As you might imagine, as the number of factors becomes large, interpreting higher-way interactions -- that is, figuring out what they mean -- becomes more and more difficult. For this reason, sometimes the higher-order interactions are deliberately omitted from the full model in big experimental designs; they are never tested. Is this reasonable? Most of my answers are just elaborate ways to say I don't know.

More than two values for an independent variable

Regardless of how many factors we have, or how many levels there are in each factor, we could always form a combination variable -- that is, a single categorical independent variable whose values represent all the combinations of independent variable values in the factorial design. We have seen that in a two-by-two design, the tests for both main effects and the interaction resolve themselves into tests for single contrasts -- contrasts of the means of the combination variable. When independent variables have more than two values, the same thing is true, except that tests for main effects and interactions appear as test for collections of contrasts on the combination variable.

It is useful to pursue this principle in detail, for three reasons.

- First, it thinking of an interaction as a collection of contrasts can really help you understand what an interaction is.
- Second, once you have seen the tests for main effects and interactions as collections of contrasts, you can easily compose a test for any collection of contrasts that is of interest.
- Third, seeing main effects and interactions in terms of contrasts makes it easy to see how they can be modified to become Bonferroni or Scheffe follow-ups to initial significant oneway ANOVA on the combination variable --- if you choose to follow this conservative data analytic strategy.

We'll start with an example.

The seeds of the canola plant yield a high-quality cooking oil. Canola is one of Canada's biggest cash crops. But each year, millions of dollars are lost because of a fungus that kills canola plants. Or is it just one fungus? All this stuff looks the same. It's a nasty black rot that grows fastest under moist, warm conditions. It looks quite a bit like the fungus that grows in between shower tiles.

A team of botanists recognized that although the fungus may look the same, there are actually several different kinds that are genetically distinct. There are also quite a few strains of canola plant, so the questions arose

- Are some strains of fungus more aggressive than others? That is, do they grow faster and overwhelm the plant's defenses faster?
- Are some strains of canola plant more vulnerable to infection than others?
- Are some strains of fungus more dangerous to certain strains of plant and less dangerous to others?

These questions can be answered directly by looking at main effects and the interaction, so a factorial experiment was designed in which canola plants of three different varieties were randomly selected to be infected with one of six genetically different types of fungus. The way they did it was to scrape a little patch at the base of the plant, and wrap the wound with a moist band-aid that had some fungus on it. Then the plant was placed in a very moist dark environment for three days. After three days the bandage was removed and the plant was put in a commercial greenhouse. On each of 14 consecutive days, various measurements were made on the plant. Here, we will be concerned with lesion length, the length of the fungus patch on the plant, measured in millimeters.

The dependent variable will be mean lesion length; the mean is over the 14 daily lesion length measurements for each plant. The independent variables are Cultivar (type of canola plant) and MCG (type of fungus). Type of plant is called cultivar because the fungus grows (is "cultivated") on the plant. MCG stands for "Mycelial Compatibility Group." This strange name comes from the way that the botanists decided whether two types of fungus were genetically distinct. The would grow two samples on the same dish in a nutrient solution, and if the two fungus patches stayed separate, they were genetically different. If they grew together into a single patch of fungus (that is, they were compatible), then they were genetically identical. Apparently, this phenomenon is well established.

Here is the SAS program appgreen1.sas. As usual, the entire program is listed first. Then pieces of the program are repeated, together with pieces of output and discussion.

```
/* appgreen1.sas */
%include 'gh91read.sas';
options pagesize=100;
proc freq;
    tables plant*mcg /norow nocol nopercent;
proc glm;
    class plant mcg;
    model meanlng = plant|mcg;
    means plant|mcg;
proc tabulate;
    class mcg plant;
    var meanlng ;
    table (mcg all),(plant all) * (mean*meanlng);
/* Replicate tests for main effects and interactions, using contrasts on a
    combination variable. This is the hard way to do it, but if you can do
    this, you understand interactions and you can test any collection of
    contrasts. The definition of the variable combo could have been in
    gh91read.sas */
data slime;
    set mould; /* mould was created by ghread91.sas */
    if plant=1 and mcg=1 then combo = 1;
        else if plant=1 and mcg=2 then combo = 2;
        else if plant=1 and mcg=3 then combo = 3;
        else if plant=1 and mcg=7 then combo = 4;
        else if plant=1 and mcg=8 then combo = 5;
        else if plant=1 and mcg=9 then combo = 6;
        else if plant=2 and mcg=1 then combo = 7;
        else if plant=2 and mcg=2 then combo = 8;
        else if plant=2 and mcg=3 then combo = 9;
        else if plant=2 and mcg=7 then combo = 10;
        else if plant=2 and mcg=8 then combo = 11;
        else if plant=2 and mcg=9 then combo = 12;
        else if plant=3 and mcg=1 then combo = 13;
        else if plant=3 and mcg=2 then combo = 14;
        else if plant=3 and mcg=3 then combo = 15;
        else if plant=3 and mcg=7 then combo = 16;
        else if plant=3 and mcg=8 then combo = 17;
        else if plant=3 and mcg=9 then combo = 18;
    label combo = 'Plant-MCG Combo';
```

```
/* Getting main effects and the interaction with CONTRAST statements */
proc glm;
    class combo;
    model meanlng = combo;
    contrast 'Plant Main Effect'
        combo 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 0
```



```
    contrast 'MCG Main Effect'
        combo 1 -1 0 0 0 0 0 1 1 -1 0}000000\mp@code{0
        combo 0
        combo 0}0
        combo 0 0 0 0
```



```
    contrast 'Plant by MCG Interaction'
        combo -1 1}1
        combo 0
        combo 0
        combo 0}0
        combo 0
        combo 0}000
        combo 0}000
        combo 0}000
        combo 0}0
        combo 0}0
/* proc reg's test statement may be easier, but first we need to
        make 16 dummy variables for cell means coding. This will illustrate
        arrays and loops, too */
data yucky;
    set slime;
    array mu{18} mu1-mu18;
    do i=1 to 18;
        if combo=. then mu{i}=.;
        else if combo=i then mu{i}=1;
        else mu{i}=0;
    end;
proc reg;
    model meanlng = mul-mu18 / noint;
    alleq: test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12
                        = mu13=mu14=mu15=mu16=mu17=mu18;
    plant: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12,
        mu}7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18; 
    fungus: test mul+mu7+mul3 = mu2+mu8+mu14 = mu3+mu9+mu15
                        = mu4+mul0+mul6 = mu5+mul1+mu17 = mu6+mul2+mu18;
    p_by_f: test mu2-mul=mu8-mu7=mu14-mu13,
                        mu3-mu2=mu9-mu8=mu15-mu14,
                        mu4-mu3=mu10-mu9=mu16-mu15,
                        mu5-mu4=mu11-mu10=mu17-mu16,
                        mu6-mu5=mu12-mu11=mu18-mu17;
```

