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Chapter 1

Introduction

This course is about using statistical methods to draw conclusions from real data. It is
deliberately non-mathematical, relying on translations of statistical theory into English.
For the most part, formulas are avoided. While this involves some loss of precision, it
also makes the course accessible to students from non-statistical disciplines (particularly
graduate students and advanced undergraduates on their way to graduate school) who
need to use statistics in their research. Even for students with strong training in theoretical
statistics, the use of plain English can help reveal the connections between theory and
applications, while also suggesting a useful way to communicate with non-statisticians.

We will avoid mathematics, but we will not avoid computers. Learning to apply
statistical methods to real data involves actually doing it, and the use of software is
not optional. Furthermore, we will not employ “user-friendly” menu-driven statistical
programs. Why?

• It’s just too easy to poke around in the menus trying different things, produce some
results that seem reasonable, and then two weeks later be unable to say exactly
what one did.

• Real data sets tend to be large and complex, and most statistical analyses involve
a sizeable number of operations. If you discover a tiny mistake after you produce
your results, you don’t want to go back and repeat two hours of menu selections
and mouse clicks, with one tiny variation.

• If you need to analyze a data set that is similar to one you have analyzed in the past,
it’s a lot easier to edit a program than to remember a collection of menu selections
from last year.

Don’t worry! The word “program” does not mean we are going to write programs in
some true programming language like C or Java. We’ll use statistical software in which
most of the actual statistical procedures have already been written by experts; usually,
all we have to do is invoke them by using high-level commands.

The statistical packages we will use in this course are SAS and R. These packages are
command-oriented rather than menu-oriented, and are very powerful. They are industrial
strength tools, and will be illustrated in an industrial strength environment — unix. This
is mostly for local convenience. There are Windows versions of both SAS and R that work
just as well as the unix versions, except for very big jobs.
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Applied Statistics really refers to two related enterprises. The first might be more
accurately termed “Applications of Statistics,” and consists of the appropriate application
of standard general techniques. The second enterprise is the development of specialized
techniques that are designed specifically for the data at hand. The difference is like
buying your clothes from Walmart versus sewing them yourself (or going to a tailor). In
this course, we will do both. We’ll maintain the non-mathematical nature of the course
in the second half by substituting computing power and random number generation for
statistical theory.

1.1 Vocabulary of data analysis

We start with a data file. Think of it as a rectangular array of numbers, with the rows
representing cases (units of analysis, observations, subjects, replicates) and the columns
representing variables (pieces of information available for each case).

• A physical data file might have several lines of data per case, but you can imagine
them listed on a single long line.

• Data that are not available for a particular case (for example because a subject fails
to answer a question, or because a piece of measuring equipment breaks down) will
be represented by missing value codes. Missing value codes allow observations with
missing information to be automatically excluded from a computation.

• Variables can be quantitative (representing amount of something) or categorical.
In the latter case the ”numbers” are codes representing category membership. Cate-
gories may be ordered (small vs. medium vs. large) or unordered (green vs. blue
vs. yellow). When a quantitative variable reflects measurement on a scale capable of
very fine gradation, it is sometimes described as continuous. Some statistical texts
use the term qualitative to mean categorical. When an anthropologist uses the
word “qualitative,” however, it usually refers to ethnographic or case study research
in which data are not explicitly assembled into a data file.

Another very important way to classify variables is

Independent Variable (IV): Predictor = X (actually Xi, i = 1, . . . , n)

Dependent Variable (DV): Predicted = Y (actually Yi, i = 1, . . . , n)

Example: X = weight of car in kilograms, Y = fuel efficiency in litres per kilometer

Sample Question 1.1.1 Why isn’t it the other way around?

Answer to Sample Question 1.1.1 Since weight of a car is a factor that probably in-
fluences fuel efficiency, it’s more natural to think of predicting fuel efficiency from weight.

The general principle is that if it’s more natural to think of predicting A from B, then
A is the dependent variable and B is the independent variable. This will usually be the
case when B is thought to cause or influence A. Sometimes it can go either way or it’s
not clear. But usually it’s easy to decide.

2



Sample Question 1.1.2 Is it possible for a variable to be both quantitative and categor-
ical? Answer Yes or No, and either give an example or explain why not.

Answer to Sample Question 1.1.2 Yes. For example, the number of cars owned by a
person or family.

