
Chapter 5:  Multivariate Analysis and Repeated
Measures 

MMMMuuuullllttttiiiivvvvaaaarrrriiiiaaaatttteeee  -- More than one dependent variable at once.  Why do it?  Primarily
because if you do parallel analyses on lots of outcome measures, the probability of
getting significant results just by chance will definitely exceed the apparent å = 0.05
level.  It is also possible in principle to detect results from a multivariate analysis that
are not significant at the univariate level.

The simplest way to do multivariate analysis is to do a univariate analysis on each
dependent variable separately, and apply a Bonferroni correction.  The disadvantage is
that testing this way is less powerful than doing it with real multivariate tests. 

Another advantage of a true multivariate analysis is that it can "notice" things missed by
several Bonferroni-corrected univariate analyses, because ...

Under the surface, a classical multivariate analysis involves the construction of the
unique linear combination of the dependent variables that shows the strongest
relationship (in the sense explaining the remaining variation) with the independent
variables. 

The linear combination in question is called the first ccccaaaannnnoooonnnniiiiccccaaaallll    vvvvaaaarrrriiiiaaaatttteeee    or    ccccaaaannnnoooonnnniiiiccccaaaallll
vvvvaaaarrrriiiiaaaabbbblllleeee.  

The number of canonical variables equals the number of dependent 
variables (or IVs, whichever is fewer).

The canonical variables are all uncorrelated with each other.  The second 
one is constructed so that it has as strong a relationship as possible to the 
independent variables -- subject to the constraint that it have zero 
correlation with the first one, and so on.
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This why it is not optimal to do a principal components analysis (or factor 
analysis) on a set of dependent variables, and then treat the components 
(or factor scores) as dependent variables.  Ordinary multivariate analysis is 
already doing this, and doing it much better.

AAAAssssssssuuuummmmppppttttiiiioooonnnnssss

As in the case of univariate analysis, the statistical assumptions of multivariate analysis
concern conditional distributions -- conditional upon various configurations of
independent variable XXXX values.  Here we are talking about the conditional joint
distribution of several dependent variables observed for each case, say Y1, ..., Yk.
These are often described as a "vector" of observations.  It may help to think of the
collection of DV values for a case as a point in k-dimensional space, and to imagine an
arrow pointing from the origin (0, ...,0) to the point (Y1, ..., Yk); the arrow is literally
a vector.  As I say, this may help.  Or it may not.  

The classical assumptions of multivariate analysis depend on the idea of a population
covariance.  The population covariance between Y2 and Y4 is denoted ß2,4, and is
defined by ß2,4 =   ß2 ß4, where 

ß2 is the population standard deviation of Y2, 
ß4 is the population standard deviation of Y4, and
 is the population correlation between Y2 and Y4 

(that's the Greek letter rho).

The population covariance can be estimated by the sample covariance, defined in a
parallel way by   s2,4  =  r s2 s4, where s2 and s4 are the sample standard deviations
and r is the Pearson correlation coefficient.  

Whether we are talking about population parameters or sample statistics, it is clear that
zero covariance means zero correlation and vice versa.
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We will use Í (the capital Greek letter sigma) to stand for the population variance-
covariance matrix.  This is a k by k rectangular array of numbers with variances on
the main diagonal, and covariances on the off-diagonals. For 4 dependent variables it
would look like this:

Σ = 

  
σ1

2 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ3
2 σ3,4

σ1,4 σ2,4 σ3,4 σ4
2

With this background, the assumptions of classical multivariate analysis are that
(conditional on the X values) 

Sample vectors Y = (Y1, ..., Yk) represent independent observations

for different cases.

Each conditional distribution is multivariate normal.

Each conditional distribution has the same population variance-
covariance matrix  Í.  

These assumptions are directly parallel to those of classical univariate regression.
Also parallel to univariate analysis is a linear model for each population mean
(now we have k of them).
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E[Y|x]  = 

  µ1

µ2

µk

=

  
E[Y1|x]
E[Y2|x]

E[Yk|x]

 =

  
β0,1 + β1,1x1 + + βp – 1,1xp – 1

β0,2 + β1,2x1 + + βp – 1,2xp – 1

β0,k + β1,kx1 + + βp – 1,kxp – 1

There are k different sets of regression coefficients -- one for each
dependent variable.

There is only one set of independent variables -- the same for each DV.
Dummy variables, interactions etc. are exactly as in univariate regression.

Estimation:  The least squares estimates of those doubly-subscripted betas are
exactly what one would get from k separate univariate analyses.  Since
the estimated regression coefficients are the same, so are the Yô values and so are
the residuals.  All methods for univariate residual analysis apply.

Only the tests and confidence intervals (probability statements) are different for
univariate and multivariate analysis.

Testing: In univariate analysis, different standard methods for deriving tests
(these are hidden from you) all point to Fisher's F test.  In multivariate analysis
there are four major test statistics, Wilks' Lambda, Pillai's Trace, the
Hotelling-Lawley Trace, and Roy's Greatest Root.  
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When there is only one dependent variable, these are all equivalent to F.  When
there is more than one DV they are all about equally "good" (in any reasonable
sense), and conclusions from them generally agree -- but not always.  Sometimes
one will designate a finding as significant and another will not.  In this case you
have borderline results and there is no conventional way out of the dilemma.  