Chapter 4, Page 31
/* Now illustrate effect coding, with the interaction represented by a collection of product terms. */
data nasty;
set yucky;
/* Two dummy variables for plant */
if plant=. then pl=.;
else if plant=1 then $p 1=1$;
else if plant=3 then $p 1=-1$;
else pl=0;
if plant=. then $\mathrm{p} 2=. ;$
else if plant=2 then $\mathrm{p} 2=1$;
else if plant=3 then $\mathrm{p} 2=-1$;
else p2=0;
/* Five dummy variables for mcg */
if mcg=. then fl=.;
else if mcg=1 then $f 1=1$;
else if mcg=9 then $f 1=-1$;
else f1=0;
if mcg=. then $f 2=. ;$
else if $\mathrm{mcg}=2$ then $\mathrm{f} 2=1$;
else if $\mathrm{mcg}=9$ then $\mathrm{f} 2=-1$;
else $\mathrm{f} 2=0$;
if mcg=. then f3=.;
else if $\mathrm{mcg}=3$ then $\mathrm{f} 3=1$;
else if $m c g=9$ then $f 3=-1$;
else f3=0;
if mcg=. then $f 4=$.;
else if $\mathrm{mcg}=7$ then $\mathrm{f} 4=1$;
else if $m c g=9$ then $f 4=-1$;
else f4=0;
if mcg=. then $f 5=$.;
else if mcg=8 then $f 5=1$;
else if $\mathrm{mcg}=9$ then $\mathrm{f} 5=-1$;
else f5=0;
/* Product terms for interactions */
$p 1 f 1=p 1 * f 1 ; p 1 f 2=p 1 * f 2$; $p 1 f 3=p 1 * f 3$; $p 1 f 4=p 1 * f 4 ; p 1 f 5=p 1 * f 5$;
$\mathrm{p} 2 \mathrm{f} 1=\mathrm{p} 2 * \mathrm{f} 1 ; \mathrm{p} 2 \mathrm{f} 2=\mathrm{p} 2 * \mathrm{f} 2$; $\mathrm{p} 2 \mathrm{f} 3=\mathrm{p} 2 * \mathrm{f} 3$; $\mathrm{p} 2 \mathrm{f} 4=\mathrm{p} 2 * f 4 ; \mathrm{p} 2 f 5=\mathrm{p} 2 * f 5$;
proc reg;
model meanlng $=$ p1 -- p2f5;
plant: test $\mathrm{p} 1=\mathrm{p} 2=0$;
mcg: test $\mathrm{f} 1=\mathrm{f} 2=\mathrm{f} 3=\mathrm{f} 4=\mathrm{f} 5=0$;
p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5=0;

The SAS program starts with a \%include statement that reads ghread91.sas. The file ghread91.sas consists of a single big data step. We'll skip it, because all we really need are the two independent variables plant and mcg, and the dependent variable meanlng.

Just to see what we've got, we do a proc freq to show the sample sizes.

```
proc freq;
    tables plant*mcg /norow nocol nopercent;
```

and we get

TABLE OF PLANT BY MCG

PLANT (Type of Plant) MCG(Mycelial Compatibility Group)

Frequency	$1 \mid$	2	31	71	8 \|	9	Total
GP159	6	6	6	6	6	6	36
HANNA	6	6	6	6	6	6	36
WESTAR	6	6	6	6	6	6	36
Total	18	18	18	18	18	18	108

So it's a nice 3 by 6 factorial design, with 6 plants in each treatment combination. The proc glm for analyzing this is straightforward. Again, we get all main effects and interactions for the factor names separated by vertical bars.

```
proc glm;
    class plant mcg;
    model meanlng = plant|mcg;
    means plant|mcg;
```

And the output is

```
            General Linear Models Procedure
                Class Level Information
    Class Levels Values
    PLANT 3 GP159 HANNA WESTAR
    MCG
                        6 1 2 3 7 8 9
Number of observations in data set = 108
```


Notice that the Type I and Type III tests are the same. This always happens when the sample sizes are equal.

