
Chapter 3

Comparing Several Means

3.1 One-way analysis of variance

This chapter starts with the humble one-way (one-factor) analysis of variance (ANOVA). It
is called one way because there is a single categorical independent variable. This categor-
ical independent variable, which may be either observed or experimentally manipulated,
divides the sample into groups of observations. The objective is to test for differences
among means. Note that because the independent variable divides the cases into groups,
it is a between-subjects factor. Within-subjects (repeated measures) techniques will be
discussed later.

Assumptions The test assumes independent random sampling from each sub-population,
and also that the dependent variable has a conditional distribution that is normal, with
equal variances. That is, for each value of the categorical independent variable, there is a
sub-population (perhaps hypothetical), and the dependent variable is normally distributed
within that sub-population. While the population means of all the normal distributions
may differ, their population variances are all identical.

A normal distribution is completely specified by its mean and variance, and we are
assuming that the variances are all equal. So if the means of the conditional distributions
are also equal, then the conditional distributions are identical. This makes the indepen-
dent and dependent variable unrelated by the definition in Chapter 1. Thus we see that
in the one-way ANOVA, the only possible kind of population relationship between the
independent variable and the dependent variable is a difference among group means.

The “assumptions” of a statistical test actually represent a mathematical model for
the data, and that model is used to formally derive the test. Such derivations are always
hidden in applied classes. But it makes a practical difference, because some assumptions
are often violated in practice, and frequently these assumptions were adopted in the first
place to make the model mathematically tractable, not because anybody seriously believed
they would be true for the typical data set.

But sometimes, the assumptions that allow the mathematical derivation of a test
are not really necessary. The test might work, or anyway work pretty well, even if the
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assumptions are violated. When this is the case, the test is said to be robust with respect
to those assumptions. Usually, robustness is something that starts to happen as the
sample size gets large, if it happens at all.

When we say a test “works,” we mean two things

• It protects against Type I error (false significance) at something close to the stated
level. That is, if nothing is really going on, significant effects will be falsely detected
at the 0.05 level not much more than 5% of the time.

• The power of the test is reasonably good. At the very least, power (the probability
of correctly rejecting the null hypothesis) increases when the relationship between
independent variable and dependent variable becomes stronger, and also increases
with the sample size, approaching one as the sample size approaches infinity for any
non-zero relationship between variables.

For the one-way analysis of variance (and for factorial1 ANOVA in general) if the
assumption of equal variances holds but the normal assumption does not, the test is
robust for large samples. The rough rule would be n = 20 to 25 for each group, though
for data that are sufficiently non-normal, an arbitrarily large sample might be required.
If the equal variances assumption is violated, then the test is robust for large samples if
the sample sizes for each group are approximately equal. Here, the meaning of “large” is
murky.

Analysis of variance The word analysis means to take apart or split up, and in
the analysis of variance, variation in the dependent variable is split into two components:
variation of the data values that is explained by the independent variable (Sum of Squares
Between groups), and variation that is left unexplained (Sum of Squares Within groups).
Here’s how it goes.

Suppose we want to predict the value of a dependent variable, without using any
independent variables yet. The best prediction (in the sense of least squares) is the
sample mean. Subtract the sample mean from each dependent variable value, and we
obtain a set of deviations representing errors of prediction. Squaring these deviations to
remove the sign and adding them up yields a measure of the total variation in the sample
data. We call it the Total Sum of Squares, or SSTO.

The total sum of squares is the total amount of variation in the dependent variable.
It is what any potential predictor would seek to explain. Here, the word “explain” really
means “reduce.” To the extent that the total squared error of prediction around a predictor
is less than SSTO, the predictor is effective. It has “explained” part of the variation in
the dependent variable — at least in the sense of taking care of it.

Now consider a categorical independent variable as a predictor of the dependent vari-
able. This variable (which could be either an experimental treatment or an existing
variable that is merely assessed, like breed of dog) subdivides the cases into two or more

1The term “factor” is another term for categorical independent variable. Factorial research designs
imply analyses with one or more categorical independent variables – usually more than one.
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groups. Now, if you want to predict the dependent variable, you would use the group
mean rather than the overall mean. For example, if you want to predict the amount
of food eaten by an Irish wolfhound, you would use the mean consumption of the Irish
wolfhounds in your sample, not the mean consumption of all the dogs combined.

No matter how good a predictor is, it will not be perfect for real data. For each
value of the dependent variable, subtract off the group mean (not the overall mean, this
time). Square those errors of prediction, add them up, and we have the Sum of Squared
error of prediction Within groups, where the dependent variable is being predicted from
group membership. The initials SSW stand for Sum of Squares Within. This quantity
represents the variation in the dependent variable that is not explained by the independent
variable. It is left over, or residual.2

If SSTO is the total amount of variation that could be explained, and SSW is the
amount of variation that is left unexplained, then the difference between them must be
the variation that is explained. Now suppose that by some amazing coincidence, all the
group means were exactly equal. Then SSW = SSTO, and absolutely no variation is
explained by the independent variable. This suggests that explained variation must be
linked to variation between3 group means, and we write

SSTO = SSB + SSW,

where SSB, which stands for “Sum of Squares Between,” is the variation that is explained
by the categorical independent variable.

The notation SSB for the explained sum of squares is supported by a set of formulas,
which are given because they may be illuminating for some readers, not because you will
ever have to use them for calculation. First, suppose that there are p groups,4 with nj

cases in each group, j = 1, . . . , p. The total sample size is n =
∑p

j=1 nj. Observation i in
group j is denoted by Yi,j, and the sample means are

Y j =

∑nj

i=1 Yi,j

nj

and Y =

∑p
j=1

∑nj

i=1 Yi,j

n
.

2The differences between the data values and group means are residuals. In regression, the predictions
are points on the regression line or surface, and again the residuals are differences between observed and
predicted values. In regression, the initials SSE stand for Sum of Squared Error of prediction. SSW is
a special kind of SSE.

3Well, really it should be among group means if there are more than two, but this grammatical error
has become standard terminology, so we will use it.

