
Chapter 6

Introduction to S

6.1 History and Terminology

Most major statistical packages are computer programs that have their own
control language. The syntax goes with one computer program and just one.
The SAS language controls the SAS software, and that’s it. Minitab syntax
controls Minitab, and that’s it. S is a little different. Originally, S was both a
program and a language; they were developed together at the former AT&T
Bell Labs starting in the late 1970’s. Like the unix operating system (also
developed around the same time at Bell Labs, among other places), S was
open-source and in the public domain. “Open-source” means that the actual
program code (initially in Fortran, later in C) was public. It was free to
anyone with the expertise to compile and install it.

Later, S was spun off into a private company that is now called Insightful
Corporation. They incorporated both the S syntax and the core of the S
software into a commercial product called S-Plus. S-Plus is not open-source.
The “Plus” part of S-Plus is definitely proprietary. S-Plus uses the S lan-
guage, but the S language is not owned by Insightful Corporation. It’s in the
public domain.

R also uses the S language. This is a unix joke. You know, like how the
unix less command is an improved version of more. Get it? R is produced
by a team of volunteer programmers and statisticians, under the auspices of
the Free Software Foundation. It is an official GNU project. What is GNU?
GNU stands for “GNU’s Not Unix.” The recursive nature of this answer is a
unix joke. Get it?

1



The GNU project was started by a group of programmers (led by the
great Richard Stallman, author of emacs) who believed that software should
be open-source and free for anyone to use, copy or modify. They were irritated
by the fact that corporations could take unix, enhance it in a few minor (or
major) ways, and copyright the result. Solaris, the version of unix used on
many Sun workstations, is an example. An even more extreme example is
Macintosh OS X, which is just a very elaborate graphical shell running on
top of Berkeley Standard Distribution unix.

The GNU operating system was to look and act like unix, but to be
re-written from the ground up, and legally protected in such a way that it
could not be incorporated into any piece of software that was proprietary.
Anybody would be able to modify it and even sell the modified version –
or the original. But any modified version, like the original, would have to
be open-source, with no restrictions on copying or use of the software. The
main GNU project has been successful; the result is called linux.

R is another successful GNU project. The R development team re-wrote
the S software from scratch without using any of the original code. It runs
under the unix, linux, MS Windows and Macintosh operating systems. It
is free, and easy to install. Go to http://www.R-project.org to obtain a
copy of the software or more information. There are also links on the course
home page.

While they were re-doing S, the R development team quietly fixed an
extremely serious problem. While the S language provides a beautiful envi-
ronment for simulation and customized computer-intensive statistical meth-
ods, the S software did the job in a terribly inefficient way. The result was
that big simulations ran very slowly, and long-running jobs often aborted or
crashed the system unless special and very unpleasant measures were taken.
S-Plus, because it is based on the original S code, inherits these problems.
R is immune to them.

Anyway, S is a language, and R is a piece of software that is controlled
by the S language. The discussion that follows will usually refer to S, but
all the examples will use the R implementation of S — specifically, R version
1.4.0 running under unix on credit or tuzo (credit and tuzo are supposed to
be 100% identical). Mostly, what we do here will also work in S-Plus. Why
would you ever want to use S-Plus? Well, it does have some capabilities
that R does not have (yet), particularly in the areas of survival analysis and
spatial statistics.

2



6.2 S as a Calculator

To start R, type “R” and return at the unix prompt. Like this:

/res/jbrunner/442/S > R

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

>

S is built around functions. As you can see above, even asking for help
and quitting are functions (with no arguments).

The primary mode of operation of S is line oriented and interactive. It
is quite unix-like, with all the good and evil that implies. S gives you a
prompt that looks like a ”greater than” sign. You type a command, press
Return (Enter), and the program does what you say. Its default behaviour
is to return the value of what you type, often a numerical value. In the first
example, we receive the “>” prompt, type “1+1” and then press the Enter
key. S tells us that the answer is 2. Then we obtain 23 = 8.

> 1+1

[1] 2

> 2^3 # Two to the power 3

[1] 8

What is this [1] business? It’s clarified when we ask for the numbers
from 1 to 30.

3



> 1:30

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30

S will give you an array of numbers in compact form, using a number in
brackets to indicate the ordinal position of the first item on each line. When
it answered “1+1” with [1] 2, it was telling us that the first item in this
array (of one item) was 2.

S has an amazing variety of mathematical and statistical functions. For
example, the gamma function is defined by Γ(a) =

∫∞
0 e−tta−1 dt, and with

enough effort you can prove that Γ(1
2
) =

√
π. Note that everything to the

left of a # is a comment.