Chapter 4, Page 34

```
1991 Greenhouse Study

General Linear Models Procedure
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Level of PLANT} & \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{Mean} & \multirow[b]{2}{*}{SD} \\
\hline & & & \\
\hline GP159 & 36 & 14.055159 & 12.1640757 \\
\hline HANNA & 36 & 55.700198 & 30.0137912 \\
\hline WESTAR & 36 & 123.965079 & 67.0180440 \\
\hline \multicolumn{4}{|l|}{Level of ----------MEANLN} \\
\hline MCG & N & Mean & SD \\
\hline 1 & 18 & 41.4500000 & 33.6183462 \\
\hline 2 & 18 & 92.1333333 & 78.3509451 \\
\hline 3 & 18 & 87.5857143 & 61.7086751 \\
\hline 7 & 18 & 81.7603175 & 82.6711755 \\
\hline 8 & 18 & 50.8579365 & 39.3417859 \\
\hline 9 & 18 & 33.6535714 & 39.1480830 \\
\hline
\end{tabular}


The main effects are fairly easy to look at, and we definitely construct a plot from the 18 cell means (or copy them into a nicer-looking table. But the following proc tabulate prints a table that is much easier to look at.
proc tabulate;
class mcg plant;
var meanlng ;
table (mcg all),(plant all) * (mean*meanlng);
The syntax of proc tabulate is fairly elaborate, and at times it's worth the effort. Any reader who has seen the type of stub-and-banner tables favoured by professional market researchers will be impressed to hear that proc tabulate can come close to that. I figured out how to make the table below by looking in the manual. I then promptly forgot the overall principles, because it's not a tool I use a lot -- and the syntax is rather arcane.
However, this example is easy to follow if you want to produce good-looking two-way tables of means. Here's the output.


Chapter 4, Page 36

The proc tabulate output makes it easy to graph the means. But before we do so, let's look at the main effects and interactions as collections of contrasts. This will actually make it easier to figure out what the results mean, once we see what they are.

We have a three by six factorial design that looks like this. Population means are shown in the cells. The singlesubscript notation encourages us to think of the combination of MCG and cultivar as a single categorical independent variable with 18 categories.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ MCG (Type of Fungus) } \\
\hline Cultivar (Type of Plant) & 1 & 2 & 3 & 7 & 8 & 9 \\
\hline GP159 & \(\mu_{1}\) & \(\mu_{2}\) & \(\mu_{3}\) & \(\mu_{4}\) & \(\mu_{5}\) & \(\mu_{6}\) \\
\hline Hanna & \(\mu_{7}\) & \(\mu_{8}\) & \(\mu_{9}\) & \(\mu_{10}\) & \(\mu_{11}\) & \(\mu_{12}\) \\
\hline Westar & \(\mu_{13}\) & \(\mu_{14}\) & \(\mu_{15}\) & \(\mu_{16}\) & \(\mu_{17}\) & \(\mu_{18}\) \\
\hline
\end{tabular}

Next is the part of the SAS program that creates the combination variable. Notice that it involves a data step that comes after the proc glm. This usually doesn't happen. I did it by creating a new data set called slime that starts by being identical to mould, which was created in the file gh91read. sas. The set command is used to read in the data set mould, and then we start from there. This is done just for teaching purposes. Ordinarily, I would not create multiple data sets that are mostly copies of each other. I'd put the whole thing in one data step. Here's the code.
```

data slime;
set mould; /* mould was created by ghread91.sas */
if plant=1 and mcg=1 then combo = 1;
else if plant=1 and mcg=2 then combo = 2;
else if plant=1 and mcg=3 then combo = 3;
else if plant=1 and mcg=7 then combo = 4;
else if plant=1 and mcg=8 then combo = 5;
else if plant=1 and mcg=9 then combo = 6;
else if plant=2 and mcg=1 then combo = 7;
else if plant=2 and mcg=2 then combo = 8;
else if plant=2 and mcg=3 then combo = 9;
else if plant=2 and mcg=7 then combo = 10;
else if plant=2 and mcg=8 then combo = 11;
else if plant=2 and mcg=9 then combo = 12;
else if plant=3 and mcg=1 then combo = 13;
else if plant=3 and mcg=2 then combo = 14;
else if plant=3 and mcg=3 then combo = 15;
else if plant=3 and mcg=7 then combo = 16;
else if plant=3 and mcg=8 then combo = 17;
else if plant=3 and mcg=9 then combo = 18;
label combo = 'Plant-MCG Combo';

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ MCG (Type of Fungus) } \\
\hline Cultivar (Type of Plant) & 1 & 2 & 3 & 7 & 8 & 9 \\
\hline GP159 & \(\mu_{1}\) & \(\mu_{2}\) & \(\mu_{3}\) & \(\mu_{4}\) & \(\mu_{5}\) & \(\mu_{6}\) \\
\hline Hanna & \(\mu_{7}\) & \(\mu_{8}\) & \(\mu_{9}\) & \(\mu_{10}\) & \(\mu_{11}\) & \(\mu_{12}\) \\
\hline Westar & \(\mu_{13}\) & \(\mu_{14}\) & \(\mu_{15}\) & \(\mu_{16}\) & \(\mu_{17}\) & \(\mu_{18}\) \\
\hline
\end{tabular}

It is clear that the absence of a main effect for Cultivar is the same as
\[
\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}=\mu_{7}+\mu_{8}+\mu_{9}+\mu_{10}+\mu_{11}+\mu_{12}=\mu_{13}+\mu_{14}+\mu_{15}+\mu_{16}
\]

There are two equalities here, and they are saying that two contrasts of the eighteen cell means are equal to zero. To see why this is true, consider the first equality
\[
\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}=\mu_{7}+\mu_{8}+\mu_{9}+\mu_{10}+\mu_{11}+\mu_{12}
\]

Subtracting the quantity on the right-hand side from both sider of the equation, we get
\[
\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}-\left(\mu_{7}+\mu_{8}+\mu_{9}+\mu_{10}+\mu_{11}+\mu_{12}\right)=0
\]
and then distributing the minus sign to get rid of the parentheses yields
\[
\begin{equation*}
\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}-\mu_{7}-\mu_{8}-\mu_{9}-\mu_{10}-\mu_{11}-\mu_{12}=0 \tag{4.2}
\end{equation*}
\]

Recall that here, a contrast is a linear combination of the form
\[
\mathrm{L}=\mathrm{a}_{1} \mu_{1}+\mathrm{a}_{2} \mu_{2}+\ldots+\mathrm{a}_{18} \mu_{18}
\]
where the \(a\) weights add up to zero. Expression (4.2) fits this description, with the first 6 weights equal to one, the next six weights equal to minus one (so they add to zero), and the last 6 weights equal to zero.

The table below gives the weights of the contrasts defining the test for the main effect of plant, one set of weights in each row.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{a}_{1}\) & \(\mathrm{a}_{2}\) & \(\mathrm{a}_{3}\) & \(\mathrm{a}_{4}\) & \(\mathrm{a}_{5}\) & \(\mathrm{a}_{6}\) & \(\mathrm{a}_{7}\) & \(\mathrm{a}_{8}\) & \(\mathrm{a}_{9}\) & \(\mathrm{a}_{10}\) & \(\mathrm{a}_{11}\) & \(\mathrm{a}_{12}\) & \(\mathrm{a}_{13}\) & \(\mathrm{a}_{14}\) & \(\mathrm{a}_{15}\) & \(\mathrm{a}_{16}\) & \(\mathrm{a}_{17}\) & \(\mathrm{a}_{18}\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}

This is the basis of the first contrast statement in proc glm. Notice how the contrasts are separated by commas. Also notice that the variable on which we're doing contrasts (combo) has to be repeated.
```

/* Getting main effects and the interaction with CONTRAST statements */
proc glm;
class combo;
model meanlng = combo;
contrast 'Plant Main Effect'
combo 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
combo 0 0 0 0 0 0 0 0