The four multivariate test statistics all have F approximations that are used by
SAS and other stat packages to compute p-values.  Tables are available in
textbooks on multivariate analysis.  For the first three tests (Wilks' Lambda,

Pillai's Trace and the Hotelling-Lawley Trace), the F approximations are very
good.  For Roy's greatest root the F approximation is lousy.  This is a problem
with the cheap method for getting p-values, not with the test itself.  One can
always use tables.

When a multivariate test is significant, many people then follow up with ordinary
univariate tests to see "which dependent variable the results came from."  More
conservative (and better) is to follow up with Bonferroni-corrected
univariate tests.  When you do this, there is no guarantee that any of the
Bonferroni-corrected tests will be significant.  

It is also possible, and in some ways very appealing, to follow up a significant
multivariate test with Scheffe tests.  For example, Scheffe follow-ups to a
significant one-way multivariate ANOVA would include adjusted versions of all
the corresponding univariate one-way ANOVAs, all multivariate pairwise
comparisons, all univariate pairwise comparisons, and lots of other possibilities
–– all simultaneously protected at the 0.05 level. 

You can also try interpret a significant multivariate effect by looking at the
canonical variates, but there is no guarantee they will make sense.  
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/******************** senicmv96a.sas *************************/
options linesize=79;
title 'Senic data: SAS glm & reg multivariate intro';

%include 'senicdef.sas';  /* senicdef.sas reads data, etc.  
                             Includes reg1-reg3, ms1 & mr1-mr3 */

/* First a nice two-factor MANOVA on infrisk & stay */

proc glm;
     class region medschl;
     model infrisk stay = region|medschl; 
     manova h = _all_;

The glm output starts with full univariate output for each DV.  Then (for each
effect tested) some multivariate output you ignore,  

                        General Linear Models Procedure
                       Multivariate Analysis of Variance

           Characteristic Roots and Vectors of: E Inverse * H, where
         H = Type III SS&CP Matrix for REGION   E = Error SS&CP Matrix

        Characteristic   Percent        Characteristic Vector  V'EV=1
             Root
                                               INFRISK           STAY

            0.14830859     95.46           -0.00263408     0.06067199
            0.00705986      4.54            0.08806967    -0.03251114

Followed by the interesting part.

                Manova Test Criteria and F Approximations for
                  the Hypothesis of no Overall REGION Effect
         H = Type III SS&CP Matrix for REGION   E = Error SS&CP Matrix

                              S=2    M=0    N=51

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.86474110     2.6127         6       208  0.0183
 Pillai's Trace             0.13616432     2.5570         6       210  0.0207
 Hotelling-Lawley Trace     0.15536845     2.6672         6       206  0.0163
 Roy's Greatest Root        0.14830859     5.1908         3       105  0.0022

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.
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. . .
               Manova Test Criteria and Exact F Statistics for
                  the Hypothesis of no Overall MEDSCHL Effect
        H = Type III SS&CP Matrix for MEDSCHL   E = Error SS&CP Matrix

                              S=1    M=0    N=51

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.92228611     4.3816         2       104  0.0149
 Pillai's Trace             0.07771389     4.3816         2       104  0.0149
 Hotelling-Lawley Trace     0.08426224     4.3816         2       104  0.0149
 Roy's Greatest Root        0.08426224     4.3816         2       104  0.0149

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.

. . .
                Manova Test Criteria and F Approximations for
              the Hypothesis of no Overall REGION*MEDSCHL Effect
     H = Type III SS&CP Matrix for REGION*MEDSCHL   E = Error SS&CP Matrix

                              S=2    M=0    N=51

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.95784589     0.7546         6       208  0.6064
 Pillai's Trace             0.04228179     0.7559         6       210  0.6054
 Hotelling-Lawley Trace     0.04387599     0.7532         6       206  0.6075
 Roy's Greatest Root        0.04059215     1.4207         3       105  0.2409

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.

Remember the output started with the univariate analyses.  We'll look at them
here (out of order) -- just Type III SS, because that's parallel to the multivariate
tests.  We are tracking down the significant multivariate effects for Region and
Medical School Affiliation.  Using Bonferroni correction means only believe it if
p < 0.025.

Dependent Variable: INFRISK   prob of acquiring infection in hospital

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

REGION                   3       6.61078342      2.20359447     1.35    0.2623
MEDSCHL                  1       6.64999500      6.64999500     4.07    0.0461
REGION*MEDSCHL           3       5.32149160      1.77383053     1.09    0.3581
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Dependent Variable: STAY   av length of hospital stay, in days

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

REGION                   3      41.61422755     13.87140918     5.19    0.0022
MEDSCHL                  1      22.49593643     22.49593643     8.41    0.0045
REGION*MEDSCHL           3       0.92295998      0.30765333     0.12    0.9511
                                                                           

We conclude that the multivariate effect comes from a univariate relationship
between the IVs and stay.  Question:  If this is what we were going to do in the
end, why do a multivariate analysis at all?  Why not just two univariate analyses
with a Bonferroni correction?