4This p is different from the p-value. It connects so well with standard notation in multiple regression
that we’re going to use it for the number of groups, even though it’s unfortunate when the same symbol
is used for two different things. You’ll just have to realize which p is meant from the context.
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Then, the formulas for the sums of squares are

SSB =
p∑

j=1

nj(Y j − Y )2

SSW =
p∑

j=1

nj∑
i=1

(Yi,j − Y j)
2

SSTO =
p∑

j=1

nj∑
i=1

(Yi,j − Y )2.

You can see that the Sum of Squares Between groups is literally the variation of the
group means around the overall mean, with the contribution of each squared deviation
determined by the group sample size. Again, the sums of squares add up: SSTO =
SSB + SSW .

ANOVA summary tables Sums of squares and related quantities are often presented
in an Analysis of variance summary table. In the old days, these were given in the results
sections of journal articles; today, they appear only in the output printed by statistics
packages. There are minor differences in detail. SAS proc glm produces one in this
format.

Sum of

Source DF Squares Mean Square F Value Pr > F

Model p− 1 SSB MSB = SSB/(k − 1) MSB/MSW p-value

Error n− p SSW MSW = SSW/(n− k)

Corrected Total n− 1 SSTO

Sums of squares add up, degrees of freedom add up, Mean Square = SS/df, and F is the
ratio of two Mean Squares. The F ratio is the test statistic for

H0 : µ1 = . . . = µp.

That is, under the null hypothesis all the population means are equal.
For a particular data set, the analysis of variance summary table will be filled with

numbers. It allows you to calculate a very useful descriptive statistic:

R2 =
SSB

SSTO
,

the proportion of the variation in the dependent variable that is explained by
the independent variable.5 This is exactly the interpretation we give to the square of

5Psychologists often call it the proportion of variance that is explained, while statisticians usually call
it proportion of sum of squares. The “proportion of variance” terminology can be justified in a couple of
different ways, and is perfectly okay.
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the correlation coefficient; R2 is a reasonable index of how strongly the dependent variable
is related to the independent variable.

If the sample size is small, it is possible for R2 to be fairly large, but the differences
among means are not statistically significant. Or, if the sample size is huge, even a
very weak, trivial relationship can be significant. To take an extreme example, one fabled
analysis of U. S. census data found virtually everything to be statistically significant, even
average shoe size East versus West of the Mississippi River. You might say that there are
really two kinds of significance: statistical significance and substantive significance. R2

can help you assess substantive significance (confidence intervals are useful, too).
What’s a good value of R2? Traditions vary in different scientific disciplines. Not

surprisingly, areas dominated by noisy data and weak relationships are more tolerant of
small R2 values. My personal preference is guided by the correlation coefficient. In a
scatterplot, the correlation has to be around 0.30 in absolute value before I can really
tell whether the relationship is positive or negative. Since 0.302 = 0.09, I start taking
independent variables seriously once they explain around nine or ten percent of the vari-
ation (or of the remaining variation, if there are multiple independent variables). But
opinions differ. Cohen’s (1988) authoritative Statistical power analysis for the behavioral
sciences [4] suggests a much more modest standard.

3.2 Testing Contrasts

The F -test from a one-way ANOVA is useful, but it usually does not tell you all you need
to know. For example, if the test is significant, the conclusion is that not all the group
means are equal in the population. But you do not know which means are different from
each other. Or, specific comparisons might be of interest. For example, you may have
reason to believe that the response to drug A is better than the average response to drugs
B, C and D. Fortunately, analysis of variance technology can do much more than simply
test for equality of several group means. First, we need a few definitions.

A linear combination is a weighted sum of several quantities. It has the general form

Linear Combination = a1Q1 + a2Q2 + . . . + akQp.

The symbols a1 through ap stand for numerical constants. We will call these the weights
of the linear combination.

A contrast is a special type of linear combination, in which the weights add up to zero.
We are interested in contrasts of means, say in a one-factor design where the independent
variable has p categories.

Suppose there are p treatments (groups, values of the categorical independent variable,
whatever you want to call them). A contrast is a special kind of linear combination of
means in which the weights add up to zero. A population contrast has the form

` = a1µ1 + a2µ2 + · · ·+ apµp

where a1 + a2 + · · ·+ ap = 0. The case where all of the a values are zero is uninteresting,
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and is excluded. A population contrast is estimated by a sample contrast:

L = a1Y 1 + a2Y 2 + · · ·+ apY p.

With the right software (and that definitely includes SAS), it is easy to test whether any
contrast equals zero, and to obtain a confidence interval for a contrast. It is also easy to
test several contrasts at once.

By setting a1 = 1, a2 = −1, and the rest of the a values to zero we get L = Y 1 − Y 2,
so it’s easy to see that any difference between two means is a contrast.6 Also, the average
of one set of means minus the average of another set is a contrast.

The F test for equality of p means can be viewed as a simultaneous test of p − 1
contrasts. For example, suppose there are four treatments, and the null hypothesis of the
initial test is H0 : µ1 = µ2 = µ3 = µ4. The table gives the a1, a2, a3, a4 values for three
contrasts; if all three contrasts equal zero then the four population means are equal, and
vice versa.

a1 a2 a3 a4

1 -1 0 0
0 1 -1 0
0 0 1 -1

The way you read this table is

µ1 - µ2 = 0
µ2 - µ3 = 0

µ3 - µ4 = 0

Clearly, if µ1 = µ2 and µ2 = µ3 and µ3 = µ4, then µ1 = µ2 = µ3 = µ4, and if
µ1 = µ2 = µ3 = µ4, then µ1 = µ2 and µ2 = µ3 and µ3 = µ4. The simultaneous F test
for the three contrasts is 100% equivalent to what you get from a one-factor ANOVA; it
yields the same F statistic, the same degrees of freedom, and the same p-value.

There is always more than one way to set up the contrasts to test a given hypothesis.
Staying with the example of testing differences among four means, we could have specified

a1 a2 a3 a4

1 0 0 -1
0 1 0 -1
0 0 1 -1

so that all the means are equal to the last one,7 and thus equal to each other. No matter
how you set up collection of contrasts, if you do it correctly you always get the same test
statistic and p-value.