```

If there is no main effect for MCG, we are saying
\[
\mu_{1}+\mu_{7}+\mu_{13}=\mu_{2}+\mu_{8}+\mu_{14}=\mu_{3}+\mu_{9}+\mu_{15}=\mu_{4}+\mu_{10}+\mu_{16}=\mu_{5}+\mu_{11}+\mu_{17}=\mu_{6}+\mu_{12}+\mu_{18}
\]

There are 5 contrasts here, one for each equals sign; there is always an equals sign for each contrast. Here is the table showing the contrasts.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{a}_{1}\) & \(\mathrm{a}_{2}\) & \(\mathrm{a}_{3}\) & \(\mathrm{a}_{4}\) & \(\mathrm{a}_{5}\) & \(\mathrm{a}_{6}\) & \(\mathrm{a}_{7}\) & \(\mathrm{a}_{8}\) & \(\mathrm{a}_{9}\) & \(\mathrm{a}_{10}\) & \(\mathrm{a}_{11}\) & \(\mathrm{a}_{12}\) & \(\mathrm{a}_{13}\) & \(\mathrm{a}_{14}\) & \(\mathrm{a}_{15}\) & \(\mathrm{a}_{16}\) & \(\mathrm{a}_{17}\) & \(\mathrm{a}_{18}\) \\
\hline 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 \\
\hline
\end{tabular}

And here is the corresponding test statement in proc glm.
```

contrast 'MCG Main Effect'
combo 1 -1 0
combo 0
combo 0}0
combo 0}000
combo 0}0

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ MCG (Type of Fungus) } \\
\hline Cultivar (Type of Plant) & 1 & 2 & 3 & 7 & 8 & 9 \\
\hline GP159 & \(\mu_{1}\) & \(\mu_{2}\) & \(\mu_{3}\) & \(\mu_{4}\) & \(\mu_{5}\) & \(\mu_{6}\) \\
\hline Hanna & \(\mu_{7}\) & \(\mu_{8}\) & \(\mu_{9}\) & \(\mu_{10}\) & \(\mu_{11}\) & \(\mu_{12}\) \\
\hline Westar & \(\mu_{13}\) & \(\mu_{14}\) & \(\mu_{15}\) & \(\mu_{16}\) & \(\mu_{17}\) & \(\mu_{18}\) \\
\hline
\end{tabular}

To compose the Plant by MCG interaction, consider the following hypothetical graph. You can think of the "effect" of MCG as a profile, representing a pattern of differences among means. If the three profiles are the same shape for each type of plant -- that is, if they are parallel, the effect of MCG does not depend on the type of plant, and there is no interaction.


For the profiles to be parallel, each set of corresponding line segments must be parallel. To start with the three line segments on the left, the rise represented by \(\mu_{2}-\mu_{1}\) must equal the rise \(\mu_{8}-\mu_{7}\), and \(\mu_{8}-\mu_{7}\) must equal \(\mu_{14}-\mu_{13}\). This is two contrasts that equal zero:
\[
\mu_{2}-\mu_{1}-\mu_{8}+\mu_{7}=0 \text { and } \mu_{8}-\mu_{7}-\mu_{14}+\mu_{13}=0
\]

There are two contrasts for each of the four remaining sets of three line segments, for a total of ten contrasts. They appear directly in the contrast statement of proc glm. Notice how each row adds to zero; these are contrasts, not just linear combinations.
```

contrast 'Plant by MCG Interaction'

combo	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0,
combo	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0,
combo	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0,
combo	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	-1	0,
combo	0	0	0	0	-1	1	0	0	0	0	1	-1	0	0	0	0	0	0,
combo	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	1	$-1 ;$

```

Now we can compare the tests we get from these contrast statements with what we got from a two-way ANOVA. For easy reference, here is part of the two-way output.
\begin{tabular}{lrrrrrr} 
Source & DF & \multicolumn{1}{c}{ Type III SS } & Mean Square & F Value & Pr \(>\) F \\
PLANT & & & & & & \\
MCG & 5 & 221695.12747 & 110847.56373 & 113.90 & 0.0001 \\
PLANT*MCG & 10 & 58740.26456 & 11748.05291 & 12.07 & 0.0001 \\
& 47581.48147 & 4758.14815 & 4.89 & 0.0001
\end{tabular}

And here is the output from the contrast statements.
\begin{tabular}{lrrrrrr} 
Contrast & DF & Contrast SS & Mean Square & Falue & Pr \(>\) F \\
& & & & & \\
Plant Main Effect & 2 & 221695.12747 & 110847.56373 & 113.90 & 0.0001 \\
MCG Main Effect & 5 & 58740.26456 & 11748.05291 & 12.07 & 0.0001 \\
Plant by MCG Interac & 10 & 47581.48147 & 4758.14815 & 4.89 & 0.0001
\end{tabular}

So it worked. Here are some comments.
- Of course this is not the way you'd want to test for main effects and interactions. On the contrary, it makes you appreciate all the work that glm does for you when you say model meanlng = plant|mcg;
- These contrasts are supposed to be an aid to understanding --- understanding what main effects and interactions really are, and understanding how you can test nearly any hypothesis you can think of in a multi-factor design. Almost without exception, what you want to do is test whether some collection of contrasts are equal to zero. Now you can do it, whether the collection you're interested in happens to be standard, or not.
- On the other hand, this was brutal. Even though I am comfortable with high school algebra, the size of the design made specifying those contrasts an unpleasant experience. There is an easier way.

\section*{An Easier Way to test Sets of Contrasts in Factorial ANOVA}

Because the test statement of proc reg has a more flexible syntax than the contrast statement of proc glm , it's a lot easier if you use cell means dummy variable coding, fit a model with no intercept in proc reg, and use test statements. In the following example, the indicator dummy variables are named mul to mu18. This choice makes it possible to directly transcribe statements about the population cell means into test statements. I highly recommend it. Of course if you really hate Greek letters, you could always name them m 1 to m18 or something.

First, we need to define 18 dummy variables. In general, it's a bit more tedious to define dummy variables than to make a combination variable. Here, I use the combination variable combo (which has already been created) to make the task a bit easier -- and also to illustrate the use of arrays and loops in the data step.
```