In some fields, you may hear about nominal, ordinal, interval and ratio variables,
or variables measured using “scales of measurement” with those names. Ratio means
the scale of measurement has a true zero point, so that a value of 4 represents twice as
much as 2. An interval scale means that the difference (interval) between 3 and 4 means
the same thing as the difference between 9 and 10, but zero does not necessarily mean
absence of the thing being measured. The usual examples are shoe size and ring size.
In ordinal measurement, all you can tell is that 6 is less than 7, not how much more.
Measurement on a nominal scale consists of the assignment of unordered categories. For
example, citizenship is measured on a nominal scale.

It is usually claimed that one should calculate means (and therefore, for example,
do multiple regression) only with interval and ratio data; it’s usually acknowledged that
people do it all the time with ordinal data, but they really shouldn’t. And it is obviously
crazy to calculate a mean on numbers representing unordered categories. Or is it?

Sample Question 1.1.3 Give an example in which it’s meaningful to calculate the mean
of a variable measured on a nominal scale.

Answer to Sample Question 1.1.3 Code males as zero and females as one. The mean
is the proportion of females.

It’s not obvious, but actually all this talk about what you should and shouldn’t do with
data measured on these scales does not have anything to do with statistical assumptions.
That is, it’s not about the mathematical details of any statistical model. Rather, it’s a set
of guidelines for what statistical model one ought to adopt. Are the guidelines reasonable?
It’s better to postpone further discussion until after we have seen some details of multiple
regression.

1.2 Statistical significance

We will often pretend that our data represent a random sample from some population.
We will carry out formal procedures for making inferences about this (usually fictitious)
population, and then use them as a basis for drawing conclusions from the data.

Why do we do all this pretending? As a formal way of filtering out things that happen
just by coincidence. The human brain is organized to find meaning in what it perceives,
and it will find apparent meaning even in a sequence of random numbers. The main
purpose of testing for statistical significance is to protect Science against this. Even when
the data do not fully satisfy the assumptions of the statistical procedure being used (for
example, the data are not really a random sample) significance testing can be a useful as
a way of restraining scientists from filling the scientific literature with random garbage.
This is such an important goal that we will spend a substantial part of the course on
significance testing.
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1.2.1 Definitions

Numbers that can be calculated from sample data are called statistics. Numbers that
could be calculated if we knew the whole population are called parameters. Usually
parameters are represented by Greek letters such as α, β and γ, while statistics are
represented by ordinary letters such as a, b, c. Statistical inference consists of making
decisions about parameters based on the values of statistics.

The distribution of a variable corresponds roughly to a histogram of the values of
the variable. In a large population for a variable taking on many values, such a histogram
will be indistinguishable from a smooth curve.

For each value x of the independent variable X, in principle there is a separate distri-
bution of the dependent variable Y . This is called the conditional distribution of Y
given X = x.

We will say that the independent and dependent variables are unrelated if the condi-
tional distribution of the dependent variable is identical for each value of the independent
variable. That is, the histogram of the dependent variable does not depend on the value
of the independent variable. If the distribution of the dependent variable does depend
on the value of the independent variable, we will describe the two variables as related.
All this applies to sample as well as population datasets (a population dataset may be
entirely hypothetical).

Most research questions involvemore than one independent variable. It is also common
to have more than one dependent variable. When there is one dependent variable, the
analysis is called univariate. When more than one dependent variable is being considered
simultaneously, the analysis is called multivariate.

Sample Question 1.2.1 Give an example of a study with two categorical independent
variables, one quantitative independent variable, and two quantitative dependent variables.

Answer to Sample Question 1.2.1 In a study of success in university, the subjects are
first-year university students. The categorical independent variables are Sex and Immi-
gration Status (Citizen, Permanent Resident or Visa), and the quantitative independent
variable is family income. The dependent variables are cumulative Grade Point Average
at the end of first year, and number of credits completed in first year.

Many problems in data analysis reduce to asking whether one or more variables are
related – not in the actual data, but in some hypothetical population from which the
data are assumed to have been sampled. The reasoning goes like this. Suppose that the
independent and dependent variables are actually unrelated in the population. If this is
true, what is the probability of obtaining a sample relationship between the variables that
is as strong or stronger than the one we have observed? If the probability is small (say,
p < 0.05), then we describe the sample relationship as statistically significant, and it
is socially acceptable to discuss the results. In particular, there is some chance of having
the results taken seriously enough to publish in a scientific journal.

Here is another way to talk about p-values and significance testing. The p-value is
the probability of getting our results (or better) just by chance. If p is small enough (we
will use ) then the data are very unlikely to have arisen by chance, assuming there is
really no relationship between the independent variable and the dependent variable in
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the population. In this case we will conclude there really is a relationship between the
independent variable and the dependent variable.

