
Nobody can figure this out mathematically, but it’s pretty easy with sim-
ulation. Here’s how to do it.

1. Using the random number generator in some software package, generate
20 independent chi-square values with one degree of freedom, and 20
independent chi-square values with two degrees of freedom.

2. Log transform all the values.

3. Compute the t-test.

4. Check to see if p < 0.05.

Do this a large number of times. The proportion of times p < 0.05 is the
power — or more precisely, a Monte Carlo estimate of the power.

The number of times a statistical experiment is repeated is called the
Monte Carlo sample size. How big should the Monte Carlo sample size
be? It depends on how much precision you need. We will produce confidence
intervals for all our Monte Carlo estimates, to get a handle on the probable
margin of error of the statements we make. Sometimes, Monte Carlo sample
size can be chosen by a power analysis. More details will be given later.

The example below shows several simulations of taking a random sample
of size 20 from a standard normal population (µ = 0, σ2 = 1). Now actually,
computer-generated random numbers are not really random; they are com-
pletely determined by the execution of the computer program that generates
them. The most common (and best) random number generators actually
produce a stream of pseudo-random numbers that will eventually repeat. In
the good ones (and R uses a good one), “eventually” means after the end
of the universe. So the pseudo-random numbers that R produces really act
random, even though they are not. It’s safe to say that they come closer to
satisfying the assumptions of significance tests than any real data.

If you don’t instruct it otherwise, R will use the system clock to decide
on where in the random number stream it should begin. But sometimes
you want to be able to reproduce the results of a simulation exactly, say
if you’re debugging your program, or you have already spent a lot of time
making a graph based on it. In this case you can control the starting place
in the random number stream, by setting the “seed” of the random number
generator. The seed is a big integer; I used 12345 just as an example.

13



> rnorm(20) # 20 standard normals

[1] 0.24570675 -0.38857202 0.47642336 0.75657595 0.71355871 -0.74630629

[7] -0.02485569 1.93346357 0.15663167 1.16734485 0.57486449 1.32309413

[13] 0.63712982 2.00473940 0.04221730 0.70896768 0.42128470 -0.12115292

[19] 1.42043470 -1.04957255

> set.seed(12345) # Be able to reproduce the stream of pseudo-random numbers.

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

> rnorm(20)

[1] 0.866507371 2.369884323 0.393094088 -0.970983967 -0.292948278

[6] 0.867358962 0.495983546 0.331635970 0.702292771 2.514734599

[11] 0.522917841 -0.194668990 -0.089222053 -0.491125596 -0.452112445

[16] -0.515548826 -0.244409517 -0.008373764 -1.459415684 -1.433710170

> set.seed(12345)

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

The rnorm function is probably the most important random number gen-
erator, because it is used so often to investigate the properties of statistical
tests that assume a normal distribution. Here is some more detail about
rnorm.

> help(rnorm)

Normal package:base R Documentation

The Normal Distribution

Description:

Density, distribution function, quantile function and random

generation for the normal distribution with mean equal to ‘mean’

and standard deviation equal to ‘sd’.

Usage:

dnorm(x, mean=0, sd=1, log = FALSE)

pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean=0, sd=1)

14



Arguments:

x,q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If ‘length(n) > 1’, the length is

taken to be the number required.

mean: vector of means.

sd: vector of standard deviations.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],

otherwise, P[X > x].

Details:

If ‘mean’ or ‘sd’ are not specified they assume the default values

of ‘0’ and ‘1’, respectively.

The normal distribution has density

f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))

where mu is the mean of the distribution and sigma the standard

deviation.

‘qnorm’ is based on Wichura’s algorithm AS 241 which provides

precise results up to about 16 digits.

Value:

‘dnorm’ gives the density, ‘pnorm’ gives the distribution

function, ‘qnorm’ gives the quantile function, and ‘rnorm’

generates random deviates.

References:

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of

the Normal Distribution. Applied Statistics, 37, 477-484.

