
R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

[Previously saved workspace restored]

> ls()

[1] "x" "y" "z"

> max(x)

[1] 3

All the examples so far (and many of the examples to follow) are interac-
tive, but for serious work, it’s better to work with a command file. Put your
commands in a file and execute them all at once. Suppose your commands
are in a file called commands.R. At the S prompt, you’d execute them with
source("commands.R"). From the unix prompt, you’d do it like this. The
--vanilla option invokes a “plain vanilla” mode of operation suitable for
this situation.

credit.erin > R --vanilla < commands.R > homework.out

For really big simulations, you may want to run the job in the background
at a lower priority. The & suffix means run it in the background. nohupmeans
don’t hang up on me when I log out. nice means be nice to other users, and
run it at a lower priority.

credit.erin > nohup nice R --vanilla < bvnorm.R > bvnorm.out &

7

6.3 S as a Stats Package

Here, we illustrate traditional multiple regression with S, testing the par-
allel slopes assumption for the metric cars data. Compare mcars.sas and
mcars.lst. There are lots of comment statements that help explain what is
going on. More detail will be given in lecture. In addition, the course home
page has a link to a nice 100-page manual. If you plan to use R seriously,
you should download this manual and read it. But if you come to lecture,
you probably don’t need to look at it for the purposes of this class.

Here is the “program” named lesson2.R.

##

lesson2.R: execute with R --vanilla < lesson2.R > lesson2.out

##

datalist <- scan("mcars.dat",list(id=0,country=0,kpl=0,weight=0,length=0))

datalist is a linked list.

datalist

There are other ways to read raw data. See help(read.table).

weight <- datalist$weight ; length <- datalist$length ; kpl <- datalist$kpl

country <- datalist$country

cor(cbind(weight,length,kpl))

The table command gives a bare-bones frequency distribution

table(country)

That was a matrix. The numbers 1 2 3 are labels.

You can save it, and you can get at its contents

countrytable <- table(country)

countrytable[2]

There is an "if" function that you could use to make dummy variables,

but it’s easier to use factor.

countryfac <- factor(country,levels=c(1,2,3),

label=c("US","Japanese","European"))

This makes a FACTOR corresponding to country, like declaring it

to be categorical. How are dummy variables being set up?

contrasts(countryfac)

The first level specified is the reference category. You can get a

different reference category by specifying the levels in a different order.

cntryfac <- factor(country,levels=c(2,1,3),

label=c("Japanese","US","European"))

contrasts(cntryfac)

Test interaction. For comparison, with SAS we got F = 11.5127, p < .0001

First fit (and save!) the reduced model. lm stands for linear model.

redmod <- lm(kpl ~ weight+cntryfac)

The object redmod is a linked list, including lots of stuff like all the

residuals. You don’t want to look at the whole thing, at least not now.

summary(redmod)

Full model is same stuff plus interaction. You COULD specify the whole thing.

fullmod <- update(redmod,. ~ . + weight*cntryfac)

anova(redmod,fullmod)

The ANOVA summary table is a matrix. You can get at its (i,j)th element.

aovtab <- anova(redmod,fullmod)

aovtab[2,5] # The F statistic

8

aovtab[2,6] < .05 # p < .05 -- True or false?

1>6 # Another example of an expression taking the logical value true or false.

Here is the output file lesson2.out. Note that it shows the commands.
This would not happen if you used source("lesson2.R") from within R. I
have added some blank lines to the output file to make it more readable.

> ##

> # lesson2.R: execute with R --vanilla < lesson2.R > lesson2.out #

> ##

>

> datalist <- scan("mcars.dat",list(id=0,country=0,kpl=0,weight=0,length=0))

Read 100 records

> # datalist is a linked list.

> datalist

$id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

[91] 91 92 93 94 95 96 97 98 99 100

$country

[1] 1 2 1 1 1 1 3 1 3 1 2 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 1 1 2 1 2 1 1 1 3