If p > .05, we will not conclude anything. In particular, we will not conclude that the
independent and dependent variables are unrelated. All we can say is that there is no
evidence of a relationship between the independent variable and the dependent variable.

For those who like precision, the formal definition is this. The p-value is the minimum
significance level α at which the null hypothesis (of no relationship between IV and DV
in the population) can be rejected.

1.2.2 Standard elementary significance tests

We will now consider some of the most common elementary statistical methods. For each
one, you should be able to answer the following questions.

1. Make up your own original example of a study in which the technique could be used.

2. In your example, what is the independent variable (or variables)?

3. In your example, what is the dependent variable (or variables)?

4. Indicate how the data file would be set up.

Independent observations One assumption shared by most standard methods is that
of ”independent observations.” The meaning of the assumption is this. Observations 13
and 14 are independent if and only if the conditional distribution of observation 14 given
observation 13 is the same for each possible value observation 13. For example if the
observations are temperatures on consecutive days, this would not hold. If the dependent
variable is score on a homework assignment and students copy from each other, the
observations will not be independent.

When significance testing is carried out under the assumption that observations are
independent but really they are not, results that are actually due to chance will often be
detected as significant with probability considerably greater than 0.05. This is sometimes
called the problem of inflated n. In other words, you are pretending you have more
separate pieces of information than you really do. When observations cannot safely be
assumed independent, this should be taken into account in the statistical analysis. We
will return to this point again and again.

Independent (two-sample) t-test

This is a test for whether the means of two independent groups are different. Assumptions
are independent observations, normality within groups, equal variances. For large samples
normality does not matter. For large samples with nearly equal sample sizes, equal
variance assumption does not matter. The assumption of independent observations is
always important.

Sample Question 1.2.2 Make up your own original example of a study in which a two-
sample t-test could be used.
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Answer to Sample Question 1.2.2 An agricultural scientist is interested in compar-
ing two types of fertilizer for potatoes. Fifteen small plots of ground receive fertilizer A
and fifteen receive fertilizer B. Crop yield for each plot in pounds of potatoes harvested is
recorded.

Sample Question 1.2.3 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.3 Fertilizer, a binary variable taking the values A
and B.

Sample Question 1.2.4 In your example, what is the dependent variable (or variables)?

Answer to Sample Question 1.2.4 Crop yield in pounds.

Sample Question 1.2.5 Indicate how the data file might be set up.

Answer to Sample Question 1.2.5

A 13.1
A 11.3
...

...
B 12.2
...

...

Matched (paired) t-test

Again comparing two means, but from paired observations. Pairs of observations come
from the same case (subject, unit of analysis), and presumably are non-independent.
Again, the data from a given pair are not really separate pieces of information, and if you
pretend they are, then you are pretending to have more accurate estimation of population
parameters — and a more sensitive test — than you really do. The probability of getting
results that are statistically significant will be greater than 0.05, even if nothing is going
on.

In a matched t-test, this problem is taken care of by computing a difference for each
pair, reducing the volume of data (and the apparent sample size) by half. This is our
first example of a repeated measures analysis. Here is a general definition. We will say
that there are repeated measures on an independent variable if a case (unit of analysis,
subject, participant in the study) contributes a value of the dependent variable for each
value of the independent variable in question. A variable on which there are repeated
measures is sometimes called a within-subjects variable. When this language is being
spoken, variables on which there are not repeated measures are called between-subjects.

The assumptions of the matched t-test are that the differences represent independent
observations from a normal population. For large samples, normality does not matter.
The assumption that different cases represent independent observations is always impor-
tant.

Sample Question 1.2.6 Make up your own original example of a study in which a
matched t-test could be used.

6



Answer to Sample Question 1.2.6 Before and after a 6-week treatment, participants
in a quit-smoking program were asked “On the average, how many cigarettes do you smoke
each day?”

Sample Question 1.2.7 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.7 Presence versus absence of the program, a binary
variable taking the values “Absent” or “Present” (or maybe “Before” and “After”). We
can say there are repeated measures on this factor, or that it is a within-subjects factor.

Sample Question 1.2.8 In your example, what is the dependent variable (or variables)?

Answer to Sample Question 1.2.8 Reported number of cigarettes smoked per day.

Sample Question 1.2.9 Indicate how the data file might be set up.

