Model for three categories

Logistic Regression with more than two outcomes

Think of k-1 dummy variables for the dependent variable

Meaning of the regression coefficients

$\ln \left(\frac{\pi_{1}}{\pi_{3}}\right)=\beta_{0,1}+\beta_{1,1} x_{1}+\ldots+\beta_{p-1,1} x_{p-1}$
$\ln \left(\frac{\pi_{2}}{\pi_{3}}\right)=\beta_{0,2}+\beta_{1,2} x_{1}+\ldots+\beta_{p-1,2} x_{p-1}$
A positive regression coefficient for logit j means that higher values of the independent variable are associated with greater chances of response category j, compared to the reference category.
$\ln \left(\frac{\pi_{1}}{\pi_{3}}\right)=\beta_{0,1}+\beta_{1,1} x_{1}+\ldots+\beta_{p-1,1} x_{p-1}$
$\ln \left(\frac{\pi_{2}}{\pi_{3}}\right)=\beta_{0,2}+\beta_{1,2} x_{1}+\ldots+\beta_{p-1,2} x_{p-1}$

Need k-1 generalized logits to represent a dependent variable with k categories

Solve for the probabilities

$$
\begin{aligned}
\ln \left(\frac{\pi_{1}}{\pi_{3}}\right) & =L_{1} & \text { so } & \frac{\pi_{1}}{\pi_{3}}
\end{aligned}=e^{L_{1}}, ~ \begin{array}{ll}
\pi_{2} & =e^{L_{2}} \\
\ln \left(\frac{\pi_{2}}{\pi_{3}}\right)=L_{2} & \frac{\pi_{2}}{\pi_{3}}
\end{array}
$$

Three linear equations in 3 unknowns

$$
\begin{aligned}
\pi_{1} & =\pi_{3} e^{L_{1}} \\
\pi_{2} & =\pi_{3} e^{L_{2}} \\
\pi_{1}+\pi_{2}+\pi_{3} & =1
\end{aligned}
$$

Solution

$$
\begin{aligned}
\pi_{1} & =\frac{e^{L_{1}}}{1+e^{L_{1}}+e^{L_{2}}} \\
\pi_{2} & =\frac{e^{L_{2}}}{1+e^{L_{1}}+e^{L_{2}}} \\
\pi_{k} & =\frac{1}{1+e^{L_{1}}+e^{L_{2}}}
\end{aligned}
$$

In general, solve k equations in k unknowns

$$
\begin{aligned}
\pi_{1} & =\pi_{k} e^{L_{1}} \\
& \vdots \\
\pi_{k-1} & =\pi_{k} e^{L_{k-1}} \\
\pi_{1}+\cdots+\pi_{k} & =1
\end{aligned}
$$

General Solution

$$
\begin{aligned}
\pi_{1} & =\frac{e^{L_{1}}}{1+\sum_{j=1}^{k-1} e^{L_{j}}} \\
\pi_{2} & =\frac{e^{L_{2}}}{1+\sum_{j=1}^{k-1} e^{L_{j}}} \\
& \vdots \\
\pi_{k-1} & =\frac{e^{L_{k-1}}}{1+\sum_{j=1}^{k-1} e^{L_{j}}} \\
\pi_{k} & =\frac{1}{1+\sum_{j=1}^{k-1} e^{L_{j}}}
\end{aligned}
$$

Using the solution, one can

- Calculate the probability of obtaining the observed data as a function of the regression coefficients: Get maximum likelihood estimates (b values)
- From maximum likelihood estimates, get tests and confidence intervals
- Using b values in L_{j}, estimate probabilities of category membership for any set of x values.