See Also:

‘runif’ and ‘.Random.seed’ about random number generation, and

‘dlnorm’ for the Lognormal distribution.

Examples:

dnorm(0) == 1/ sqrt(2*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)

dnorm(1) == 1/ sqrt(2*pi*exp(1))

## Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))

15



plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")

curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)

mtext("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

After generating normal random numbers, the next most likely thing you
might want to do is randomly scramble some existing data values. The
sample function will select the elements of some array, either with replace-
ment or without replacement. If you select all the numbers in a set without
replacement, you’ve rearranged them in a random order. This is the basis of
randomization tests. Sampling with replacement is the basis of the bootstrap.

> help(sample)

sample package:base R Documentation

Random Samples and Permutations

Description:

‘sample’ takes a sample of the specified size from the elements of

‘x’ using either with or without replacement.

Usage:

sample(x, size, replace = FALSE, prob = NULL)

Arguments:

x: Either a (numeric, complex, character or logical) vector of

more than one element from which to choose, or a positive

integer.

size: A positive integer giving the number of items to choose.

replace: Should sampling be with replacement?

prob: A vector of probability weights for obtaining the elements of

the vector being sampled.

Details:

If ‘x’ has length 1, sampling takes place from ‘1:x’.

By default ‘size’ is equal to ‘length(x)’ so that ‘sample(x)’

generates a random permutation of the elements of ‘x’ (or ‘1:x’).

The optional ‘prob’ argument can be used to give a vector of

weights for obtaining the elements of the vector being sampled.

They need not sum to one, but they should be nonnegative and not

all zero. If ‘replace’ is false, these probabilities are applied

16



sequentially, that is the probability of choosing the next item is

proportional to the probabilities amongst the remaining items. The

number of nonzero weights must be at least ‘size’ in this case.

Examples:

x <- 1:12

# a random permutation

sample(x)

# bootstrap sampling

sample(x,replace=TRUE)

# 100 Bernoulli trials

sample(c(0,1), 100, replace = TRUE)

6.4.1 Illustrating the Regression Artifact by Simula-

tion

In the ordinary use of the English language, to “regress” means to go back-
ward. In Psychiatry and Abnormal Psychology, the term “regression” is used
when a person’s behaviour changes to become more typical of an earlier stage
of development— like when an older child starts wetting the bed, or an adult
under extreme stress sucks his thumb. Isn’t this a strange word to use for
the fitting of hyperplanes by least-squares?

The term “regression” (as it is used in Statistics) was coined by Sir Francis
Galton (1822-1911). For reasons that now seem to have a lot to do with class
privilege and White racism, he was very interested in heredity. Galton was
investigating the relationship between the heights of fathers and the heights
of sons. What about the mothers? Apparently they had no height.

Anyway, Galton noticed that very tall fathers tended to have sons that
were a bit shorter than they were, though still taller than average. On the
other hand, very short fathers tended to have sons that were taller than
they were, though still shorter than average. Galton was quite alarmed
by this “regression toward mediocrity” or “regression toward the mean,”
particularly when he found it in a variety of species, for a variety of physical
characteristics. See Galton’s “Regression towards mediocrity in hereditary
stature”, Journal of the Anthropological Institute 15 (1886), 246-263. It even
happens when you give a standardized test twice to the same people. The
people who did the very best the first time tend to do a little worse the
second time, and the people who did the very worst the first time tend to do
a little better the second time.

Galton thought he had discovered a Law of Nature, though in fact the

17



whole thing follows from the algebra of least squares. Here’s a verbal alter-
native. Height is influenced by a variety of chance factors, many of which are
not entirely shared by fathers and sons. These include the mother’s height,
environment and diet, and the vagaries of genetic recombination. You could
say that the tallest fathers included some who “got lucky,” if you think it’s
good to be tall (Galton did, of course). The sons of the tall fathers had some
a genetic predisposition to be tall, but on average, they didn’t get as lucky
as their fathers in every respect. A similar argument applies to the short
fathers and their sons.