The command file senicmv96a.sas continues as follows;

/* Now do it with proc reg. Syntax is the same, except list more
   than one dependent variable, and say "mtest" instead of "test." */

proc reg;
     model infrisk stay = reg1-reg3 ms1 mr1-mr3;
     regtest:  mtest reg1=reg2=reg3=0;
     mstest:   mtest ms1=0;
     m_by_r:   mtest mr1=mr2=mr3=0; 

This gives us exactly the same results we got from proc glm.  The point is that
multivariate analysis of variance is just a special case of multivariate regression;
you can do it either way.  Proc reg can give you a little more control over the
details, but at the cost of setting up your own dummy variables.
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Repeated measures

In certain kinds of experimental research, it is common to obtain repeated
measurements of a variable from the same individual at several

different points in time.  Usually it is unrealistic to assume that these repeated
observations are uncorrelated, and it is very desirable to build their inter-
correlations into the statistical model.

Sometimes, an individual (in some combination of experimental conditions) is
measured under essentially the same conditions at several different points in time.
In that case we will say that time is a within-subjects factor, because each
subject contributes data at more than one value of the IV "time."  If a subject
experiences only one value of an IV, it is called a between subjects factor.

.Sometimes, an individual (in some combination of other experimental
conditions) experiences more than one experimental treatment -- for example
judging the same stimuli under different background noise levels.  In this case the
order of presentation of different noise levels would be counterbalanced so that
time and noise level are unrelated (not confounded).  Here noise level would be a
within-subjects factor.  The same study can definitely have more than one
within-subjects factor and more than one between subjects factor.

The meaning of main effects and interactions, as well as their graphical
presentation, is the same for within and between subjects factors.  

We will discuss three methods for analyzing repeated measures data.  In an order
that is convenient but not chronological they are

1. The multivariate approach.
2. The classical univariate approach.
3. The covariance structure approach.
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The multivariate approach to repeated measures

First, note that any of the 3 methods can be multivariate, in the sense that several
dependent variables can be measured at more than one time point.  We will start
with the simpler case in which a single dependent variable is measured for each
subject on several different occasions.

The basis of the multivariate approach to repeated measures is that the different
measurements conducted on each individual should be considered as

multiple dependent variables.

If there are k dependent variables, regular multivariate analysis allows for the
analysis of up to k linear combinations of those DVs, instead of the original
dependent variables.  

All the multivariate approach does is to set up those linear combinations to be
meaningful in terms of representing the repeated measures structure of the data.

For example, suppose that men and women in 3 different age groups are tested on
their ability to detect a signal under 5 different levels of background noise.
There are 10 women and 10 men in each age group for a total n = 60.  Order of
presentation of noise levels is randomized for each subject, and the subjects
themselves are tested in random order.  This is a three-factor design.  Age and
sex are between subjects factors, and noise level is a within-subjects factor.

Let Y1, Y2, Y3, Y4 and Y5 be the "Detection Scores" under the 5 different noise
levels.
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Let Y1, Y2, Y3, Y4 and Y5 be the "Detection Scores" under the 5 different noise
levels.  Their population means are µ1, µ2, µ3, µ4 and µ5 respectively.

Now construct 5 linear combinations of the Y's, as follows.

W1 = (Y1+Y2+Y3+Y4+Y5 ) / 5 E(W1) =   (µ1+µ2+µ3+µ4+µ5 ) / 5
W2 = Y1 - Y2 E(W2) =   µ1 - µ2
W3 = Y2 - Y3 E(W3) =   µ2 - µ3
W4 = Y3 - Y4 E(W4) =   µ3 - µ4
W5 = Y4 - Y5 E(W5) =   µ4 - µ5

All the population means are of course conditional on the values of some
independent variables.   We will adopt a linear model for each one, as in the usual
multivariate setup.  In this case the independent variables (the weights for the
linear combinations of ∫'s) are dummy variables for the categorical independent
variables sex & age, and the product terms for their interactions.

Between-subjects effects:  The main effects for age and sex, and the age by
sex interaction, are just analyses conducted as usual on a single linear combination
of the DVs, that is, on W1.  This is what we want; we are just averaging across
within-subject values.  

Within-subject effects:  Suppose that (for each configuration of X values) 

E(W2) =  E(W2) =  E(W2) =  E(W2) =  0
This means µ1 = µ2,  µ2 = µ3,  µ3 = µ4,  µ4 = µ5.

That is, no difference among noise level means, i.e., no main effect for the
within-subjects factor.  
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Interactions of between and within-subjects factors are between-
subjects effects tested simultaneously on the dependent variables

representing differences among within-subject values -- W2 through
W5 in this case.  For example, a significant sex difference in W2 through W5
means that the pattern of differences in mean discrimination among noise levels is
different for males and females.  Conceptually, this is exactly a noise level by sex
interaction.

Similarly, a sex by age interaction on W2 through W5 simultaneously means that
the pattern of differences in mean discrimination among noise levels depends on
special combinations of age and sex -- a three-way (age by sex by noise)
interaction.

Note: There is nothing in this discussion that limits us to dummy variables for
categorical independent variables.  Thus, multiple regression with repeated
measures is completely reasonable and presents no special difficulties.