6The test of a contrast between two means is not exactly the same as what you would get if you
ignored all the data from the other groups, and just did a two-sample t-test or a one-way analysis with
two groups. This is because the test of a contrast uses data from all the groups to estimate the common
within-group variance (it uses Mean Squared Within from the full one-way ANOVA).

7These contrasts (differences between means) are actually equal to the regression coefficients in a
multiple regression with indicator dummy variables, in which the last category is the reference category.
More on this later.

73



3.3 The Tubes Data

In the tubes data (kindly provided by Linda Kohn of the University of Toronto’s Botany
department), the investigators were studying sclerotial fungi. The kind they were studying
is nasty black stuff that looks much like the fungus that grows between the tiles above
your bathtub (well, okay, my bathtub). The fungus is called “sclerotial” because that is
how they reproduce. Sclerotia are little pods that produce spores. When the pod opens
and the spores are released, they float through the air, land somewhere, and maybe start
to grow.

Ordinarily, these sclerotial fungi grow on plants. In fact, they often grow on canola
plants, and kill them or impair their growth. The canola plant produces a high-quality
vegetable oil, and is one of Canada’s biggest cash crops. So this makes a difference,
because it is about food.

All these fungi look the same, but they are not. There are different strains of fungus,
and the investigators know how to do genetic fingerprinting to tell them apart. The
different types are called “mycelial compatibility groups” (MCG for short), because if you
grow two different genetic types together in a dish, they will separate into two visibly
distinct colonies, and stay separated. The stuff that grows together is compatible. Before
techniques of genetic fingerprinting were developed, this was the only way to tell the
strains of apart.

The MCGs are genetically and spatially distinct, but do some grow faster than others?
This could have implications for agricultural practice as well as science. In this experiment,
the fungus is not growing on plants; it’s growing in “race tubes,” in a nutrient solution.
The implicit assumption here is that types of fungus that grow better in test tubes will
also grow better on plants. Is this true? It’s definitely an empirical question, because
plants fight off these infestations with something like an immune system response, and
the fungus that grows best on a completely passive host is not necessarily the one that
will grow best on a host that is fighting back. This is an issue of external validity; see
Section 1.3.

There are six MCGs, with four test tubes each. So, there are n = 24 cases in all.
This may seem like a very small sample size, and in fact the sample size was not chosen
by a power analysis (see Section 1.2.1 in Chapter 1 for a brief discussion) or any other
systematic method. It was entirely intuitive — but this is the intuition of scientists with
well-deserved international reputations in their field. Here’s how they thought about it.

The samples of each fungus type are genetically identical, the test tubes in which they
are placed are exactly identical, and the nutrient solution in the tubes comes from one
well-mixed batch; it’s exactly the same in all tubes. The amount of nutrient solution in
each tube is placed by hand, but it’s done very carefully, by highly trained and experi-
enced personnel. The temperature and humidity of the tubes in the lab are also carefully
controlled, so they are the same, except for microscopic differences. Really, the only pos-
sible source of variation in measured growth (except for very tiny errors of measurement)
is the genetic makeup of the fungus. Under the circumstance, one tube for each fungus
type might seem adequate to a biologist (though you couldn’t do any significance tests),
two tubes would be replicating the study, and four tubes per condition might seem like
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overkill.8 We will see presently that this intuition is supported by how the statistical
analysis turned out.

Every day for two weeks, a lab assistant (maybe a graduate student) measured each
tube, once in the morning and once in the evening. She measured the length of fungus
in centimeters, and also counted the sclerotia, as well as taking other measurements. We
will confine ourselves to a single dependent variable – length of the fungus on the evening
of day 10. After that point, the fastest-growing strains spread past the end of the test
tubes, creating a pattern of missing data that is too challenging to be considered here.
So, we have fungus type, a categorical independent variable called MCG that takes on six
values (the codes are numerical, and they are informative to the botanists); and we have
the single dependent variable pmlng10, which roughly indicates growth rate.

The The SAS program tubes09f.sas contains a one-way analysis of variance with
many (not all) of the bells and whistles. The strategy will to present the complete SAS
program first and then go over it piece by piece and explain what is going on – with one
major statistical digression. Here is the program.

/*************** tubes09f.sas ****************/

/* One-way analysis of tubes data */

/*********************************************/

%include ’tuberead2.sas’;

title2 ’One-way analysis of tubes data’;

proc freq;

tables mcg;

proc glm;

title3 ’Just the defaults’;

class mcg;

model pmlng10 = mcg;

/* For convenience, MCGs are: 198 205 213 221 223 225 */

proc glm;

8It is true that with this small sample, the assumptions of normal distribution and equal variance are
basically uncheckable. But they can be justified as follows. The only reason that the length measurement
for a particular type of fungus would not be completely identical would be a multitude of tiny, more
or less independent random shocks arising from tiny errors of measurement (the lab assistant is using a
ruler) and even smaller differences in the chemical composition of the nutrient solution and micro-climate
within the growth chamber. These random shocks may not be identically distributed, but as long as they
are independent and fairly numerous, a version of the Central Limit Theorem assures us that their sum
is normally distributed. Also, since code numbers were used to label the test tubes (the lab assistants
were blind to experimental condition), there is no reason to expect that the nature of the random shocks
would differ for the different fungus types. This justifies the assumption of equal variances.
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title3 ’With contrasts and multiple comparisons’;

class mcg;

model pmlng10 = mcg / clparm; /* clparm give CI for contrasts down in

the estimate statement. */

means mcg;

/* Test custom contrasts, or "planned comparisons" */

contrast ’198vs205’ mcg 1 -1 0 0 0 0;

contrast "223vs225" mcg 0 0 0 0 1 -1;

contrast ’223n225vsRest’ mcg -1 -1 -1 -1 2 2;

/* Test equality of mcgs excluding 198: a COLLECTION of contrasts */

contrast ’AllBut198’ mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

/* Replicate overall F test just to check. */

contrast ’OverallF=76.70’ mcg 1 -1 0 0 0 0,

mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

/* Estimate will print the value of a sample contrast and do a t-test

of H0: Contrast = 0 */

/* F = t-squared */

estimate ’223n225vsRest’ mcg -.25 -.25 -.25 -.25 .5 .5;

estimate ’AnotherWay’ mcg -3 -3 -3 -3 6 6 / divisor=12;

/* Multiple Comparisons */

means mcg / Tukey Bon Scheffe; /* Simultaneous Confidence Intervals */

/* Tables of adjusted p-values -- more convenient */

lsmeans mcg / pdiff adjust=bon;

lsmeans mcg / pdiff adjust=tukey;

lsmeans mcg / pdiff adjust=scheffe;

/* Get Scheffe critical value from proc iml */

proc iml;

title2 ’Scheffe critical value for all possible contrasts’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 17; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

scrit = critval * numdf;

print "Initial test has" numdf " and " dendf "degrees of freedom."