This is the basis for the so-called regression artifact. Pre-post designs
with extreme groups are doomed to be misleading. Programs for the disad-
vantaged “work” and programs for the gifted “hurt.” This is a very serious
methodological trap that has doomed quite a few evaluations of social pro-
grams, drug treatments – you name it.

Is this convincing? Well, the argument above may be enough for some
people. But perhaps if it’s illustrated by simulation, you’ll be even more
convinced. Let’s find out.

Suppose an IQ test is administered to the same 10,000 students on two
occasions. Call the scores pre and post. After the first test, the 100 in-
dividuals who did worst are selected for a special remedial program, but it
does nothing. And, the 100 individuals who did best on the pre-test get a
special program for the gifted, but it does nothing. We do a matched t-test
on the students who got the remedial program, and a matched t − test on
the students who got the gifted program.

What should happen? If you followed the stuff about regression artifacts,
you’d expect significant improvement from the students who got the remedial
program, and significant deterioration from the students who got the gifted
program – even though in fact, both programs are completely ineffective (and
harmless). How will we simulate this?

According to classical psychometric theory, a test score is the sum of two
independent pieces, the True Score and measurement error. If you measure
an individual twice, she has the same True Score, but the measurement error
component is different.

True Score and measurement error have population variances. Because
they are independent, the variance of the observed score is the sum of the
true score variance and the error variance. The proportion of the observed
score variance that is True Score variance is called the test’s reliability. Most
“intelligence” tests have a mean of 100, a standard deviation of 15, and a

18



reliability around 0.80.
So here’s what we do. Making everything normally distributed and se-

lecting parameter values so the means, standard deviations and reliability
come out right, we

• Simulate 10,000 true scores.

• Simulate 10,000 measurement errors for the pre-test and an indepen-
dent 10,000 measurement errors for the post-test.

• Calculate 10,000 pre-test scores by pre = True + error1.

• Calculate 10,000 post-test scores by pre = True + error2.

• Do matched t-tests on the individuals with the 100 worst and the 100
best pre-test scores.

This procedure is carried out once by the program regart.R. In addition,
regart.R carries out a matched t-test on the entire set of 10,000 pairs, just
to verify that there is no systematic change in “IQ” scores.

# regart.R Demonstrate Regression Artifact

###################### Setup #######################

N <- 10000 ; n <- 100

truevar <- 180 ; errvar <- 45

truesd <- sqrt(truevar) ; errsd <- sqrt(errvar)

# set.seed(44444)

# Now define the function ttest, which does a matched t-test

ttest <- function(d) # Matched t-test. It operates on differences.

{

ttest <- numeric(4)

names(ttest) <- c("Mean Difference"," t "," df "," p-value ")

ave <- mean(d) ; nn <- length(d) ; sd <- sqrt(var(d)) ; df <- nn-1

tstat <- ave*sqrt(nn)/sd

pval <- 2*(1-pt(abs(tstat),df))

ttest[1] <- ave ; ttest[2] <- tstat; ttest[3] <- df; ttest[4] <- pval

ttest # Return the value of the function

}

19



#####################################################

error1 <- rnorm(N,0,errsd) ; error2 <- rnorm(N,0,errsd)

truescor <- rnorm(N,100,truesd)

pre <- truescor+error1 ; rankpre <- rank(pre)

# Based on their rank on the pre-test, we take the n worst students and

# place them in a special remedial program, but it does NOTHING.

# Based on their rank on the pre-test, we take the n best students and

# place them in a special program for the gifted, but it does NOTHING.

post <- truescor+error2

diff <- post-pre # Diff represents "improvement."