[38] 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1

[75] 1 2 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1

$kpl

[1] 5.04 10.08 9.24 7.98 7.98 7.98 9.66 7.56 5.88 10.92 12.60 8.40

[13] 8.82 10.92 7.56 12.18 5.04 5.88 7.14 13.02 5.88 10.92 6.72 10.50

[25] 8.82 5.88 6.72 11.76 9.24 7.56 7.56 11.76 10.50 5.88 9.24 7.98

[37] 7.14 17.22 6.72 7.98 7.14 6.30 5.88 8.82 9.24 9.24 5.88 8.40

[49] 10.50 9.24 7.56 7.56 12.60 12.60 7.98 7.56 8.40 9.66 7.56 6.30

[61] 5.88 7.56 10.08 5.04 8.82 11.76 14.70 10.08 9.24 10.92 10.50 7.56

[73] 8.82 7.56 7.14 7.56 10.08 8.82 5.88 8.82 8.82 10.08 17.22 6.72

[85] 9.24 5.88 7.56 11.76 7.98 8.82 5.88 5.88 7.14 5.04 17.22 17.22

[97] 7.14 10.50 6.72 7.56

$weight

[1] 2178.0 1026.0 1188.0 1444.5 1485.0 1485.0 972.0 1665.0 1539.0 1003.5

[11] 891.0 1273.5 1930.5 823.5 1084.5 949.5 2178.0 1755.0 1426.5 990.0

[21] 1827.0 1134.0 1813.5 1192.5 1237.5 1858.5 1813.5 1062.0 1431.0 1651.5

[31] 1201.5 1062.0 1008.0 1858.5 1318.5 1440.0 1273.5 918.0 1813.5 1530.0

[41] 1683.0 1836.0 1723.5 1827.0 1449.0 1318.5 1858.5 1273.5 868.5 1318.5

[51] 1665.0 1620.0 954.0 954.0 1516.5 1665.0 1462.5 972.0 1665.0 1674.0

[61] 1755.0 1201.5 1237.5 2178.0 1930.5 1062.0 922.5 1026.0 1449.0 1134.0

[71] 990.0 1084.5 1930.5 1516.5 1507.5 1084.5 1026.0 958.5 1858.5 1930.5

[81] 1192.5 1237.5 918.0 1813.5 1449.0 1755.0 1561.5 1062.0 1489.5 1192.5

[91] 1827.0 1755.0 1683.0 2178.0 918.0 918.0 1426.5 990.0 1660.5 1498.5

$length

[1] 591.82 431.80 426.72 510.54 502.92 502.92 436.88 543.56 487.68 431.80

[11] 391.16 495.30 518.16 360.68 441.96 414.02 591.82 518.16 490.22 419.10

[21] 561.34 462.28 523.24 449.58 467.36 551.18 523.24 431.80 490.22 553.72

9

[31] 444.50 431.80 436.88 551.18 472.44 505.46 480.06 393.70 523.24 508.00

[41] 558.80 563.88 510.54 558.80 508.00 472.44 551.18 495.30 393.70 472.44

[51] 543.56 523.24 414.02 414.02 508.00 543.56 497.84 436.88 543.56 538.48

[61] 518.16 444.50 454.66 591.82 518.16 431.80 416.56 431.80 508.00 462.28

[71] 419.10 441.96 518.16 502.92 439.42 441.96 431.80 408.94 551.18 518.16

[81] 454.66 454.66 393.70 523.24 508.00 518.16 502.92 431.80 502.92 454.66

[91] 561.34 518.16 558.80 591.82 393.70 393.70 490.22 419.10 538.48 510.54

> # There are other ways to read raw data. See help(read.table).

> weight <- datalist$weight ; length <- datalist$length ; kpl <- datalist$kpl

> country <- datalist$country

> cor(cbind(weight,length,kpl))

weight length kpl

weight 1.0000000 0.9462018 -0.7704194

length 0.9462018 1.0000000 -0.7899859

kpl -0.7704194 -0.7899859 1.0000000

> # The table command gives a bare-bones frequency distribution

> table(country)

country

1 2 3

73 13 14

> # That was a matrix. The numbers 1 2 3 are labels.

> # You can save it, and you can get at its contents

> countrytable <- table(country)

> countrytable[2]

2

13

> # There is an "if" function that you could use to make dummy variables,

> # but it’s easier to use factor.

> countryfac <- factor(country,levels=c(1,2,3),

+ label=c("US","Japanese","European"))

> # This makes a FACTOR corresponding to country, like declaring it

> # to be categorical. How are dummy variables being set up?

> contrasts(countryfac)

Japanese European

US 0 0

Japanese 1 0

European 0 1

> # The first level specified is the reference category. You can get a

> # different reference category by specifying the levels in a different order.

> cntryfac <- factor(country,levels=c(2,1,3),

+ label=c("Japanese","US","European"))

> contrasts(cntryfac)

US European

Japanese 0 0

US 1 0

European 0 1

10

> # Test interaction. For comparison, with SAS we got F = 11.5127, p < .0001

> # First fit (and save!) the reduced model. lm stands for linear model.

> redmod <- lm(kpl ~ weight+cntryfac)

> # The object redmod is a linked list, including lots of stuff like all the

> # residuals. You don’t want to look at the whole thing, at least not now.