/* proc reg's test statement may be easier, but first we need to
make 16 dummy variables for cell means coding. This will illustrate
arrays and loops, too */
data yucky;
set slime;
array mu{18} mul-mul8;
do i=1 to 18;
if combo=. then mu{i}=.;
else if combo=i then mu{i}=1;
else mu{i}=0;
end;
proc reg;
model meanlng = mul-mul8 / noint;
alleq: test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12
= mu13=mu14=mu15=mu16=mu17=mu18;
plant: test mul+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mul0+mu11+mu12,
mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
fungus: test mul+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15
= mu4+mu10+mu16= mu5+mu11+mu17 = mu6+mu12+mu18;
p_by_f: test mu2-mul=mu8-mu7=mu14-mul3,
mu3-mu2=mu9-mu8=mu15-mu14,
mu4-mu3=mu10-mu9=mu16-mu15,
mu5-mu4=mul1-mul0=mu17-mu16,
mu6-mu5=mu12-mu11=mu18-mu17;

```

Looking again at the table of means, it's easy to see how natural the syntax is.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ MCG (Type of Fungus) } \\
\hline Cultivar (Type of Plant) & 1 & 2 & 3 & 7 & 8 & 9 \\
\hline GP159 & \(\mu_{1}\) & \(\mu_{2}\) & \(\mu_{3}\) & \(\mu_{4}\) & \(\mu_{5}\) & \(\mu_{6}\) \\
\hline Hanna & \(\mu_{7}\) & \(\mu_{8}\) & \(\mu_{9}\) & \(\mu_{10}\) & \(\mu_{11}\) & \(\mu_{12}\) \\
\hline Westar & \(\mu_{13}\) & \(\mu_{14}\) & \(\mu_{15}\) & \(\mu_{16}\) & \(\mu_{17}\) & \(\mu_{18}\) \\
\hline
\end{tabular}

And again, the tests are correct. First, repeat the output from the contrast statements of proc glm (which matched the proc glm two-way ANOVA output).
\begin{tabular}{lrrrrr} 
Contrast & DF & Contrast SS & Mean Square & F Value & Pr \(>\) F \\
& & & & & \\
Plant Main Effect & 2 & 221695.12747 & 110847.56373 & 113.90 & 0.0001 \\
MCG Main Effect & 5 & 58740.26456 & 11748.05291 & 12.07 & 0.0001 \\
Plant by MCG Interac & 10 & 47581.48147 & 4758.14815 & 4.89 & 0.0001
\end{tabular}

Then, compare output from the test statements of proc reg.

Dependent Variable: MEANLNG
\begin{tabular}{llrllll} 
Test: ALLEQ & Numerator: 19295.1102 & DF: & 17 & F value: & 19.8270 \\
& Denominator: 973.1736 & DF: & 90 & Prob>F: & 0.0001
\end{tabular}

Dependent Variable: MEANLNG
Test: PLANT Numerator: 110847.5637 DF: 2 F value: 113.9032
Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG
Test: FUNGUS Numerator: 11748.0529 DF: 5 F value: 12.0719
Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG
Test: P_BY_F Numerator: 4758.1481 DF: 10 F value: 4.8893
Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Okay, now we know how to do anything. Finally, it is time to graph the interaction, and find out what these results mean!


First, we see a sizable and clear main effect for Plant. In fact, going back to the analysis of variance summary tables and dividing the Sum of Squares explained by Plant by the Total Sum of Squares, we observe that Plant explains around \(53 \%\) of the variation in mean lesion length. That's huge. We will definitely want to look at pairwise comparisons of marginal means, too; we'll get back to this later.

Looking at the pattern of means, it's clear that while the main effect of fungus type is statistically significant, this is not something that should be interpreted, because which one is best (worst) depends on the type of plant. That is, we need to look at the interaction.

The profiles really look different. In particular, GP159 not only has a smaller average lesion length, but it seems to exhibit less responsiveness to different strains of fungus. A test for the equality of \(\mu_{1}\) through \(\mu_{6}\) would be valuable. Pairwise comparisons of the 6 means for Hanna and the 6 means for Westar look promising, too.

\section*{A Brief Consideration of Multiple Comparisons}

The mention of pairwise comparisons brings up the issue of formal multiple comparison follow-up tests for this problem. The way people often do follow-up tests for factorial designs is to make a combination variable and then do all pairwise comparisons. It seems like they do this because they think it's the only thing the software will let them do. Certainly it's better than nothing. Some comments:

With SAS, pairwise comparisons of cell means are not the only thing you can do. Proc glm will do all pairwise comparisons of marginal means quite easily. This means it's easy to follow up a significant and meaningful main effect.

For the present problem, there are 120 possible pairwise comparisons of the 16 cell means. If we do all these as one-at-a-time tests, the chances of false significance are certainly mounting. There is a strong case here for doing multiple comparisons.

Since the sample sizes are equal, Tukey tests are most powerful for all pairwise comparisons. But it's not so simple. Pairwise comparisons within plants (for example, comparing the 6 means for Westar) are interesting, and pairwise comparisons within fungus types (for example, comparison of Hanna, Westar and GP159 for fungus Type 1) are interesting, but the remaining 57 pairwise comparisons are a lot less so.

Also, pairwise comparisons of cell means are not all we want to do. We've already mentioned the need for pairwise comparisons of the marginal means for plants, and we'll soon see that other, less standard comparisons are of interest.

Everything we need to do will involve testing collections of contrasts. The approach we'll take is to do everything as a one-at-a-time custom test initially, and then figure out how we should correct for the fact that we've done a lot of tests.

It's good to be guided by the data. Here we go. The analyses will be done in the SAS program appgreen2.sas. As usual, the entire program is given first. But you should be aware that the program was written one piece at a time and executed many times, with later analyses being suggested by the earlier ones.

The program starts by reading in the file gh91bread.sas, which is just gh91read.sas with the additional variables defined (especially combo and mul through mu18) that were defined in appgreen1.sas.
```