# But of course diff = error2-error1 = noise

cat("\n") # Skip a line

cat("------------------------------------ \n")

dtest <- ttest(diff)

cat("Test on diff (all scores) \n") ; print(dtest) ; cat("\n")

remedial <- diff[rankpre<=n] ; rtest <- ttest(remedial)

cat("Test on Remedial \n") ; print(rtest) ; cat("\n")

gifted <- diff[rankpre>=(N-n+1)] ; gtest <- ttest(gifted)

cat("Test on Gifted \n") ; print(gtest) ; cat("\n")

cat("------------------------------------ \n")

The ttest function is a little unusual because it takes a whole vector
of numbers (length unspecified) as input, and returns an array of 4 values.
Often, functions take one or more numbers as input, and return a single
value. We will see some more examples shortly. At the R prompt,

20



> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

1.872566e-02 1.974640e-01 9.999000e+03 8.434685e-01

Test on Remedial

Mean Difference t df p-value

7.192531e+00 8.102121e+00 9.900000e+01 1.449729e-12

Test on Gifted

Mean Difference t df p-value

-8.311569e+00 -9.259885e+00 9.900000e+01 4.440892e-15

------------------------------------

> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

2.523976e-02 2.659898e-01 9.999000e+03 7.902525e-01

Test on Remedial

Mean Difference t df p-value

5.510484e+00 5.891802e+00 9.900000e+01 5.280147e-08

Test on Gifted

Mean Difference t df p-value

-8.972938 -10.783356 99.000000 0.000000

------------------------------------

> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

21



0.0669827 0.7057641 9999.0000000 0.4803513

Test on Remedial

Mean Difference t df p-value

8.434609e+00 9.036847e+00 9.900000e+01 1.376677e-14

Test on Gifted

Mean Difference t df p-value

-8.371483 -10.215295 99.000000 0.000000

------------------------------------

The preceding simulation was unusual in that the phenomenon it illustrates
happens virtually every time. In the next example, we need to use the Law
of Large Numbers.

6.4.2 An Example of Power Analysis by Simulation

Suppose we want to test the effect of some experimental treatment on mean
response, comparing an experimental group to a control. We are willing to
assume normality, but not equal variances. We’re ready to use an unequal-
variances t-test, and we want to do a power analysis.

Unfortunately it’s safe to say that nobody knows the exact non-central
distribution of this monster. In fact, even the central distribution isn’t exact;
it’s just a very good approximation. So, we have to resort to first principles.
There are four parameters: θ = (µ1, µ2, σ

2
1, σ

2
2). For a given set of parameter

values, we will simulate samples of size n1 and n2 from normal distributions,
do the significance test, and see if it’s significant. We’ll do it over and over.
By the Law of Large Numbers, the proportion of times the test is significant
will approach the power as the Monte Carlo sample size (the number of data
sets we simulate) increases.

The number we get, of course, will just be an estimate of the power. How
accurate is the estimate? As promised earlier, we’ll accompany every Monte
Carlo estimate of a probability with a confidence interval. Here’s the formula.
For the record, it’s based on the normal approximation to the binomial, not
bothering with a continuity correction.

P̂ ± z1−α
2

√
P̂ (1− P̂ )

m
(6.1)

22



This formula will be implemented in the S function merror for “margin of
error.”

merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

merror

}

The Monte Carlo estimate of the probability is denoted by P̂ , the quantity
m is the Monte Carlo sample size, and z1−α/2 is the value with area 1 − α

2

to the left of it, under the standard normal curve. Typically, we will choose
α = 0.01 to get a 99% confidence interval, so z1−α/2 = 2.575829.

How should we choose m? In other words, how many data sets should we
simulate? It depends on how much accuracy we want.Since our policy is to
accompany Monte Carlo estimates with confidence intervals, we will choose
the Monte Carlo sample size to control the width of the confidence interval.