"----------------------------------------------------------"
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"Using significance level alpha = " alpha

"------------------------------------------------"

"Critical value for the initial test is " critval

"------------------------------------------------"

"Critical value for Scheffe tests is " scrit

"------------------------------------------------";

The program begins with %include ’tuberead2.sas’; the data step is contained in a
separate file called tuberead2.sas, not shown here. The %include statement reads in the
external file. This is what was done with the statclass data presented in Section 2.2.5
of Chapter 2. More detail is given there.

Then (after the second title line) we request a frequency distribution of the independent
variable – always a good idea.

proc freq;

tables mcg;

Here is the output of proc freq.

Fungus Tube data with line1=113 eliminated 1

One-way analysis of tubes data

The FREQ Procedure

Mycelial Compatibility Group

Cumulative Cumulative

mcg Frequency Percent Frequency Percent

--------------------------------------------------------

198 4 17.39 4 17.39

205 4 17.39 8 34.78

213 3 13.04 11 47.83

221 4 17.39 15 65.22

223 4 17.39 19 82.61

225 4 17.39 23 100.00

The first line of the title contains a reminder that one of the cases (tubes) has been
eliminated from the data. In the full data set, there was an outlier; when the biologists saw
it, they were absolutely convinced that in spite of the great care taken in the laboratory,
the tube in question had been contaminated with the wrong strain of fungus. So we set
it aside. This is why there are only three test tubes in the mcg=213, group, and four in
all the others.

Next, we have a bare-bones proc glm. The initials stand for “General Linear Model,”
and indeed the procedure is very general. Especially in this first example, we are just
scratching the surface. All the parts are obligatory except title3, which produces a third
title line that is displayed only for the output of this procedure.

77



proc glm;

title3 ’Just the defaults’;

class mcg;

model pmlng10 = mcg;

The class statement declares package to be categorical. Without it, proc glm would do
a regression with mcg as a quantitative independent variable. The syntax of the minimal
model statement is

model Dependent variable(s) = Independent variable(s);

Here is the output; it’s part of the list file.

_______________________________________________________________________________

Fungus Tube data with line1=113 eliminated 2

One-way analysis of tubes data

Just the defaults

The GLM Procedure

Class Level Information

Class Levels Values

mcg 6 198 205 213 221 223 225

Number of Observations Read 23

Number of Observations Used 23

_______________________________________________________________________________

Fungus Tube data with line1=113 eliminated 3

One-way analysis of tubes data

Just the defaults

The GLM Procedure

Dependent Variable: pmlng10
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Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 55.43902174 11.08780435 76.70 <.0001

Error 17 2.45750000 0.14455882

Corrected Total 22 57.89652174

R-Square Coeff Var Root MSE pmlng10 Mean

0.957554 1.500224 0.380209 25.34348

Source DF Type I SS Mean Square F Value Pr > F

mcg 5 55.43902174 11.08780435 76.70 <.0001

Source DF Type III SS Mean Square F Value Pr > F

mcg 5 55.43902174 11.08780435 76.70 <.0001

First, proc glm gives “Class Level Information: ” the name of the independent vari-
able, the number of “Levels” (groups), and the actual values taken on by the independent
variable. Then we get the sample size (n = 23). That’s all for Page 2 of the output. If
not for the formdlim option, SAS would print the next page of output on a new physical
sheet of paper.

On the next page of output (that is, the next logical page, as opposed to physical
page), SAS first prints the title lines, then the name of the dependent variable, and the
first of three analysis of variance summary tables. It’s a standard one, and leads to the
F value of 76.70; this is the “numerical value of the test statistic (so often requested in
homework problems) for testing equality of means. The p-value is tiny (p < 0.0001). The
differences among means are statistically significant, but with this minimal output we
cannot even guess which means might be significantly different from which others; the
sample means are not even displayed.

On the other hand, we do get some other statistics. Reading from right to left, we
see the sample mean of the dependent variable, Root MSE (literally the square root of the
Mean Square Within groups), The Coefficient of Variation (100 times Root MSE divided
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by Y , for what that’s worth), and

R2 =
SSB

SSTO
=

55.4390

57.8965
= 0.957554.

That is, nearly 96% of the variation in growth rate is explained by genetic the type of
the fungus. This is an overwhelmingly strong relationship between the independent and
dependent variables, and completely justifies the investigators’ judgement that a small
sample was all they needed. You’d never see anything this strong outside the laboratory
(say, in a canola field).

Next in the SAS program comes the real proc glm — one that illustrates testing and
confidence intervals for contrasts, and also multiple comparisons (sometimes called post
hoc tests, or probing). It starts like the one we’ve just examined.

/* For convenience, MCGs are: 198 205 213 221 223 225 */

proc glm;

title3 ’With contrasts and multiple comparisons’;

class mcg;

model pmlng10 = mcg / clparm; /* clparm give CI for contrasts down in

the estimate statement. */

means mcg;

The comment lists the mcgs (values of the independent variable) in order; it’s useful
here for setting up contrasts and remembering what they mean. This proc glm starts out
just like the last one, except for the clparm option on the model statement; clparm stands
for “confidence limits for parameters.” The parameters in question are contrasts (which
are actually functions of several model parameters), requested later in the estimate

statements. This is the best way to obtain confidence intervals for contrasts.
There’s also an optional means statement that goes means mcg. It requests a display of

the sample means of the dependent variable, separately for each value of the independent
variable named. A means statement is really necessary in any oneway ANOVA with proc

glm if you are to have any idea of what is going on. But the SAS syntax does not require
it, Here is the table of means generated by the means statement.