Here is noise.dat.  Order of vars is 

ident, interest, sex, age, noise level, time noise level presented, discrim score

esc> less noise.dat
   1  2.5  1  2  1  4  50.7
   1  2.5  1  2  2  1  27.4
   1  2.5  1  2  3  3  39.1
   1  2.5  1  2  4  2  37.5
   1  2.5  1  2  5  5  35.4
   2  1.9  1  2  1  3  40.3
   2  1.9  1  2  2  1  30.1
   2  1.9  1  2  3  5  38.9
   2  1.9  1  2  4  2  31.9
   2  1.9  1  2  5  4  31.6
   3  1.8  1  3  1  2  39.0
   3  1.8  1  3  2  5  39.1
   3  1.8  1  3  3  4  35.3
   3  1.8  1  3  4  3  34.8
   3  1.8  1  3  5  1  15.4
   4  2.2  0  1  1  2  41.5
   4  2.2  0  1  2  4  42.5
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/**************** noise96a.sas ***********************/
options linesize=79 pagesize=250;
title 'Repeated measures on Noise data:  Multivariate approach';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Multivariate data read */
     input ident  interest  sex  age  noise1 time1 discrim1
           ident2 inter2    sex2 age2 noise2 time2 discrim2
           ident3 inter3    sex3 age3 noise3 time3 discrim3
           ident4 inter4    sex4 age4 noise4 time4 discrim4
           ident5 inter5    sex5 age5 noise5 time5 discrim5 ;
     format sex sex2-sex5 sexfmt.;
     /* noise1 = 1, ... noise5 = 5. time1 = time noise 1 presented etc.
        ident, interest, sex & age are identical on each line */
     label interest = 'Interest in topic (politics)';

proc glm;
     class age sex;
     model discrim1-discrim5 = age|sex;
     repeated noise profile/ short summary;

First we get univariate analyses of discrim1-discrim5 -- not the transformed
vars yet.  Then,

                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
                      Repeated Measures Level Information

       Dependent Variable   DISCRIM1 DISCRIM2 DISCRIM3 DISCRIM4 DISCRIM5

           Level of NOISE          1        2        3        4        5

               Manova Test Criteria and Exact F Statistics for
                       the Hypothesis of no NOISE Effect
         H = Type III SS&CP Matrix for NOISE   E = Error SS&CP Matrix

                             S=1    M=1    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.45363698    15.3562         4        51  0.0001
 Pillai's Trace             0.54636302    15.3562         4        51  0.0001
 Hotelling-Lawley Trace     1.20440581    15.3562         4        51  0.0001
 Roy's Greatest Root        1.20440581    15.3562         4        51  0.0001
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                Manova Test Criteria and F Approximations for
                     the Hypothesis of no NOISE*AGE Effect
       H = Type III SS&CP Matrix for NOISE*AGE   E = Error SS&CP Matrix

                            S=2    M=0.5    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.84653930     1.1076         8       102  0.3645
 Pillai's Trace             0.15589959     1.0990         8       104  0.3700
 Hotelling-Lawley Trace     0.17839904     1.1150         8       100  0.3597
 Roy's Greatest Root        0.16044230     2.0857         4        52  0.0960

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.

               Manova Test Criteria and Exact F Statistics for
                     the Hypothesis of no NOISE*SEX Effect
       H = Type III SS&CP Matrix for NOISE*SEX   E = Error SS&CP Matrix

                             S=1    M=1    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.93816131     0.8404         4        51  0.5060
 Pillai's Trace             0.06183869     0.8404         4        51  0.5060
 Hotelling-Lawley Trace     0.06591477     0.8404         4        51  0.5060
 Roy's Greatest Root        0.06591477     0.8404         4        51  0.5060

                Manova Test Criteria and F Approximations for
                   the Hypothesis of no NOISE*AGE*SEX Effect
     H = Type III SS&CP Matrix for NOISE*AGE*SEX   E = Error SS&CP Matrix

                            S=2    M=0.5    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.84817732     1.0942         8       102  0.3735
 Pillai's Trace             0.15679252     1.1058         8       104  0.3654
 Hotelling-Lawley Trace     0.17313932     1.0821         8       100  0.3819
 Roy's Greatest Root        0.12700316     1.6510         4        52  0.1755

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.
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                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
               Tests of Hypotheses for Between Subjects Effects

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

AGE                      2      1751.814067      875.907033     5.35    0.0076
SEX                      1        77.419200       77.419200     0.47    0.4946
AGE*SEX                  2       121.790600       60.895300     0.37    0.6911

Error                   54      8839.288800      163.690533
                                                                    

Then we are given "Univariate Tests of Hypotheses for Within Subject Effects"
We will discuss these later.  After that in the lst file, ...