According to Equation (6.1), the confidence interval is an estimated prob-

ability, plus or minus a margin of error. The margin of error is z1−α
2

√
P̂ (1−P̂ )

m
,

which may be viewed as an estimate of z1−α
2

√
P (1−P )

m
. So, for any given prob-

ability we are trying to estimate, we can set the desired margin of error to
some small value, and solve for m. Denoting the criterion margin of error
by c, the general solution is

m =
z2

1−α
2

c2
P (1− P ), (6.2)

which is implemented in the S function mmargin.

mmargin <- function(p,cc,alpha)

# Choose m to get (1-alpha)*100% margin of error equal to cc

{

mmargin <- p*(1-p)*qnorm(1-alpha/2)^2/cc^2

mmargin <- trunc(mmargin+1) # Round up to next integer

mmargin

} # End definition of function mmargin

Suppose we want a 99% confidence interval around a power of 0.80 to be
accurate to plus or minus 0.01.

23



> mmargin(.8,.01,.01)

[1] 10616

The table below shows Monte Carlo sample sizes for estimating power
with a 99% confidence interval.

Table 6.1: Monte Carlo Sample Size Required to Estimate Power with a
Specified 99% Margin of Error

Power Being Estimated
Margin of Error 0.70 0.75 0.80 0.85 0.90 0.99

0.10 140 125 107 85 60 7
0.05 558 498 425 339 239 27
0.01 13,934 12,441 10,616 8,460 5,972 657
0.005 55,734 49,762 42,464 33,838 23,886 2,628
0.001 1,393,329 1,244,044 1,061,584 845,950 59,7141 65,686

It’s somewhat informative to see how the rows of the table were obtained.

> wpow <- c(.7,.75,.8,.85,.9,.99)

> mmargin(wpow,.1,.01)

[1] 140 125 107 85 60 7

> mmargin(wpow,.05,.01)

[1] 558 498 425 339 239 27

> mmargin(wpow,.01,.01)

[1] 13934 12441 10616 8460 5972 657

> mmargin(wpow,.005,.01)

[1] 55734 49762 42464 33838 23886 2628

> mmargin(wpow,.001,.01)

[1] 1393329 1244044 1061584 845950 597141 65686

Equations (6.1) and (6.2) are general; they apply to the Monte Carlo
estimation of any probability, and Table 6.1 applies to any Monte Carlo
estimation of power. Let’s return to the specific example at hand. Suppose
we the population standard deviation of the Control Group is 2 and the
standard deviation of the Experimental Group is 6. We’ll let the population
means be µ1 = 1 and µ2 = 3, so that the difference between population
means is half the average within-group population standard deviation.

To select a good starting value of n, let’s pretend that the standard
deviations are equal to the average value, and we are planning an ordinary

24



two-sample t-test. Referring to formula (4.4) for the non-centrality parameter
of the non-central F -distribution, we’ll let q = 1

2
; this is optimal when the

variances are equal. Since δ = 1
2
, we have φ = n q(1−q) δ2 = n

16
. Here’s some

S. It’s short — and sweet. Well, maybe it’s an acquired taste. It’s also true
that I know this problem pretty well, so I knew a good range of n values to
try.

> n <- 125:135

> pow <- 1-pf(qf(.95,1,(n-2)),1,(n-2),(n/16))

> cbind(n,pow)

n pow

[1,] 125 0.7919594

[2,] 126 0.7951683

[3,] 127 0.7983349

[4,] 128 0.8014596

[5,] 129 0.8045426

[6,] 130 0.8075844

[7,] 131 0.8105855

[8,] 132 0.8135460

[9,] 133 0.8164666

[10,] 134 0.8193475

[11,] 135 0.8221892

We will start the unequal variance search at n = 128. And, though we
are interested in more accuracy, it makes sense to start with a target margin
of error of 0.05. The idea is to start out with rough estimation, and get more
accurate only once we think we are close to the right n.

> n1 <- 64 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 64 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

>

> con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

> help(t.test)

The output of help is omitted, but we learn that the default is a test assuming
unequal variances – just what we want.

25



> t.test(con,exp)

Welch Two Sample t-test

data: con and exp

t = -2.4462, df = 78.609, p-value = 0.01667

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.4632952 -0.3556207

sample estimates:

mean of x mean of y

1.117435 3.026893

> t.test(con,exp)[1]

$statistic

t

-2.446186

> t.test(con,exp)[3]

$p.value

[1] 0.01667109

>

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.708

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

26



+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.698

Try it again.