/* appgreen2.sas: */
%include 'gh91bread.sas';
options pagesize=100;
proc glm;
title 'Repeating initial Plant by MCG ANOVA, full design';
class plant mcg;
model meanlng = plant|mcg;
means plant|mcg;
/* A. Pairwise comparisons of marginal means for plant, full design
B. Test all GP159 means equal, full design
C. Test profiles for Hanna \& Westar parallel, full design */
proc reg;
model meanlng = mul-mul8 / noint;
A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
B_G159eq: test mu1=mu2=mu3=mu4=mu5=mu6;
C_HWpar: test mu8-mu7=mu14-mu13, mu9-mu8=mu15-mu14,
mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,
mu12-mu11=mu18-mu17;
/* D. Oneway on mcg, GP158 subset */
data just159; /* This data set will have just GP159 */
set mould;
if plant=1;
proc glm data=just159;
title 'D. Oneway on mcg, GP158 subset';
class mcg;
model meanlng = mcg;
/* E. Plant by MCG, Hanna-Westar subset */
data hanstar; /* This data set will have just Hanna and Westar */ set mould;
if plant ne 1;
proc glm data=hanstar;
title 'E. Plant by MCG, Hanna-Westar subset';
class plant mcg;
model meanlng = plant|mcg;

```
```

/* F. Plant by MCG followup, Hanna-Westar subset
Westar minus Hanna differences */
proc reg;
model meanlng = mu7-mu18 / noint;
F_inter: test mu13-mu7=mu14-mu8=mu15-mu9
= mu16-mu10=mu17-mu11=mu18-mu12;
F_1vs2: test mul3-mu7=mu14-mu8;
F_1vs3: test mu13-mu7=mu15-mu9;
F_1vs7: test mu13-mu7=mu16-mu10;
F_1vs8: test mu13-mu7=mu17-mu11;
F_1vs9: test mu13-mu7=mu18-mu12;
F_2vs3: test mu14-mu8=mu15-mu9;
F_2vs7: test mu14-mu8=mul6-mu10;
F_2vs8: test mul4-mu8=mu17-mul1;
F_2vs9: test mu14-mu8=mu18-mu12;
F_3vs7: test mu15-mu9=mu16-mu10;
F_3vs8: test mu15-mu9=mu17-mu11;
F_3vs9: test mu15-mu9=mu18-mu12;
F_7vs8: test mul6-mul0=mu17-mul1;
F_7vs9: test mul6-mul0=mul8-mul2;
F_8vs9: test mul7-mull=mul8-mul2;
proc iml; /* Critical values for Scheffe tests */
interac = finv(.95,5,60) ; print interac;
oneway = finv(.95,11,60); print oneway;

```
Interaction: Follow with all pairwise differences of

After reading and defining the data with a \%include statement, the program repeats the initial three by six ANOVA from appgreen1.sas. This is just for completeness.
A. It then uses proc reg to fit a cell means model, and then tests for all three pairwise differences among Plant means. They are all significantly different from each other, confirming what appears visually in the interaction plot.
```

proc reg;
model meanlng = mul-mu18 / noint;
A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

```

Dependent Variable: MEANLNG
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Test: A_GVSH & Numerator: & 31217.5679 & DF: & 1 & F value: & 32.0781 \\
\hline & Denominator: & 973.1736 & DF: & 90 & Prob>F: & 0.0001 \\
\hline
\end{tabular}

Dependent Variable: MEANLNG
Test: A_GVSW Numerator: 217443.4318 DF: 1 F value: 223.4374
Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG
Test: A_HVSW Numerator: 83881.6915 DF: 1 F value: 86.1940
Denominator: 973.1736 DF: 90 Prob>F: 0.0001


As mentioned earlier, GP159 not only has a smaller average lesion length, but it seems to exhibit less variation in its vulnerability to different strains of fungus. Part of the significant interaction must come from this, and part from differences in the profiles of Hanna and Westar. Two questions arise:
1. Are \(\mu_{1}\) through \(\mu_{6}\) (the means for GP159) actually different from each other?
2. Are the profiles for Hanna and Westar different?

There are two natural ways to address these questions. The naive way is to subset the data --- that is, do a oneway ANOVA to compare the 6 means for GP159, and a two-way (2 by 6) on the Hanna-Westar subset. In the latter analysis, the interaction of Plant by MCG would indicate whether the two profiles were different.

A more sophisticated approach is not to subset the data, but to recognize that both questions can be answered by testing collections of contrasts of the entire set of 18 means; it's easy to do with the test statement of proc reg.

The advantage of the sophisticated approach is this. Remember that the model specifies a conditional normal distribution of the dependent variable for each combination of independent variable values (in this case there are 18 combinations of independent variable values), and that each conditional distribution has the same variance. The test for, say, the equality of \(\mu_{1}\) through \(\mu_{6}\) would use only \(\bar{Y}_{1}\) through \(\bar{Y}_{6}\) (that is, just GP159 data) to estimate the 5 contrasts involved, but it would use all the data to estimate the common error variance. From both a commonsense viewpoint and the deepest possible theoretical viewpoint, it's better not to throw information away. This is why the sophisticated approach should be better.

However, this argument is convincing only if it's really true that the dependent variable has the same variance for every combination of independent variable values. Repeating some output from the means command of the very first proc glm,
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Level of PLANT} & \multicolumn{2}{|l|}{Level of} & \multicolumn{2}{|l|}{-----------MEANLNG-----------} \\
\hline & MCG & N & Mean & SD \\
\hline GP159 & 1 & 6 & 12.863095 & 12.8830306 \\
\hline GP159 & 2 & 6 & 21.623810 & 17.3001296 \\
\hline GP159 & 3 & 6 & 14.460714 & 7.2165396 \\
\hline GP159 & 7 & 6 & 17.686905 & 16.4258441 \\
\hline GP159 & 8 & 6 & 8.911905 & 7.3162618 \\
\hline GP159 & 9 & 6 & 8.784524 & 6.5970501 \\
\hline HANNA & 1 & 6 & 45.578571 & 26.1430472 \\
\hline HANNA & 2 & 6 & 67.296429 & 30.2424997 \\
\hline HANNA & 3 & 6 & 94.192857 & 20.2877876 \\
\hline HANNA & 7 & 6 & 53.621429 & 24.8563497 \\
\hline HANNA & 8 & 6 & 47.838095 & 12.6419109 \\
\hline HANNA & 9 & 6 & 25.673810 & 17.1723150 \\
\hline WESTAR & 1 & 6 & 65.908333 & 35.6968616 \\
\hline WESTAR & 2 & 6 & 187.479762 & 45.1992178 \\
\hline WESTAR & 3 & 6 & 154.103571 & 26.5469183 \\
\hline WESTAR & 7 & 6 & 173.972619 & 79.1793105 \\
\hline WESTAR & 8 & 6 & 95.823810 & 22.3712022 \\
\hline WESTAR & 9 & 6 & 66.502381 & 52.5253101 \\
\hline
\end{tabular}
we see that the sample standard deviations for GP159 look quite a bit smaller on average. Without bothering to do a formal test, we have some reason to doubt the equal variances assumption.

It's easy to see why GP159 would have less plant-to-plant variation in lesion length. It's so resistant to the fungus that there's just not that much fungal growth, period. So there's less opportunity for variation.

Note that the equal variances assumption is essentially just a mathematical convenience. Here, it's clearly unrealistic. But what's the consequence of violating it? It's well known that the equal variance assumption can be safely violated if the cell sample sizes are equal and large. Well, here they're equal, but \(\mathrm{n}=6\) is not large. So this is not reassuring.

In general, it's not easy to say HOW the tests will be affected when the equal variance assumption is violated, but for the two particular cases we're interested in here (are the GP159 means equal and are the Hanna and Westar profiles parallel), we can figure it out. Recall Formula (3.3) for the F-test.
\[
\mathrm{F}=\frac{\left(S S R_{F}-S S R_{R}\right) / s}{M S E_{F}} .
\]

The denominator --- Mean Squared Error from the full model --- is the estimated population error variance. That's the variance that's supposed to be the same for each conditional distribution. Since
\[
\mathrm{MSE}_{\mathrm{F}}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-p},
\]
and the predicted value \(\hat{Y}_{i}\) is always the cell mean, we can draw the following conclusions.
1. When we test for equality of the GP159 means, using the Hanna-Westar data to help compute MSE will make the denominator of F bigger than it should be -- so F is made smaller, and the test is too conservative.
2. When we test whether the Hanna and Westar profiles are parallel, use of the GP159 data to help compute MSE will make the denominator of F smaller than it should be -- so F is made bigger, and the test is not conservative enough. That is, the chance of significance if the effect is absent will be greater than 0.05 .

This makes me inclined to favour the "naive" subsetting approach. Because the GP159 means LOOK so equal, and I want them to be equal, I'd like to give the test for difference among them the best possible chance. And because it looks like the profiles for Hanna and Westar are not parallel (and I want them to be non-parallel, because it's more interesting for the effect of Fungus type to depend on type of Plant), I want a more conservative test.

Another argument in favour of subsetting is based on botany rather than statistics. Hanna and Westar are commercial canola crop varieties, but while GP159 is definitely in the canola family, it is more like a hardy weed than a food plant. It's just a different kind of entity, and so analyzing its data separately makes a lot of sense.

You may wonder, if it's so different, why was it included in the design in the first place? Well, taxonomically it's quite similar to Hanna and Westar; really no one knew it would be such a vigorous monster in terms of resisting fungus. That's why people do research -- to find out things they didn't already know.

Anyway, we'll do the analysis both ways -- both the seemingly naive way which is probably better once you think about it, and the sophisticated way that uses the complete set of data for all analyses.

Parts B and C represent the "sophisticated" approach that does not subset the data.
B. Test all GP159 means equal, full design
C. Test profiles for Hanna \& Westar parallel, full design
```