The GLM Procedure

Level of -----------pmlng10-----------

mcg N Mean Std Dev

198 4 28.3250000 0.35939764

205 4 25.8500000 0.28867513

213 3 25.0000000 0.26457513

221 4 23.4000000 0.48304589

223 4 24.8000000 0.16329932

225 4 24.6000000 0.54772256
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Next, we request test of some contrasts, and also tests of two collections of contrasts.
As the comment in the program indicates, these are sometimes called “planned compar-
isons” of treatment means. The implication is that they are tests of specific hypotheses
that were developed before looking at the data – maybe the hypotheses that the study
was designed to test in the first place. Maybe.

/* Test custom contrasts, or "planned comparisons" */

contrast ’198vs205’ mcg 1 -1 0 0 0 0;

contrast "223vs225" mcg 0 0 0 0 1 -1;

contrast ’223n225vsRest’ mcg -1 -1 -1 -1 2 2;

/* Test equality of mcgs excluding 198: a COLLECTION of contrasts */

contrast ’AllBut198’ mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

/* Replicate overall F test just to check. */

contrast ’OverallF=76.70’ mcg 1 -1 0 0 0 0,

mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

The syntax of the contrast statement is (reading left to right):

1. The word contrast

2. A label for the contrast (or set of contrasts), enclosed in single or double quotation
marks

3. The name of the categorical independent variable. If there is more than one cat-
egorical independent variable (factor), you’ll get a contrast of the marginal means
averaging across the other factors.

4. The weights of the contrast — the constants a1, . . . , ap described in Section 3.2.

5. If you want to test more than one contrast simultaneously, separate the contrasts
by commas, as in the example. You must repeat the name of the categorical inde-
pendent variable each time.

6. End the statement with a semicolon, as usual.

If the weights a1, . . . , ap do not add up to zero, you won’t get a test of whether
the resulting linear combination equals zero. You don’t even get an error message or
warning, just a ”Note” on the log file saying something like “CONTRAST LC is not
estimable.” This actually makes perfectly good sense if you understand the way that
proc glm parameterizes linear models that have categorical independent variables. But
the waters are a bit deep here, so we’ll let it go for now.
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The output of the contrast statement comes after the ANOVA summary table and
after the output of the means statement (and lsmeans), even if you request means after
you’ve requested contrasts. They are nicely labelled, using the labels supplied in the
contrast statements. Naturally, the overall F of 76.70 was obtained in an earlier run.

The GLM Procedure

Dependent Variable: pmlng10

Contrast DF Contrast SS Mean Square F Value Pr > F

198vs205 1 12.25125000 12.25125000 84.75 <.0001

223vs225 1 0.08000000 0.08000000 0.55 0.4671

223n225vsRest 1 4.62182432 4.62182432 31.97 <.0001

AllBut198 4 12.39526316 3.09881579 21.44 <.0001

OverallF=76.70 5 55.43902174 11.08780435 76.70 <.0001

Next we have the estimate statement, which has a syntax similar to contrast. It
is limited to single contrasts (they have to be actual contrasts, and not just generic
linear combinations of cell means), and actually prints the value of the sample contrast,
a number that is an estimate of the population contrast. You also get a two-sided t-test
of the null hypothesis that the contrast equals zero in the population. This is equivalent
to the F -test generated by contrast; F = t2, and the p-values are identical.

Notice that if you are just interested in a test for whether a contrast equals zero,
multiplying by a constant has no effect – so the test of −0.5,−0.5, 1.0 is the same as
the test for 1, 1,−2; you’d probably use contrast. But if you are using estimate, you
probably are interested in the numerical value of the contrast, usually the difference
between two averages of means. Some of these can be awkward to specify in decimal
form, so you can use integers and specify a divisor, as shown below.

/* Estimate will print the value of a sample contrast and do a t-test

of H0: Contrast = 0 */

/* F = t-squared */

estimate ’223n225vsRest’ mcg -.25 -.25 -.25 -.25 .5 .5;

estimate ’AnotherWay’ mcg -3 -3 -3 -3 6 6 / divisor=12;

Here is the output of estimate. As mentioned above, the confidence limits were produced
by the clparm option on the model statement.
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Standard

Parameter Estimate Error t Value Pr > |t|

223n225vsRest -0.94375000 0.16690623 -5.65 <.0001

AnotherWay -0.94375000 0.16690623 -5.65 <.0001

Parameter 95% Confidence Limits

223n225vsRest -1.29589137 -0.59160863

AnotherWay -1.29589137 -0.59160863

3.4 Multiple comparisons

The means statement of proc glm lets you look at the group means, but it does not
tell you which means are significantly different from which other means. Before we lose
control and start doing all possible t-tests, consider the following.

The curse of a thousand t-tests Significance tests are supposed to help screen out
random garbage, and help us ignore “trends” that could easily be due to chance. But all
the common significance tests are designed in isolation, as if each one were the only test
you would ever be doing. The chance of getting significant results when nothing is going
on may be about 0.05 (more or less, depending on how well the assumptions are met), but
if you do a lot of tests on a data set that is purely noise (no true relationships between
any independent variable and any dependent variable), the chances of false significance
mount up. It’s like looking for your birthday in tables of stock market prices. If you look
long enough, you will find it.

This problem definitely applies when you have a significant difference among more than
two treatment means, and you want to know which ones are different from each other. For
example, in an experiment with 10 treatment conditions (this is not an unusually large
number, for real experiments), there are 45 pairwise differences among means. In the tubes
data, there are 6 different fungus types, and thus 15 potential pairwise comparisons.

You have to pity the poor scientist who learns about this and is honest enough to take
the problem seriously (let’s use the term “scientist” generously to apply to anyone trying
to use significance test to learn something about a data set). On one hand, good scientific
practice and common sense dictate that if you have gone to the trouble to collect data,
you should explore thoroughly and try to learn something from the data. But at the same
time, it appears that some stern statistical entity is scolding you, and saying that you’re
naughty if you peek.