> gamma(.5)^2 # Gamma(1/2) = Sqrt(Pi)

[1] 3.141593

Assignment of values is carried out by a “less than” sign followed im-
mediately by a minus sign; it looks like an arrow pointing to the left. The
command x <- 1 would be read “x gets 1.”

> x <- 1 # Assigns the value 1 to x

> y <- 2

> x+y

[1] 3

> z <- x+y

> z

[1] 3

> x <- c(1,2,3,4,5,6) # Collect these numbers; x is now a vector

Originally, x was a single number. Now it’s a vector (array) of 6 numbers.
S operates naturally on vectors.

> y <- 1 + 2*x

> cbind(x,y)

x y

[1,] 1 3

[2,] 2 5

[3,] 3 7

[4,] 4 9

[5,] 5 11

[6,] 6 13

4



The cbind command binds the vectors x and y into columns. The result
is a matrix whose value is returned (displayed on the screen), since it is not
assigned to anything.

The bracket (subscript) notation for selecting elements of an array is very
powerful. The following is just a simple example.

> z <- y[x>4] # z gets y such that x > 4

> z

[1] 11 13

If you put an array of integers inside the brackets, you get those elements,
in the order indicated.

> y[c(6,5,4,3,2,1)] # y in opposite order

[1] 13 11 9 7 5 3

> y[c(2,2,2,3,4)] # Repeats are okay

[1] 5 5 5 7 9

> y[7] # There is no seventh element. NA is the missing value code

[1] NA

Most operations on arrays are performed element by element. If you take
a function of an array, S applies the function to each element of the array
and returns an array of function values.

> z <- x/y # Most operations are performed element by element

> cbind(x,y,z)

x y z

[1,] 1 3 0.3333333

[2,] 2 5 0.4000000

[3,] 3 7 0.4285714

[4,] 4 9 0.4444444

[5,] 5 11 0.4545455

[6,] 6 13 0.4615385

> x <- seq(from=0,to=3,by=.1) # A sequence of numbers

> y <- sqrt(x)

S is a great environment for producing high-quality graphics, though we
won’t use it much for that. Here’s just one example. We activate the pdf

graphics device, so that all subsequent graphics in the session are written to
a file that can be viewed with Adobe’s Acrobat Reader. We then make a line
plot of the function y =

√
x, and quit.

5



> pdf("testor.pdf")

> plot(x,y,type=’l’) # That’s a lower case L

> q()

Actually, graphics are a good reason to download and install R on your
desktop or laptop computer. By default, you’ll see nice graphics output on
your screen. Under unix, it’s a bit of a pain unless you’re in an X-window
environment (and we’re assuming that you are not). You have to transfer
that pdf file somewhere and view it with Acrobat or Acrobat Reader.

Continuing the session, a couple of interesting things happen when we
quit. First, we are asked if we want to save the “workspace image.” The
responses are Yes, No and Cancel (don’t quit yet). If you say Yes, R will
write a file containing all the objects (x, y and z in the present case) that
have been created in the session. Next time you start R, your work will be
“restored” to where it was when you quit.

Save workspace image? [y/n/c]: y

credit.erin > ls

testor.pdf

Notice that when we type ls, to list the files, we see only testor.pdf, the
pdf file containing the plot of y =

√
x. Where is the workspace image? It’s

an invisible file; type ls -a to see all the files.

credit.erin > ls -a

./ ../ .RData testor.pdf

There it is: .RData. Files beginning with a period don’t show up in output
to the ls command unless you use the -a option. R puts .RData in the
(sub)directory from which R was invoked. This means that if if you have
a separate subdirectory for each project or assignment (not a bad way to
organize your work), R will save the workspace from each job in a separate
place, so that you can have variables with names like x in more than one
place, containing different numbers. When we return to R,

credit.erin > R

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

6



R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

[Previously saved workspace restored]

> ls()

[1] "x" "y" "z"

> max(x)

[1] 3

All the examples so far (and many of the examples to follow) are interac-
tive, but for serious work, it’s better to work with a command file. Put your
commands in a file and execute them all at once. Suppose your commands
are in a file called commands.R. At the S prompt, you’d execute them with
source("commands.R"). From the unix prompt, you’d do it like this. The
--vanilla option invokes a “plain vanilla” mode of operation suitable for
this situation.

credit.erin > R --vanilla < commands.R > homework.out

For really big simulations, you may want to run the job in the background
at a lower priority. The & suffix means run it in the background. nohupmeans
don’t hang up on me when I log out. nice means be nice to other users, and
run it at a lower priority.

credit.erin > nohup nice R --vanilla < bvnorm.R > bvnorm.out &

7