proc reg;
model meanlng = mul-mul8 / noint;
A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
B_G159eq: test mu1=mu2=mu3=mu4=mu5=mu6;
C_HWpar: test mu8-mu7=mu14-mu13, mu9-mu8=mu15-mu14,
mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,
mu12-mu11=mu18-mu17;
Dependent Variable: MEANLNG
Test: B_G159EQ Numerator: 151.5506 DF: 5 F value: 0.1557
Denominator: 973.1736 DF: 90 Prob>F: 0.9778
Dependent Variable: MEANLNG
Test: C_HWPAR Numerator: 5364.0437 DF: 5 F value: 5.5119
Denominator: 973.1736 DF: 90 Prob>F: 0.0002

```

This confirms the visual impression of no differences among means for GP159, and non-parallel profiles for Hanna and Westar. Now compare the subsetting approach. Notice the creation of SAS data sets with subsets of the data.
D. Oneway on mcg, GP158 subset
E. Plant by MCG, Hanna-Westar subset
```

data just159; /* This data set will have just GP159 */
set mould;
if plant=1;
proc glm data=just159;
title 'D. Oneway on mcg, GP158 subset';
class mcg;
model meanlng = mcg;

```
            D. Oneway on mcg, GP158 subset \(\quad 2\)
            General Linear Models Procedure

\begin{tabular}{rrrr} 
R-Square & C.V. & Root MSE & MEANLNG Mean \\
0.146319 & 86.37031 & 12.139485 & 14.055159
\end{tabular}
\begin{tabular}{lcrcccc} 
Source & DF & Type I SS & Mean Square & Falue & Pr \(>\) F \\
MCG & 5 & 757.75319161 & 151.55063832 & 1.03 & 0.4189 \\
Source & DF & Type III SS & Mean Square & F Value & Pr \(>\) F \\
MCG & 5 & 757.75319161 & 151.55063832 & 1.03 & 0.4189
\end{tabular}

This analysis is consistent with what we got without subsetting the data. That is, it does not provide evidence that the means for GP159 are different. But when we didn't subset the data, we had \(\mathrm{p}=0.9778\). This happened exactly because including Hanna and Westar data made MSE larger, F smaller, and hence p bigger.
```