There are several ways to resolve the problem. One way is to basically ignore it, while
perhaps acknowledging that it is there. According to this point of view, well, you’re crazy
if you don’t explore the data. Maybe the true significance level for the entire process is
greater than 0.05, but still the use of significance tests is a useful way to decide which
results might be real. Nothing’s perfect; let’s carry on.
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My personal favourite is to collect enough data so that they can be randomly split
into an exploratory and a replication sample. You explore one of the samples thoroughly,
doing all sorts of tests, maybe re-defining the variables in the process. The result is a set
of very specific hypotheses. Then you test the hypotheses on the second data set. This
is great, unless the data are very time-consuming or expensive to collect. In that case,
you’re lucky to have one small data set, and you have to use all of it at once or you won’t
have enough power to detect anything.

Taking this unfortunate reality into account, statisticians have looked for ways that
significance tests can be modified to allow for the fact that we’re doing a lot of them. What
we want are methods for holding the chances of false significance to a single low level for a
set of tests, simultaneously. The general term for such methods is multiple comparison
procedures. Often, when a significance test (like a one-way ANOVA) tests several things
simultaneously and turns out to be significant, multiple comparison procedures are used
as a second step, to investigate where the effect came from. In cases like this, the multiple
comparisons are called follow-up tests, or post hoc tests, or sometimes probing.

It is generally acknowledged that multiple comparison methods are often helpful (even
necessary) for following up significant F -tests in order to see where an effect comes from.
For now, let’s concentrate on following up a significant F test in a one-way analysis of
variance. Three approaches will be presented, named after their originators: Bonferroni9,
Tukey and Scheffé. There are many more.

3.4.1 Bonferroni

The Bonferroni method is very general, and extends far beyond pairwise comparisons of
means. It is a simple correction that can be applied when you are performing multiple
tests, and you want to hold the chances of false significance to a single low level for all
the tests simultaneously. It applies when you are testing multiple sets of independent
variables, multiple dependent variables, or both.

The Bonferroni correction consists of simply dividing the desired significance level
(that’s α, the maximum probability of getting significant results when actually nothing is
happening, usually α = 0.05) by the number of tests. In a way, you’re splitting the alpha
equally among the tests you do.

For example, if you want to perform 5 tests at joint significance level 0.05, just do
everything as usual, but only declare the results significant at the joint 0.05 level if one
of the tests gives you p < 0.01 (0.01=0.05/5). If you want to perform 20 tests at joint
significance level 0.05, do the individual tests and calculate individual p-values as usual,
but only believe the results of tests that give p < 0.0025 (0.0025=0.05/20). Say something
like “Protecting the 20 tests at joint significance level 0.05 by means of a Bonferroni
correction, the difference in reported liking between worms and spinach soufflé was the
only significant food category effect.”

9Actually, Mr. Bonferroni is only indirectly responsible for the Bonferroni method of multiple com-
parisons. He gets credit for the probability inequality that says P (∪k

j=1Aj) ≤
∑k

j=1 P (Aj). Letting Aj

be the event that null hypothesis j is rejected (assume they are all true), we get the Bonferroni multiple
comparison method quite easily.
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The Bonferroni correction is conservative. That is, if you perform 20 tests, the prob-
ability of getting significance at least once just by chance is less than or equal to 0.0025
– almost always less. The big advantages of the Bonferroni approach are simplicity and
flexibility. It is the only way I know to analyze quantitative and categorical dependent
variables simultaneously.

The main disadvantages of the Bonferroni approach are

1. You have to know how many tests you want to perform in advance, and you have
to know what they are. In a typical data analysis situation, not all the significance
tests are planned in advance. The results of one test will give rise to ideas for
other tests. If you do this and then apply a Bonferroni correction to all the tests
that you happened to do, it no longer protects all the tests simultaneously. On the
other hand, you could randomly split your data into an exploratory sample and a
replication sample. Test to your heart’s content on the first sample. Then, when you
think you know what your results are, perform only those tests on the replication
sample, and protect them simultaneously with a Bonferroni correction. This could
be called ”Bonferroni-protected cross-validation.” It sounds good, eh?

2. The Bonferroni correction can be too conservative, especially when the number of
tests becomes large. For example, to simultaneously test all 780 correlations in a
40 by 40 correlation matrix at joint α = 0.05, you’d only believe correlations with
p < 0.0000641 = 0.05/780.

Is this “too” conservative? Well, with n = 200 in that 40 by 40 example, you’d need
r = 0.27 for significance (compared to r = .14 with no correction). With n = 100
you’d need r = .385, or about 14.8% of one variable explained by another single
variable. Is this too much to ask? You decide.

3.4.2 Tukey

This is Tukey’s Honestly Significant Difference (HSD) method. It is not his Least Sig-
nificant Different (LSD) method, which has a better name but does not really get the
job done. Tukey tests apply only to pairwise differences among means in ANOVA. It is
based on a deep study of the probability distribution of the difference between the largest
sample mean and the smallest sample mean, assuming the population means are in fact
all equal.

• If you are interested in all pairwise differences among means and nothing else, and
if the sample sizes are equal, Tukey is the best (most powerful) test, period.

• If the sample sizes are unequal, the Tukey tests still get the job of simultaneous
protection done, but they are a bit conservative. When sample sizes are unequal,
Bonferroni or Scheff can sometimes be more powerful.
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3.4.3 Scheffé

It is very easy for me to say too much about Scheffé tests, so this discussion will be limited
to testing whether certain linear combinations of treatment means (in a one-way design)
are significantly different from zero. The Scheffé tests allow testing whether any contrast
of treatment means differs significantly from zero, with the tests for all possible contrasts
simultaneously protected.

When asked for Scheffé followups to a one-way ANOVA, SAS tests all pairwise dif-
ferences between means, but there are infinitely many more contrasts in the same family
that it does not do — and they are all jointly protected against false significance at the
0.05 level. You can do as many of them as you want easily, with SAS and a calculator.

It’s a miracle. You can do infinitely many tests, all simultaneously protected. You do
not have to know what they are in advance. It’s a license for unlimited data fishing, at
least within the class of contrasts of treatment means.

Two more miracles:

• If the initial one-way ANOVA is not significant, it’s impossible for any of the Scheffé
follow-ups to be significant. This is not quite true of Bonferroni or Tukey.