>

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.702

Try a larger sample size.

> n1 <- 80 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 80 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.812

Try it again.

> n1 <- 80 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 80 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

27



> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.792

It seems that was a remarkably lucky guess. Now seek margin of error around
0.01.

>

> m <- 10000 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.8001

> merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

+ {

+ z <- qnorm(1-alpha/2)

+ merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

+ merror

+ }

> margin <- merror(.8001,10000,.01) ; margin

[1] 0.01030138

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.7897986 to 0.810

This is very nice, except that I can’t believe equal sample sizes are optimal
when the variances are unequal. Let’s try sample sizes proportional to the

28



standard deviations, so n1 = 40 and n2 = 120. The idea is that perhaps the
two population means should be estimated with roughly the same precision,
and we need a bigger sample size in the experimental condition to compensate
for the larger variance. Well, actually I chose the relative sample sizes to
minimize the standard deviation of the sampling distribution of the difference
between means — the quantity that is estimated by the denominator of the
t statistic.

> n1 <- 40 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 120 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.89

> margin <- merror(pow,m,.01)

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.8539568 to 0.9260432

>

> # This is promising. Get some precision.

>

> n1 <- 40 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 120 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 10000 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

29



Monte Carlo Power = 0.8803

> margin <- merror(pow,m,.01)

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.8719386 to 0.8886614

So again we see that power depends on design as well as on effect size and
sample size. It will be left as an exercise to find out how much sample size
we could save (over the n1 = n2 = 80 solution) by taking this into account
in the present case.

Finally, it should be clear that R has a t-test function, and the custom
function ttest was unnecessary. What other classical tests are available?

> library(help=ctest)

ctest Classical Tests

Description:

Package: ctest

Version: 1.4.0

Priority: base

Title: Classical Tests

Author: Kurt Hornik <Kurt.Hornik@ci.tuwien.ac.at>, with major

contributions by Peter Dalgaard <p.dalgaard@kubism.ku.dk> and

Torsten Hothorn <Torsten.Hothorn@rzmail.uni-erlangen.de>.

Maintainer: R Core Team <R-core@r-project.org>

Description: A collection of classical tests, including the

Ansari-Bradley, Bartlett, chi-squared, Fisher, Kruskal-Wallis,

Kolmogorov-Smirnov, t, and Wilcoxon tests.

License: GPL

Index:

ansari.test Ansari-Bradley Test

bartlett.test Bartlett Test for Homogeneity of Variances

binom.test Exact Binomial Test

chisq.test Pearson’s Chi-squared Test for Count Data

30



cor.test Test for Zero Correlation

fisher.test Fisher’s Exact Test for Count Data

fligner.test Fligner-Killeen Test for Homogeneity of

Variances

friedman.test Friedman Rank Sum Test

kruskal.test Kruskal-Wallis Rank Sum Test

ks.test Kolmogorov-Smirnov Tests

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for

Count Data

mcnemar.test McNemar’s Chi-squared Test for Count Data

mood.test Mood Two-Sample Test of Scale

oneway.test Test for Equal Means in a One-Way Layout

pairwise.prop.test Pairwise comparisons of proportions

pairwise.t.test Pairwise t tests

pairwise.table Tabulate p values for pairwise comparisons

pairwise.wilcox.test Pairwise Wilcoxon rank sum tests

power.prop.test Power calculations two sample test for of

proportions

power.t.test Power calculations for one and two sample t

tests

print.pairwise.htest Print method for pairwise tests

print.power.htest Print method for power calculation object

prop.test Test for Equal or Given Proportions

prop.trend.test Test for trend in proportions

quade.test Quade Test

shapiro.test Shapiro-Wilk Normality Test

t.test Student’s t-Test

var.test F Test to Compare Two Variances

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests

31