data hanstar; /* This data set will have just Hanna and Westar */
set mould;
if plant ne 1;
proc glm data=hanstar;
title 'E. Plant by MCG, Hanna-Westar subset';
class plant mcg;
model meanlng = plant|mcg;

```
E. Plant by MCG, Hanna-Westar subset

General Linear Models Procedure Class Level Information

Class Levels Values

PLANT 2 HANNA WESTAR

MCG \(\quad \begin{array}{lllllll}6 & 1 & 2 & 3 & 7 & 9\end{array}\)

Number of observations in data set \(=72\)


\section*{Chapter 4, Page 55}
\begin{tabular}{lrrrrrr} 
Source & DF & Type I SS & Mean Square & F Value & Pr \(>\) F \\
PLANT & 1 & 83881.691486 & 83881.691486 & 60.52 & 0.0001 \\
MCG & 5 & 78743.774570 & 15748.754914 & 11.36 & 0.0001 \\
PLANT*MCG & 5 & 26820.218272 & 5364.043654 & 3.87 & 0.0042 \\
Source & & & & & & \\
& & & & & & \\
PLANT & 1 & 83881.691486 & 83881.691486 & 60.52 & 0.0001 \\
MCG & 5 & 78743.774570 & 15748.754914 & 11.36 & 0.0001 \\
PLANT*MCG & 5 & 26820.218272 & 5364.043654 & 3.87 & 0.0042
\end{tabular}

The significant interaction indicates that the profiles for Hanna and Westar are non-parallel, confirming the visual impression we got from the interaction plot. But the p -value is larger this time. When all the data were used to calculate the error term, we had \(\mathrm{p}=0.0002\). This is definitely due to the low variation in GP159.

Further analyses will be limited to the Hanna-Westar subset.

Now think of the interaction in a different way. Overall, Hanna is more vulnerable than Westar, but the interaction says that the degree of that greater vulnerability depends on the type of fungus. Look at all pairwise comparisons of the DIFFERENCE between Hanna and Westar. First, verify that the interaction can be expressed this way. Of course it can.

\section*{F. Plant by MCG followup, Hanna-Westar subset}

\section*{All pairwise differences of Westar minus Hanna differences}
```

proc reg;
model meanlng = mu7-mu18 / noint;
F_inter: test mu13-mu7=mu14-mu8=mu15-mu9
= mu16-mu10=mu17-mu11=mu18-mu12;
F_1vs2: test mu13-mu7=mu14-mu8;
F_1vs3: test mul3-mu7=mu15-mu9;
F_1vs7: test mu13-mu7=mu16-mu10;
F_1vs8: test mu13-mu7=mu17-mu11;
F_1vs9: test mu13-mu7=mu18-mu12;
F_2vs3: test mul4-mu8=mu15-mu9;
F_2vs7: test mu14-mu8=mu16-mu10;
F-2vs8: test mul4-mu8=mu17-mu11;
F_2vs9: test mul4-mu8=mu18-mu12;
F_3vs7: test mu15-mu9=mu16-mu10;
F_3vs8: test mu15-mu9=mu17-mu11;
F_3vs9: test mu15-mu9=mu18-mu12;
F_7vs8: test mul6-mul0=mul7-mul1;
F_7vs9: test mul6-mul0=mul8-mul2;
F_8vs9: test mul7-mull=mul8-mul2;
Dependent Variable: MEANLNG
Test: F_INTER Numerator: 5364.0437 DF: 5 F value: 3.8699
Denominator: 1386.077 DF: 60 Prob>F: 0.0042
Dependent Variable: MEANLNG
Test: F_1VS2 Numerator: 14956.1036 DF: 1 F value: 10.7902
Denominator: 1386.077 DF: 60 Prob>F: 0.0017
Dependent Variable: MEANLNG
Test: F_1VS3 Numerator: 2349.9777 DF: $\quad 1 \quad$ F value: 1.6954
Dependent Variable: MEANLNG
Test: F_1VS7 Numerator: 15006.4293 DF: 1 F value: 10.8265

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_1VS8 \(\begin{array}{ll}\text { Numerator: } \\ & \text { Denominator: }\end{array}\) & \[
\begin{array}{r}
1147.2776 \\
1386.077
\end{array}
\] & \[
\begin{aligned}
& \mathrm{DF}: \\
& \mathrm{DF}:
\end{aligned}
\] & \[
\begin{array}{r}
1 \\
60
\end{array}
\] & \begin{tabular}{l}
F value: \\
Prob>F:
\end{tabular} & \[
\begin{aligned}
& 0.8277 \\
& 0.3666
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_1VS9 Numerator: & 630.3018 & DF: & 1 & F value: & 0.4547 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob \(>\mathrm{F}\) : & 0.5027 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_2VS3 Numerator: & 5449.1829 & DF: & 1 & F value: & 3.9314 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.0520 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_2VS7 Numerator: & 0.0423 & DF: & 1 & F value: & 0.0000 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob \(>\mathrm{F}\) : & 0.9956 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_2VS8 Numerator: & 7818.7443 & DF: & 1 & F value: & 5.6409 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.0208 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_2VS9 Numerator: & 9445.7674 & DF: & 1 & F value: & 6.8147 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.0114 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_3VS7 Numerator: & 5479.5767 & DF: & 1 & F value: & 3.9533 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.0513 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_3VS8 Numerator: & 213.3084 & DF: & 1 & F value: & 0.1539 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.6962 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_3VS9 Numerator: & 546.1923 & DF: & 1 & F value: & 0.3941 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.5326 \\
\hline \multicolumn{6}{|l|}{Dependent Variable: MEANLNG} \\
\hline Test: F_7VS8 Numerator: & 7855.1432 & DF: & 1 & F value: & 5.6672 \\
\hline Denominator: & 1386.077 & DF: & 60 & Prob>F: & 0.0205 \\
\hline
\end{tabular}
```

Dependent Variable: MEANLNG
Test: F_7VS9 llumerator: 9485.7704 DF: 年 l N F value: 6.8436
Dependent Variable: MEANLNG
Test: F_8VS9 Numerator: 76.8370 DF: 1 F value: 0.0554
Denominator: 1386.077 DF: 60 Prob>F: 0.8147

```

These analyses are summarized in the table below. Westar-Hanna differences that with the same letter are not significantly different.
\begin{tabular}{|c|c|c|c|}
\hline MCG & \begin{tabular}{c} 
120.Westar-Hanna \\
Difference
\end{tabular} & & \\
\hline 7 & 120.35 & A & \\
\hline 2 & 120.18 & A & \\
\hline 3 & 59.91 & A & B \\
\hline 8 & 47.98 & & B \\
\hline 9 & 40.83 & & B \\
\hline 1 & 20.33 & & B \\
\hline
\end{tabular}
```

proc iml; /* Critical values for Scheffe tests */
interac = finv(.95,5,60) ; print interac;
oneway = finv(.95,11,60); print oneway;

```
2.3682702

ONEWAY
1.9522119```