            Repeated measures on Noise data:  Multivariate approach        

                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
                  Analysis of Variance of Contrast Variables

           NOISE.N represents the nth successive difference in NOISE

Contrast Variable: NOISE.1

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1     537.00416667    537.00416667     5.40    0.0239
AGE                      2      10.92133333      5.46066667     0.05    0.9466
SEX                      1      45.93750000     45.93750000     0.46    0.4996
AGE*SEX                  2      83.67600000     41.83800000     0.42    0.6587

Error                   54    5370.09100000     99.44612963

Contrast Variable: NOISE.2

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1     140.14816667    140.14816667     1.36    0.2489
AGE                      2     106.89233333     53.44616667     0.52    0.5985
SEX                      1      33.90016667     33.90016667     0.33    0.5688
AGE*SEX                  2     159.32233333     79.66116667     0.77    0.4670

Error                   54    5569.94700000    103.14716667
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Contrast Variable: NOISE.3

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1      50.41666667     50.41666667     0.72    0.4012
AGE                      2      56.40633333     28.20316667     0.40    0.6720
SEX                      1     195.84266667    195.84266667     2.78    0.1012
AGE*SEX                  2     152.63633333     76.31816667     1.08    0.3456

Error                   54    3802.61800000     70.41885185

Contrast Variable: NOISE.4

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1     518.61600000    518.61600000     7.77    0.0073
AGE                      2     449.45100000    224.72550000     3.37    0.0418
SEX                      1      69.55266667     69.55266667     1.04    0.3118
AGE*SEX                  2     190.97433333     95.48716667     1.43    0.2479

Error                   54    3602.36600000     66.71048148
                                                                         

The classical univariate approach to repeated measures

The univariate approach to repeated measures is chronologically the oldest.  It
can be derived in a clever way from the multivariate tests involving within
subjects factors.  It's what you get at the end of the default glm output -- before
the analysis of transformed variables, which you have to request specially. 

                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
           Univariate Tests of Hypotheses for Within Subject Effects

Source: NOISE
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      4    2289.31400000     572.32850000     14.12   0.0001   0.0001   0.0001

Source: NOISE*AGE
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      8     334.42960000      41.80370000      1.03   0.4134   0.4121   0.4134

(The adj. G - G business will be explained later)
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Source: NOISE*SEX
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      4     142.42280000      35.60570000      0.88   0.4777   0.4722   0.4777

Source: NOISE*AGE*SEX
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      8     345.66440000      43.20805000      1.07   0.3882   0.3877   0.3882

Source: Error(NOISE)

     DF      Type III SS      Mean Square
    216    8755.83320000      40.53626481

                      Greenhouse-Geisser Epsilon = 0.9356
                             Huynh-Feldt Epsilon = 1.1070
                                                                 

To explain the classical univariate approach to repeated measures, we need to
introduce some concepts that have been avoided until now.

Nested effects.  Suppose a company runs computer training schools in three
different cities.  One of the cities has 2 schools, the second city has 3 schools, and
the third city also has 3 schools.  In each school, 4 instructors are selected for
evaluation (students' knowledge is measured somehow).  

There are three factors in this study, city, school and instructor.  But each school
is of course only in one city, and let's also say that an instructor teaches in only
one school.  We say that school is nested within city, and instructor is nested
within school.  There is a good dummy variable coding scheme for nested
designs, but we'll skip it.  Proc glm uses the syntax 

model learn = city school(city) instr(school);
Designs can have some factors that are nested, and others that are not (these are
called "crossed").  The patterns can be complex, and the designs can be very
useful, very relevant to certain types of research.

Chapter 5, Page 17



Random effects.  The models we have been dealing with until now have
included only fixed effects.  In a random effects model, the values of the
independent variable represent a random sample from some

population of values.  In the computer school example, if instructors were just
designated for inclusion in the study, instructor would be a fixed effect (we are
comparing Chris to Pat).  If they were randomly sampled from a population of
instructors (this is a big company), instructor would be a random effect.  A
model that contains both fixed and random effects is called "mixed."

Significance tests in random and mixed models use F statistics, but the
denominator is not always MSE, as it is for purely fixed effects models.
Sometimes it is an interaction term.  Choosing the right error term for mixed
models can be complicated job, guided by expected values of the mean square
(SS/df) terms; these are called expected mean squares.  Sometimes there is no
right error term and certain hypotheses are untestable with this technology.
Fortunately the whole process can be automated, and SAS does a good job.  
When the design is unbalanced, usually none of the error terms is

useful, and the expected mean squares approach breaks down.

Random effects, like fixed effects, can either be nested or not; it depends on the
logic of the design.  An interesting case of nested and purely random effects is
provided by sub-sampling.  For example, we take a random sample of towns,
from each town we select a random sample of households, and from each
household we select a random sample of individuals to test, or measure, or
question.

In such cases the population variance of the DV can truly be partitioned into
pieces -- the variance due to towns, the variance due to households within towns,
and the variance due to individuals within households.  These components of
variance can be estimated, and they are, by a program called proc nested, a
specialized tool for just exactly this design.  All effects are random, and each is
nested within the preceding one.
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Another example:  Suppose we are studying waste water treatment, specifically
the porosity of "flocks," nasty little pieces of something floating in the tanks.  We
randomly select a sample of flocks, and then cut each one up into very thin slices.
We then randomly select a sample of slices (called "sections") from each flock,
look at it under a microscope, and assign a number representing how porous it is
(how much empty space there is in a designated region of the section).  The
independent variables are flock and section.  The research question is whether
section is explaining a significant amount of the variance in porosity -- because
if not, we can use just one section per flock, and save considerable time &
expense.