• If the initial one-way ANOVA is significant, there must be a single contrast that is
significantly different from zero. It may not be a pairwise difference, you may not
think of it, and if you do find one it may not be easy to interpret, but there is at
least one out there. Well, actually, there are infinitely many, but they may all be
extremely similar to one another.

Here’s how you do it. First find the critical value of F for the initial oneway ANOVA
(Recall that if a test statistic is greater than the critical value, it’s significant). This is
part of the default output from proc glm when you request Scheffé tests using the means

statement – or you can use proc iml.
A contrast is significantly different from zero by a Scheffé test if the F statistic is

greater than the usual critical value multiplied by p− 1, where p is the number of groups.
You can get the F statistics with contrast. Keep doing tests until you run out of ideas.

Notice that multiplying by the number of means (minus one) is a kind of penalty
for the richness of the infinite family of tests you could do. As soon as Mr. Scheffé
discovered these tests, people started complaining that the penalty was very severe, and
it was too hard to get significance. In my opinion, what’s remarkable is not that a license
for unlimited fishing is expensive, but that it’s for sale at all. The power of a Scheffé test
is the probability of getting an F bigger than the critical value multiplied by p − 1. You
can pay for it by increasing the sample size.

Which method should you use? In most practical data analysis situations, you
would only use one of the three multiple comparison methods. Here are some guidelines.
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• If the sample sizes are nearly equal and you are only interested in pairwise compar-
isons, use Tukey because it’s most powerful in this situation.

• If the sample sizes are not close to equal and you are only interested in pairwise
comparisons, there is (amazingly, just this once) no harm in applying all three
methods and picking the one that gives you the greatest number of significant results.
This is because you could calculate the three types of adjusted critical value in
advance before seeing the data, and choose the smallest one.

• If you are interested in contrasts that go beyond pairwise comparisons and you can
specify all of them (exactly what they are, not just how many) before seeing the
data, Bonferroni is almost always more powerful than Scheffé. Tukey is out, because
it applies only to pairwise comparisons.

• If you want lots of special contrasts but you don’t know exactly what they all are,
Scheffé is the only honest way to go, unless you have a separate replication data set.

3.4.4 Simultaneous confidence intervals and adjusted p-values

The Bonferroni and Scheffé methods allow you to test an arbitrary family of contrasts
simultaneously, while holding down the joint Type I error rate. If you want to test a con-
trast that is a little special or unusual, you’d use the test from the contrast or estimate
statement, along with an adjusted critical value. But if you’re only interested in com-
paring all possible pairs of group means, you don’t have to specify all those contrasts;
SAS does it for you. Two equivalent formats are available, simultaneous confidence inter-
vals and adjusted p-values. Equivalent means that both methods label exactly the same
differences as significant;the only difference is in how the results are printed.

Simultaneous confidence intervals When you invoke multiple comparisons using the
means statement (this is the older way), as in

means package / Tukey Bon Scheffe;

you get our three favourite kinds of multiple comparisons for all pairwise differences
among means. (SAS is not case sensitive, so capitalizing the names is not necessary.) The
multiple comparisons are presented in the form of simultaneous confidence intervals. If
the 95% confidence interval does not include zero, the test (Bonferroni, Tukey or Scheffé)
is significant at the joint 0.05 level. The confidence intervals are correct, but they are
ugly to look at and not recommended. No output will be shown.

Adjusted p-values Adjusted p-values are adjusted for the fact that you are doing
multiple tests; you believe the results when the adjusted p-value is less than 0.05. The
adjustment is easy to describe for the Bonferroni method; just multiply the ordinary p-
value by the number of tests, and if the resulting value is more than one, call it 1.00.
For the Scheffé method, divide the computed value of F by p − 1; the Scheffé adjusted
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p-value is the tail area of the F distribution above this value. I don’t know exactly how
the Tukey adjustment works, but if you really need to know you can look it up in the
SAS documentation.

While the means statement allows you to request several different multiple comparison
methods at once, lsmeans must be invoked separately for each method you want. Here
is the syntax.

lsmeans mcg / pdiff adjust=bon;

lsmeans mcg / pdiff adjust=tukey;

lsmeans mcg / pdiff adjust=scheffe;

The keyword lsmeans stands for “least squares means,” which are the group means ad-
justed for one or more quantitative independent variables (covariates). Since there are no
quantitative independent variables here, the least squares means are the same as ordinary
means.10

The syntax of the lsmeans is (reading from left to right)

• lsmeans

• The name of the independent variable

• A slash; options are given to the right of the slash.

• pdiff requests a table of p-values for testing all pairwise differences between means.

• adjust= and the name of the method. Use “bon” or “Bon” instead of the full name.

Here is the Scheffé output. First we get the (least squares) means, and then a table
showing the adjusted p-values. The number in row j, column k contains the adjusted
p-value for the test of mean j against mean k.

The GLM Procedure

Least Squares Means

Adjustment for Multiple Comparisons: Scheffe

pmlng10 LSMEAN

mcg LSMEAN Number

198 28.3250000 1

205 25.8500000 2

213 25.0000000 3

221 23.4000000 4

223 24.8000000 5

225 24.6000000 6

10Least squares means will be explained properly in a later chapter, using concepts from multiple
regression.

88



Least Squares Means for effect mcg

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: pmlng10

i/j 1 2 3 4 5 6

1 <.0001 <.0001 <.0001 <.0001 <.0001

2 <.0001 0.1854 <.0001 0.0381 0.0101

3 <.0001 0.1854 0.0021 0.9918 0.8559

4 <.0001 <.0001 0.0021 0.0037 0.0142

5 <.0001 0.0381 0.9918 0.0037 0.9884

6 <.0001 0.0101 0.8559 0.0142 0.9884

For comparison, here is the table of adjusted p-values for the Tukey method.

i/j 1 2 3 4 5 6

1 <.0001 <.0001 <.0001 <.0001 <.0001

2 <.0001 0.0838 <.0001 0.0122 0.0026

3 <.0001 0.0838 0.0005 0.9808 0.7392

4 <.0001 <.0001 0.0005 0.0008 0.0039

5 <.0001 0.0122 0.9808 0.0008 0.9732

6 <.0001 0.0026 0.7392 0.0039 0.9732

You can see that the Tukey p-values are almost all smaller than the Scheffé p-values, except
when the values are near one. This is to be expected; the Tukey method is theoretically
more powerful because the sample sizes are almost equal. Still, the two methods point to
exactly the same conclusions (and so does the Bonferroni method).

