how to use it.

• The modern way around the computational problem is to approximate
(that is, estimate) the p-value of a permutation test using the Law of
Large Numbers. That’s called a randomization test, and it’s the topic
of the next section.

7.1.2 Randomization Tests

The permutation test p-value is the area under the curve (relative frequency
histogram) of the permutation distribution, at or beyond the observed value
of the test statistic. When we approximate the p-value of a permutation test
by simulation, it’s called a randomization test. Here’s how to do it.

• Place the values of the dependent variable in a random order.

• Compute the test statistic for the randomly shuffled data.

In this way, we have randomly sampled a value of the test statistic from its
permutation distribution. Carry out this procedure a large number of times.
By the Law of Large Numbers, the the permutation p-value is approximated
by the proportion of randomly generated values that exceed or equal the
observed value of the test statistic. This proportion is the p-value of the
randomization test.
The approximation gets better as the Monte Carlo sample size increases.

We’ll denote the Monte Carlo sample size by m, the permutation test p-value
by p, and the randomization test p-value by p̂.
How big should the Monte Carlo sample size be? Here’s one approach.

As usual, it’s based on a normal approximation to the binomial distribution.

##########################################################

# Choose Monte Carlo sample size for a randomization #

# test. Estimate p (p-value of permutation test) with #

# p-hat. For a given true p (default = 0.04) and #

# a given alpha (default = 0.05), returns the MC sample #

# size needed to get p-hat < alpha with probability cc #

# (default = .99). #

##########################################################

randm <- function(p=.04,alpha=0.05,cc=.99)
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{

randm <- qnorm(cc)^2 * p*(1-p) / (alpha-p)^2

randm <- trunc(randm+1) # Round up to next integer

randm

} # End of function randm

> probs <- c(.01,.02,.03,.04,.045,.049)

> cbind(probs,randm(p=probs)) # Use default values of alpha and cc

[,1] [,2]

[1,] 0.010 34

[2,] 0.020 118

[3,] 0.030 394

[4,] 0.040 2079

[5,] 0.045 9304

[6,] 0.049 252189

Student’s Sleep Data

This example is simple as well as classical, but its simplicity allows the ex-
amination of basic issues. The data are from a paper by William Gossett,
who published anonymously under the name “Student,” and after whom the
Student’s t distribution is named. The data show the effect of two soporific
drugs (increase in hours of sleep) on groups consisting of 10 patients each.
The independent variable is group, and the dependent variable is extra (for
extra hours of sleep). The source is Student (1908) The probable error of the
mean. Biometrika, 6, 20.

credit.erin > cat sleep.dat

extra group

1 0.7 1

2 -1.6 1

3 -0.2 1

4 -1.2 1

5 -0.1 1

6 3.4 1

7 3.7 1

8 0.8 1
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9 0.0 1

10 2.0 1

11 1.9 2

12 0.8 2

13 1.1 2

14 0.1 2

15 -0.1 2

16 4.4 2

17 5.5 2

18 1.6 2

19 4.6 2

20 3.4 2

credit.erin > R --vanilla < randex1.R > randex1.out

credit.erin > cat randex1.out

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

> # randex1.R : First randomization test example, with Student’s Sleep Data

> # Monte Carlo sample size m may be set interactively

> set.seed(4444) # Set seed for random number generation

>

> # Define margin of error functions

> merror <- function(phat,M,alpha) # (1-alpha)*100% merror for a proportion

+ {

+ z <- qnorm(1-alpha/2)
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+ merror <- z * sqrt(phat*(1-phat)/M) # M is (Monte Carlo) sample size

+ merror

+ }

> mmargin <- function(p,cc,alpha)

+ # Choose m to get (1-alpha)*100% margin of error equal to cc

+ {

+ mmargin <- p*(1-p)*qnorm(1-alpha/2)^2/cc^2

+ mmargin <- trunc(mmargin+1) # Round up to next integer

+ mmargin

+ } # End definition of function mmargin

> ##############

> sleepy <- read.table("sleep.dat")

> t.test(extra ~ group, var.equal=TRUE, data = sleepy)

Two Sample t-test

data: extra by group

t = -1.8608, df = 18, p-value = 0.07919

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.3638740 0.2038740

sample estimates:

mean in group 1 mean in group 2

0.75 2.33

> t.test(extra ~ group, var.equal=TRUE, data = sleepy)[1]