The SAS syntax for this would be

proc sort; by flock section; /* Data must be sorted */

proc nested;

     class flock section;

     var por;

The F tests on the output are easy to locate.  The last column of output ("Percent
of total") is estimated percent of total variance due to the effect.  It's fairly close
to R2, but not the same.  To include a covariate (say "window"), just use
var window por; instead of var por;.  You'll get an analysis of por with
window as the covariate (which is what you want) and an analysis of window with
por as the covariate (which you should ignore).

Anyway, the classical univariate approach to repeated measures is to
treat "subjects" as a random effect that is nested within the between-

subjects factors, and which does not interact with any other factors.
Interactions between subjects and various factors may be formally computed, but
actually these are error terms; they are not tested.
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In the noise level example, we could do

/**************** noise96b.sas ***********************/
options linesize=79 pagesize=250;
title 'Repeated measures on Noise data:  Univariate approach';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Univariate data read */
     input ident interest sex age noise time discrim ;
     format sex sexfmt.;
     label interest = 'Interest in topic (politics)'
           time     = 'Order of presenting noise level';

proc glm;
     class age sex noise ident;
     model discrim = ident(age*sex) age|sex|noise;
     random ident(age*sex) / test;

Notice the univariate data read!  We are assuming n = number of
observations, not number of cases.

The results are identical to the univariate output produced as a by-product of the
multivariate approach to repeated measures -- if you know where to look.

The overall test, and tests associated with Type I & Type III SS are all invalid.

There are expected mean squares, which you should probably ignore.

There are also repeated warnings that "This test assumes one or more
other fixed effects are zero."   SAS is buying testability of the hypotheses
by assuming that you're only interested in an effect if all the higher-order
interactions involving the effect are absent.

Why do it this way at all?  Time-varying covariates.

Chapter 5, Page 20



The univariate approach to repeated measures has some real virtues, sometimes.

Because n = the number of observations rather than the number of cases, it is
possible to have more parameters in a model than cases, or even more
measurements than cases.  In this situation the multivariate approach just blows
up. 

(Statistical methods should not be a Procrustean bed.)

The univariate approach may assume n is the number of observations, but it does
not assume those observations are independent.  In fact, the observations that
come from the same subject are assumed to be correlated, as follows.

The "random effect" for subjects is a little piece of random error, characteristic
of an individual. We think of it as random because the individual was randomly
sampled from a population.  If, theoretically, the only reason that the
measurements from a case are correlated is that each one is affected by this same
little piece of under-performance or over-performance, the univariate approach
represents a very good model.  

The "random effect for a subject" idea implies a variance-covariance matrix of
the DVs (say Y1, ..., Y4) with a compound symmetry structure.

Σ = 

  
σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1

Actually, compound symmetry is sufficient but not necessary for the univariate
repeated F tests to be valid.  All that's necessary is "sphericity," which means
the covariances of all differences among Y's within a case are the same.
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Another virtue of the univariate approach is that it allows time-dependent
covariates.  Standard multivariate analysis has the same X values for each
dependent variable.  

Now some weak points of the classical univariate approach:

The model is good if the only reason for correlation among the repeated
measures is that one little piece of individuality added to each measurement by a
subject.  However, if there are other sources of covariation among the repeated
measures (like learning, or fatigue, or memory of past performance), there is too
much chance rejection of the null hypothesis.  In this case the multivariate
approach, with its unknown variance-covariance matrix, is more conservative.

Even more conservative (overly so, if the assumptions of the multivariate
approach are met) is the Greenhouse-Geisser correction, which compensates for
the problem by reducing the error degrees of freedom.

If the design is unbalanced (non-proportional n's), the "F-tests" of the classical
univariate approach do not have an F distribution (even if all the statistical
assumptions are satisfied), and it is unclear what they mean, if anything.  

Like the multivariate approach, the univariate approach to repeated measures
analysis throws out a case if any of the observations are missing.  Did somebody
say "mean substitution?" Oh no!)

It has real trouble with unequally spaced observations, and with very natural and
high quality data sets where (probably) different numbers of observations are
collected for each individual. 
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The covariance structure approach to repeated measures.  

In the covariance structure approach, the data are set up to be read in a univariate
manner, and one of the variables is a case identification, which will be used to
determine which observations of a variable come from the same case.  Naturally,
data lines from the same case should be adjacent in the file.

Instead of assuming independence or inducing compound symmetry within
subjects by random effects assumptions, one directly specifies the structure
of the covariance matrix of the observations that come from the same

subject.

The following present no problem at all:

Time-varying covariates (categorical, too)
Unbalanced designs
Unequally spaced observations*
Missing or unequal numbers of observations within subjects*
More variables than subjects (but not more parameters than subjects)

It's implemented with SAS proc mixed.  Only SAS seems to have it.

• Lots of different covariance structures are possible, including 
compound symmetry and unknown.

• A good number of powerful features will not be discussed here.
• Everything's still assumed multivariate normal.

* Provided this is unrelated to the variable being repeatedly measured.  Like if
the DV is how sick a person is, and the data might be missing because the person
is too sick to be tested, there is a problem.