How would you describe these conclusions? This is the answer to the standard question
“Which means are different from each other?” or just “What do you conclude?” If the
question asks for “plain, non-statistical language,” then you don’t mention the multiple
comparison method at all. Otherwise, you should add something like “These conclusions
are based on a set of Bonferroni multiple comparisons using a joint 0.05 significance level.”

But how much detail do you give, and what do you say? You can see that the Tables
of adjusted p-values may be almost okay for a technical audience, but one can do a lot
better. Here is an example. The format is based on one that SAS produces in connection
with some multiple comparison methods you seldom want to do. Curiously, it is not
available with lsmeans. I started by editing the list of means from lsmeans to put them
in numerical order.
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The table below shows mean length on the evening of day 10. Means that are not
significantly different by a Scheffé test are connected by a common letter.

mcg Mean Length on Day 10 (pm)

198 28.3250000

205 25.8500000 a

213 25.0000000 a b

223 24.8000000 b

225 24.6000000 b

221 23.4000000

Here are the conclusions in plain language.

1. mcg 198 grows fastest.

2. mcg 221 grows slowest.

3. We cannot conclude that the growth rates of mcgs 205 and 213 are different.

4. mcg 205 grows faster than mcgs 221, 223 and 225.

5. mcg 213 grows faster than 221, but there is not enough evidence to conclude that it
is different from 223 or 225.

6. There is little difference between the growth rates of mcgs 223 and 225.

This example illustrates something that can be a source of discomfort. The conclusions
of multiple significance tests, even when they are multiple comparisons, need not be
logically consistent with one another. Here, growth for mcg 205 is not different from 213,
and 213 is not different from 223 — but 205 is different from 223. All I can say is that it
would be worse if you were formally accepting the null hypothesis. Another weird thing is
that it’s mathematically possible for the overall F test to be significant, so you conclude
that the population means are not all equal. But then none of the pairwise comparisons
are significant, no matter what multiple comparison method you use. Ouch.

If you plan to use Scheffé’s method to test a lot of contrasts in addition to pairwise
comparisons, it helps to have the adjusted critical value in front of you. Then you can just
compare the F values from your contrast statements to the critical value. You could
do it with a table of the F distribution and a calculator, but proc iml (which stands
for “Interactive Matrix Language,” and is very powerful) is more convenient, because the
critical value appears on your output. Here is the code.
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proc iml;

title3 ’Scheffe critical value for all possible contrasts’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 17; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

scrit = critval * numdf;

print "Initial test has" numdf " and " dendf "degrees of freedom."

"----------------------------------------------------------"

"Using significance level alpha = " alpha

"------------------------------------------------"

"Critical value for the initial test is " critval

"------------------------------------------------"

"Critical value for Scheffe tests is " scrit

"------------------------------------------------";

And here is the output.

Scheffe critical value for all possible contrasts

numdf dendf

Initial test has 5 and 17 degrees of freedom.

----------------------------------------------------------

alpha

Using significance level alpha = 0.05

------------------------------------------------

critval

Critical value for the initial test is 2.8099962

------------------------------------------------

scrit

Critical value for Scheffe tests is 14.049981

------------------------------------------------

3.4.5 Scheffé tests for collections of contrasts

Scheffé tests actually protect a family of tests that include all collections of contrasts,
not just all single contrasts. Suppose the initial F test is significant, and you have a
follow-up null hypothesis saying that s non-redundant11 contrasts all equal zero. In the

11Linearly independent.
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tubes example, such a null hypothesis would be that the population means for all MCGs
except 198 are equal – in other words, the test of whether the MCGs other than 198 have
different growth rates. This involves s = 4 contrasts. We did it as a one-at-a-time test in
tubes09f.sas; the contrast was named AllBut198.

To convert such a “planned” comparison to a Scheffé test, just use the adjusted critical
value

fSch = fcrit
p− 1

s
, (3.1)

where fcrit is the usual critical value for the initial test. Then, considered as a Scheffé
follow-up, the test is significant at the joint 0.05 level if the computed value of F for the
collection of contrasts is greater than fSch.

For the example of AllBut198, fcrit = 2.81, p = 6 and s = 4. So

fSch = 2.81
5

4
= 3.51.

The test we got from contrast gave us F = 21.44, which is bigger than 3.51. So we
conclude that those other growth rates are not all equal.

If you plan to test collections of contrasts with Scheffé tests, it is helpful to have a
table of all the adjusted critical values you might need. Here is a proc iml that does the
job. The details are not explained, but the code can easily be adapted to fit any example.
All you need are the numerator degrees of freedom (p − 1) and denominator degrees of
freedom (n− p) from an ANOVA summary table.

proc iml;

title3 ’Table of Scheffe critical values for COLLECTIONS of contrasts’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 17; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

Here is the output.
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Table of Scheffe critical values for COLLECTIONS of contrasts

Initial test has 5 and 17 degrees of freedom.

Using significance level alpha = 0.05

Number of Contrasts in followup test Scheffe Critical Value

1 14.049981

2 7.0249904

3 4.683327

4 3.5124952

5 2.8099962

When you do Scheffé tests for collections of contrasts, several comforting rules apply.

• If the initial test is not significant, no test for a collection can be significant by a
Scheffé test.

• Suppose the Scheffé test for a collection is significant. Now consider the collection
of all single contrasts that are equal to zero if all members of the collection equal
zero12. The Scheffé test for at least one of those contrasts will be significant — if
you can find it.

• Suppose the Scheffé test for a collection is not significant. If the truth of H0 for
the collection implies that a contrast is equal to zero, then the Scheffé test for that
contrast cannot be significant.

• The last point applies to smaller collections of contrasts, that is, to contrasts in-
volving fewer than s contrasts.

12Technically, the set of all vectors of weights that lie in the linear subspace spanned by the weights of
the collection.
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