> summary(redmod)

Call:

lm(formula = kpl ~ weight + cntryfac)

Residuals:

Min 1Q Median 3Q Max

-3.0759 -0.9810 -0.1919 0.4725 5.0795

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.2263357 0.7631228 21.263 <2e-16 ***

weight -0.0060407 0.0005708 -10.583 <2e-16 ***

cntryfacUS 1.2361472 0.5741299 2.153 0.0338 *

cntryfacEuropean 1.4595914 0.6456563 2.261 0.0260 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.676 on 96 degrees of freedom

Multiple R-Squared: 0.618, Adjusted R-squared: 0.606

F-statistic: 51.76 on 3 and 96 DF, p-value: 0

>

> # Full model is same stuff plus interaction. You COULD specify the whole thing.

> fullmod <- update(redmod,. ~ . + weight*cntryfac)

> anova(redmod,fullmod)

Analysis of Variance Table

Model 1: kpl ~ weight + cntryfac

Model 2: kpl ~ weight + cntryfac + weight:cntryfac

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 269.678

2 94 216.617 2 53.061 11.513 3.372e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # The ANOVA summary table is a matrix. You can get at its (i,j)th element.

> aovtab <- anova(redmod,fullmod)

> aovtab[2,5] # The F statistic

[1] 11.51273

> aovtab[2,6] < .05 # p < .05 -- True or false?

[1] TRUE

> 1>6 # Another example of an expression taking the logical value true or false.

[1] FALSE

11

6.4 Random Numbers and Simulation

S is a superb environment for simulation and customized computer-intensive
statistical methods. That’s really why it is being discussed. Simulation is
an extremely general and powerful method for calculating probabilities that
are difficult to figure out by other means. Well, technically it’s a way of
estimating those probabilities, based a sample of random numbers. Before
proceeding, we need a couple of definitions.

We will use the term statistical experiment to refer to any procedure
whose outcome is not known in advance with certainty. The most standard,
and the most boring example of a statistical experiment is to toss a coin and
observe whether it comes up heads or tails. We model statistical experiments
by pretending that they obey the laws of probability.

When we carry out a statistical experiment, the things that can happen
(the things we pay attention to) are called outcomes. Sets of outcomes are
called events. For example, if you roll a die, the outcomes are the numbers
1 through 6, and “even” is an event consisting of the outcomes {2, 4, 6}.

The main principle we will use is called the Law of Large Numbers.
There are quite a few versions of this law. Here’s a verbal statement of the
one we will use. If a statistical experiment is carried out independently a very
large number of times (trials) under identical conditions, the proportion of
times an event occurs approaches the probability of the event, as the number of
trials increases. In elementary texts, this is sometimes used as the definition
of probability. But in more sophisticated treatments, it’s a theorem.

For example, suppose you are planning to test differences between means
for an experimental versus a control group, and you have strong reason to
believe that your data will have a chi-square distribution within groups. You
are going to log-transform the data to take care of the positive skewnes of
the chi-square, and then use a common t-test.

Suppose data in the experimental group is chi-square with one degree of
freedom (so the population mean is one and the variance is two), and the
data in the control group is chi-square with two degree of freedom (so the
population mean is two and the variance is four). What is the power of the
t-test on the transformed data with n = 20 in each group?

12

Nobody can figure this out mathematically, but it’s pretty easy with sim-
ulation. Here’s how to do it.

1. Using the random number generator in some software package, generate
20 independent chi-square values with one degree of freedom, and 20
independent chi-square values with two degrees of freedom.

2. Log transform all the values.

3. Compute the t-test.

4. Check to see if p < 0.05.

Do this a large number of times. The proportion of times p < 0.05 is the
power — or more precisely, a Monte Carlo estimate of the power.

The number of times a statistical experiment is repeated is called the
Monte Carlo sample size. How big should the Monte Carlo sample size
be? It depends on how much precision you need. We will produce confidence
intervals for all our Monte Carlo estimates, to get a handle on the probable
margin of error of the statements we make. Sometimes, Monte Carlo sample
size can be chosen by a power analysis. More details will be given later.

> rnorm(20) # 20 standard normals

[1] 0.24570675 -0.38857202 0.47642336 0.75657595 0.71355871 -0.74630629

[7] -0.02485569 1.93346357 0.15663167 1.16734485 0.57486449 1.32309413

[13] 0.63712982 2.00473940 0.04221730 0.70896768 0.42128470 -0.12115292

[19] 1.42043470 -1.04957255

> set.seed(12345) # Be able to reproduce the stream of pseudo-random numbers.

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

> rnorm(20)

[1] 0.866507371 2.369884323 0.393094088 -0.970983967 -0.292948278

[6] 0.867358962 0.495983546 0.331635970 0.702292771 2.514734599

[11] 0.522917841 -0.194668990 -0.089222053 -0.491125596 -0.452112445

[16] -0.515548826 -0.244409517 -0.008373764 -1.459415684 -1.433710170

> set.seed(12345)

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

13