Chapter 5, Page 23



/**************** noise96c.sas ***********************/
options linesize=79 pagesize=250;
title 'Repeated measures on Noise data:  Cov Struct Approach';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Univariate data read */
     input ident  interest  sex  age  noise  time  discrim ;
     format sex sexfmt.;
     label interest = 'Interest in topic (politics)'
           time     = 'Order of presenting noise level';

proc mixed method = ml;
     class age sex noise;
     model discrim = age|sex|noise;
     repeated / type = un subject = ident r;
     lsmeans age noise;

proc mixed method = ml;
     class age sex noise;
     model discrim = age|sex|noise;
     repeated / type = cs subject = ident r;  

Now part of noise95c.lst

                             The MIXED Procedure

                           Class Level Information

                        Class     Levels  Values

                        AGE            3  1 2 3
                        SEX            2  Female Male
                        NOISE          5  1 2 3 4 5

                       ML Estimation Iteration History

              Iteration  Evaluations     Objective     Criterion

                      0            1  1521.4783527
                      1            1  1453.7299937    0.00000000

                           Convergence criteria met.

                            R Matrix for Subject 1
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   Row          COL1          COL2          COL3          COL4          COL5

     1   54.07988333   17.08300000   21.38658333   17.91785000   24.27668333
     2   17.08300000   69.58763333   15.56748333   29.98861667   21.71448333
     3   21.38658333   15.56748333   54.37978333   25.15906667   21.00126667
     4   17.91785000   29.98861667   25.15906667   59.31531667   27.58265000
     5   24.27668333   21.71448333   21.00126667   27.58265000   55.88941667

                     Covariance Parameter Estimates (MLE)

          Cov Parm           Estimate     Std Error       Z  Pr > |Z|

          DIAG UN(1,1)    54.07988333    9.87359067    5.48    0.0001
               UN(2,1)    17.08300000    8.22102992    2.08    0.0377
               UN(2,2)    69.58763333   12.70490550    5.48    0.0001
               UN(3,1)    21.38658333    7.52577602    2.84    0.0045
               UN(3,2)    15.56748333    8.19197469    1.90    0.0574
               UN(3,3)    54.37978333    9.92834467    5.48    0.0001
               UN(4,1)    17.91785000    7.66900119    2.34    0.0195
               UN(4,2)    29.98861667    9.15325956    3.28    0.0011
               UN(4,3)    25.15906667    8.01928166    3.14    0.0017
               UN(4,4)    59.31531667   10.82944565    5.48    0.0001
               UN(5,1)    24.27668333    7.75870531    3.13    0.0018
               UN(5,2)    21.71448333    8.52518917    2.55    0.0109
               UN(5,3)    21.00126667    7.61610965    2.76    0.0058
               UN(5,4)    27.58265000    8.24206793    3.35    0.0008
               UN(5,5)    55.88941667   10.20396474    5.48    0.0001
          Residual         1.00000000             .       .         .

                    Model Fitting Information for DISCRIM

                   Description                        Value

                   Observations                    300.0000
                   Variance Estimate                 1.0000
                   Standard Deviation Estimate       1.0000
                   Log Likelihood                  -1002.55
                   Akaike's Information Criterion  -1017.55
                   Schwarz's Bayesian Criterion    -1045.32
                   -2 Log Likelihood               2005.093
                   Null Model LRT Chi-Square        67.7484
                   Null Model LRT DF                14.0000
                   Null Model LRT P-Value            0.0000
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                            Tests of Fixed Effects

                 Source          NDF   DDF  Type III F  Pr > F

                 AGE               2    54        5.95  0.0046
                 SEX               1    54        0.53  0.4716
                 AGE*SEX           2    54        0.41  0.6635
                 NOISE             4   216       18.07  0.0001
                 AGE*NOISE         8   216        1.34  0.2260
                 SEX*NOISE         4   216        0.99  0.4146
                 AGE*SEX*NOISE     8   216        1.30  0.2455     

From the multivariate approach we had F = 5.35, p < .001 for age & approx F =
15.36 for noise.

                      Least Squares Means

         Level           LSMEAN     Std Error   DDF       T  Pr > |T|

         AGE 1      38.66100000    1.21376060    54   31.85    0.0001
         AGE 2      35.24200000    1.21376060    54   29.04    0.0001
         AGE 3      32.76700000    1.21376060    54   27.00    0.0001
         NOISE 1    39.82166667    0.94938474   216   41.94    0.0001
         NOISE 2    36.83000000    1.07693727   216   34.20    0.0001
         NOISE 3    35.30166667    0.95201351   216   37.08    0.0001
         NOISE 4    34.38500000    0.99427793   216   34.58    0.0001
         NOISE 5    31.44500000    0.96513744   216   32.58    0.0001  

Now for the second mixed run we get the same kind of beginning, and then for
compound symmetry structure,

                           Tests of Fixed Effects

                 Source          NDF   DDF  Type III F  Pr > F

                 AGE               2    54        5.95  0.0046
                 SEX               1    54        0.53  0.4716
                 AGE*SEX           2    54        0.41  0.6635
                 NOISE             4   216       15.69  0.0001
                 AGE*NOISE         8   216        1.15  0.3338
                 SEX*NOISE         4   216        0.98  0.4215
                 AGE*SEX*NOISE     8   216        1.18  0.3096

From the univariate approach we had  F = 14.12 for noise.
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Now proc glm will allow easy examination of residuals no matter which approach
you take to repeated measures, provided the data are read in a univariate manner.