$statistic

t

-1.860813

> # It’s a list element, not a number

> ObsT <- t.test(extra ~ group, var.equal=TRUE, data = sleepy)[[1]]

> ObsT

t

-1.860813

>

> # If M is not assigned, it’s 1210

> if(length(objects(pattern="M"))==0) M <- 1210
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> cat("Monte Carlo Sample size M = ",M,"\n")

Monte Carlo Sample size M = 1210

> dv <- sleepy$extra ; iv <- sleepy$group

> trand <- numeric(M)

> for(i in 1:M)

+ { trand[i] <- t.test(sample(dv) ~ iv, var.equal=TRUE)[[1]] }

> randp <- length(trand[abs(trand)>=abs(ObsT)])/M

> margin <- merror(randp,M,.01)

>

> cat ("\n")

> cat ("Randomization p-value = ",randp,"\n")

Randomization p-value = 0.08429752

> cat("99% CI from ",(randp-margin)," to ",(randp+margin),"\n")

99% CI from 0.06372398 to 0.1048711

> cat ("\n")

>

> # Now try difference between medians

> cat("\n")

> cat("Median extra sleep for Group = 1: ",median(dv[iv==1]),"\n")

Median extra sleep for Group = 1: 0.35

> cat("Median extra sleep for Group = 2: ",median(dv[iv==2]),"\n")

Median extra sleep for Group = 2: 1.75

> ObsMedDif <- abs(median(dv[iv==1])-median(dv[iv==2]))

> cat("Absolute difference is ",ObsMedDif,"\n")

Absolute difference is 1.4

> cat("\n")

> trand2 <- numeric(M)

> for(i in 1:M)

+ {

+ rdv <- sample(dv)

+ trand2[i] <- abs(median(rdv[iv==1])-median(rdv[iv==2]))

+ }

> randp2 <- length(trand2[abs(trand2)>=abs(ObsMedDif)])/M

> margin <- merror(randp2,M,.01)
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>

> cat ("\n")

> cat ("Randomization p-value for diff bet medians = ",randp2,"\n")

Randomization p-value for diff bet medians = 0.2090909

> cat("99% CI from ",(randp2-margin)," to ",(randp2+margin),"\n")

99% CI from 0.1789778 to 0.239204

> cat ("\n")

$

The main conclusion here is that the difference between group means is
not significant. The traditional t-test (in fact, the first published t-test!)
and the randomization test both have p-values around 0.08. This is not too
surprising. We randomized the t statistic, and the traditional t-test is going
to be appropriate for these data.
Then we try another test statistic — the difference between medians.

This time we get a p-value near 0.21. This probably reflects lower power
of the randomization test when we test medians rather than means on data
that are actually normal.
Another thing to notice is that the 99% confidence interval for p does not

include 0.05. This means that p̂ is not just less than 0.05, it’s significantly
less than 0.05 (at the 0.01 level). This is good. In fact, maybe it should be
obligatory.
If it’s really obligatory, then we need some kind of power analysis for

choosing m. Letting p denote the true p-value from the permutation test,
and letting α denote the significance level (for us, α = 0.05 unless we’re
applying a Bonferroni correction), the traditional statistic for testing whether
p is different from α would be

Z∗ =
P̂ − α√
α(1−α)
m

,

which has a standard normal distribution under the null hypothesis. Some
medium-grade calculations show that the probability that P̂ will be signifi-
cantly different from α at level L (i.e., the power) with a true p-value of p is
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approximately

1−Pr


√
m(α− p)√
p(1− p)

− z1−L/2

√√√√α(1− α)
p(1− p) < Z <

√
m(α− p)√
p(1− p)

+ z1−L/2

√√√√α(1− α)
p(1− p)




where Z has a standard normal distribution, and the approximation is ex-
cellent for m larger than a few hundred.
The preceding formula is just for the record, and to provide another op-

portunity to illustrate how a formula can be transcribed more or less directly
into an S function.

# Power for detecting p-hat significantly different from alpha at

# significance level L, given true p and MC sample size M.

randmpow <- function(M,alpha=0.05,p=0.04,L=0.01)

{

z <- qnorm(1-L/2)

left <- sqrt(M)*(alpha-p)/sqrt(p*(1-p))

right <- sqrt( alpha/p * (1-alpha)/(1-p) )

randmpow <- 1 - pnorm(left+z*right) + pnorm(left-z*right)

randmpow

} # End function randmpow

The function findm uses randmpow to search for the Monte Carlo sample size
needed for a specified power. Again, the power we’re talking about here is
the power of a test for whether the randomization test p-value P̂ is different
from 0.05.

findm <- function(wantpow=.8,mstart=1,aa=0.05,pp=0.04,LL=0.01)

{

pow <- 0

mm <- mstart

while(pow < wantpow)

{

mm <- mm+1

pow <- randmpow(mm,aa,pp,LL)

} # End while

findm <- mm

findm

} # End function findm
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Table 7.1.2 shows the result of applying the function findm to a selected
set of true p values and desired power values.

Table 7.1: Monte Carlo sample size required to have specified probability
that P̂ will be significantly different from 0.05 at the 0.01 level, when the
true p-value is P

Probability of Significance
P 0.70 0.75 0.80 0.85 0.90

0.0001 129 130 131 132 133
0.0010 140 142 144 148 151
0.0050 177 184 191 199 210
0.0100 236 247 261 276 297
0.0200 448 478 513 555 610
0.0300 1,059 1,144 1,243 1,363 1,522
0.0400 4,411 4,811 5,276 5,845 6,602
0.0450 17,962 19,669 21,660 24,103 27,362
0.0550 18,548 20,459 22,697 25,452 29,143
0.0600 4,705 5,207 5,796 6,522 7,496
0.0700 1,209 1,345 1,506 1,705 1,974
0.0800 551 616 693 789 919
0.0900 317 356 403 461 539
0.1000 207 234 265 305 358
0.3000 11 13 15 18 22
0.5000 4 4 5 6 8
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The Greenhouse Data Again

With permutation and randomization tests, it’s a tricky business to carry
out a test a set of independent variables while controlling for another set.
It’s easy to preserve the relationships among multiple independent variables
or multiple dependent variables by keeping them together, but it’s hard to
preserve the relationship of the dependent variable to one set of independent
variables while destroying its relationship to another set by randomization.
There’s one very important case where this is not a problem. In factorial

designs with equal or proportional sample sizes, the independent variables are
completely unrelated to each other, so we can just randomize the dependent
variable (or collection of dependent variables). Here’s an example from the
greenhouse data.

credit.erin > head green.dat

PLANT MCG MEANLNG

1 1 7 50.714

2 1 9 10.793

3 3 8 106.514

4 3 7 102.243

5 3 9 73.214

6 1 3 10.471

7 2 2 13.536

credit.erin > R

> green <- read.table("green.dat")

> plant <- factor(green$PLANT) ; mcg <- factor(green$MCG)

> meanlng <- green$MEANLNG #$

> obs <- anova(lm(meanlng ~ plant*mcg))

> obs

Analysis of Variance Table

Response: meanlng

Df Sum Sq Mean Sq F value Pr(>F)

plant 2 221695 110848 113.9032 < 2.2e-16 ***

mcg 5 58740 11748 12.0719 5.894e-09 ***

plant:mcg 10 47581 4758 4.8893 1.273e-05 ***
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Residuals 90 87586 973

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # This agrees with what we got from SAS

> obsF <- obs[1:3,4]

> obsF

1 2 3

113.903170 12.071871 4.889303

>

> set.seed(4444)

> M <- 500 ; simf <- NULL

> for(i in 1:M)

+ {

+ simf <- rbind(simf,anova(lm(sample(meanlng)~plant*mcg))[1:3,4])

+ } # Next i (next simulation)

>

> plantp <- length(simf[,1][simf[,1]>=obsF[1]])/M ; plantp

[1] 0

> max(simf[,1])

[1] 7.460185

> min(simf[,1])

[1] 0.0003066219

> mcgp <- length(simf[,2][simf[,2]>=obsF[2]])/M ; mcgp

[1] 0

> intp <- length(simf[,3][simf[,3]>=obsF[3]])/M ; intp

[1] 0

> max(simf[,2])

[1] 4.54209

> max(simf[,3])

[1] 3.209669

The randomization p-value is approximately zero. We can’t compute a
meaningful confidence interval (why not?) but we can conclude that the
permutation p-value is less than 0.05, because

> .05*sqrt(500)/sqrt(.05*.95)

[1] 5.129892
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