/**************** noise96d.sas ***********************/
options linesize=79 pagesize=60;
title 'Repeated measures on Noise data: Residuals etc.';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Univariate data read */
     input ident  interest  sex  age  noise  time  discrim ;
     format sex sexfmt.;
     label interest = 'Interest in topic (politics)'
           time     = 'Order of presenting noise level';

proc glm;
     class age sex noise;
     model discrim = age|sex|noise;
     output out=resdata predicted=predis  residual=resdis;

/* Look at some residuals */
proc sort; by time;
proc univariate plot;
    var resdis; by time;
proc plot;
     plot resdis * (ident interest);

/* Include time */
proc mixed method = ml;
     class age sex noise time;
     model discrim = time age|sex|noise;
     repeated / type = un subject = ident r;
     lsmeans time age noise;

(Then I generated residuals from this new model using glm, and plotted again.
Nothing. )

                                           Variable=RESDIS
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             |
          25 +
             |
             |
             |
          20 +                        0
             |                                                |
             |                                                |
             |                                                |
          15 +                                                |
             |                                    |           |
             |                                    |           |
             |                        |           |           |
          10 +                        |           |           |
             |            |           |           |        +-----+
             |            |           |           |        |     |
             |            |           |        +-----+     *-----*
           5 +            |           |        |     |     |     |
             |            |        +-----+     |     |     |  +  |
             |            |        |     |     |     |     |     |
             |            |        |     |     *-----*     |     |
           0 +            |        |     |     |  +  |     |     |
             |         +-----+     *--+--*     |     |     +-----+
             |         |     |     |     |     |     |        |
             |         |     |     |     |     +-----+        |
          -5 +         |  +  |     +-----+        |           |
             |         *-----*        |           |           |
             |         |     |        |           |           |
             |         |     |        |           |           |
         -10 +         +-----+        |           |           |
             |            |           |           |           |
             |            |           |           |           |
             |            |           |           |           |
         -15 +            |           |           |           |
             |            |           |           |
             |            |           0           |
             |            |
         -20 +            |           0
             |            |
             |            |
             |            |
         -25 +
              ------------+-----------+-----------+-----------+-----------
     TIME                 1           2           3           4

Unfortunately time = 5 wound up on a separate page.  .
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When time is included the results get stronger but conclusions don't change.

                        Tests of Fixed Effects

                 Source          NDF   DDF  Type III F  Pr > F

                 TIME              4   266       17.67  0.0001
                 AGE               2   266       18.45  0.0001
                 SEX               1   266        1.63  0.2027
                 AGE*SEX           2   266        1.28  0.2789
                 NOISE             4   266       10.95  0.0001
                 AGE*NOISE         8   266        0.51  0.8488
                 SEX*NOISE         4   266        0.44  0.7784
                 AGE*SEX*NOISE     8   266        0.74  0.6573

                            Least Squares Means

         Level           LSMEAN     Std Error   DDF       T  Pr > |T|

         TIME 1     29.54468242    0.91811749   266   32.18    0.0001
         TIME 2     34.61557451    0.91794760   266   37.71    0.0001
         TIME 3     36.18863723    0.92819179   266   38.99    0.0001
         TIME 4     39.72344496    0.91838886   266   43.25    0.0001
         TIME 5     37.71099421    0.93376736   266   40.39    0.0001
         AGE 1      38.66100000    0.68895774   266   56.12    0.0001
         AGE 2      35.24200000    0.68895774   266   51.15    0.0001
         AGE 3      32.76700000    0.68895774   266   47.56    0.0001
         NOISE 1    39.69226830    0.89132757   266   44.53    0.0001
         NOISE 2    36.80608879    0.89274775   266   41.23    0.0001
         NOISE 3    35.35302821    0.89130480   266   39.66    0.0001
         NOISE 4    34.12899017    0.89502919   266   38.13    0.0001
         NOISE 5    31.80295787    0.89180628   266   35.66    0.0001
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Some good covariance structures are available in proc mixed.

Variance Components:  type = vc Σ = 

  σ1
2 0 0 0

0 σ2
2 0 0

0 0 σ3
2 0

0 0 0 σ4
2 +

Compound Symmetry:  type = cs Σ = 

  
σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1

Unknown:  type = un Σ = 

  σ1
2 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ3
2 σ3,4

σ1,4 σ2,4 σ3,4 σ4
2

Banded:  type = Σ = 

  σ1
2 σ5 0 0

σ5 σ2
2 σ6 0

0 σ6 σ3
2 σ7

0 0 σ7 σ4
2

First order autoregressive: type = ar(1) Σ =ß2 

  1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ4 ρ 1

There are more, including Toeplitz, banded Toeplitz & spatial (covariance is a
function of Euclidian distance).
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