Answer to Sample Question 1.2.9 The first column is “Before,” and the second col-
umn is “After.”

22 18
40 34
20 10
...

...

One-way Analysis of Variance

Extension of the independent t-test to two or more groups. Same assumptions, everything.
F = t2 for two groups.

Sample Question 1.2.10 Make up your own original example of a study in which a
one-way analysis of variance could be used.

Answer to Sample Question 1.2.10 Eighty branches of a large bank were chosen to
participate in a study of the effect of music on tellers’ work behaviour. Twenty branches
were randomly assigned to each of the following 4 conditions. 1=No music, 2=Elevator
music, 3=Rap music, 4=Individual choice (headphones). Average customer satisfaction
and worker satisfaction were assessed for each bank branch, using a standard question-
naire.

Sample Question 1.2.11 In your example, what are the cases?

Answer to Sample Question 1.2.11 Branches, not people answering the questionnaire.

Sample Question 1.2.12 Why do it that way?

Answer to Sample Question 1.2.12 To avoid serious potential problems with inde-
pendent observations within branches. The group of interacting people within social setting
is the natural unit of analysis, like an organism.
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Sample Question 1.2.13 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.13 Type of music, a categorical variable taking on 4
values.

Sample Question 1.2.14 In your example, what is the dependent variable (or vari-
ables)?

Answer to Sample Question 1.2.14 There are 2 dependent variables, average cus-
tomer satisfaction and average worker satisfaction. If they were analyzed simultaneously
the analysis would be multivariate (and not elementary).

Sample Question 1.2.15 Indicate how the data file might be set up.

Answer to Sample Question 1.2.15 The columns correspond to Branch, Type of Mu-
sic, Customer Satisfaction and Worker Satisfaction

1 2 4.75 5.31
2 4 2.91 6.82
...

...
...

...
80 2 5.12 4.06

Sample Question 1.2.16 How could this be made into a repeated measures study?

Answer to Sample Question 1.2.16 Let each branch experience each of the 4 music
conditions in a random order (or better, use only 72 branches, with 3 branches receiving
each of the 24 orders). There would then be 16 pieces of data for each bank.

Including all orders of presentation in each experimental condition is an example of
counterbalancing — that is, presenting stimuli in such a way that order of presentation
is unrelated to experimental condition. That way, the effects of the treatments are not
confused with fatigue or practice effects (on the part of the experimenter as well as the
subjects). In counterbalancing, it is often not feasible to include all possible orders of
presentation it each experimental condition, because sometimes there are two many. The
point is that order of presentation has to be unrelated to any manipulated independent
variable.

Two (and higher) way Analysis of Variance

Extension of One-Way ANOVA to allow assessment of the joint relationship of several
categorical independent variables to one quantitative dependent variable that is assumed
normal within treatment combinations. Tests for interactions between IVs are possible.
An interaction means that the relationship of one independent variable to the dependent
variable depends on the value of another independent variable. More on this later.
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Crosstabs and chisquared tests

Cross-tabulations (Crosstabs) are joint frequency distribution of two categorical variables.
One can be considered an IV, the other a DV if you like. In any case (even when the IV
is manipulated in a true experimental study) we will test for significance using the chi-
squared test of independence. Assumption is independent observations are drawn from a
multinomial distribution. Violation of the independence assumption is common and very
serious.

Sample Question 1.2.17 Make up your own original example of a study in which this
technique could be used.

Answer to Sample Question 1.2.17 For each of the prisoners in a Toronto jail, record
the race of the offender and the race of the victim. This is illegal; you could go to jail
for publishing the results. It’s totally unclear which is the IV and which is the DV, so I’ll
make up another example.

For each of the graduating students from a university, record main field of study and
and gender of the student (male or female).

Sample Question 1.2.18 In your example, what is the independent variable (or vari-
ables)?

Answer to Sample Question 1.2.18 Gender

Sample Question 1.2.19 In your example, what is the dependent variable (or vari-
ables)?

Answer to Sample Question 1.2.19 Main field of study (many numeric codes).

Sample Question 1.2.20 Indicate how the data file would be set up.

Answer to Sample Question 1.2.20 The first column is Gender (0=Male, 1=F). The
second column is Field.

1 2
0 14
0 9
...

...

Correlation and Simple Regression

Correlation Start with a scatterplot showing the association between two (quantita-
tive, usually continuous) variables. A scatterplot is a set of Cartesian coordinates with
a dot or other symbol showing the location of each (x, y) pair. If one of the variables
is clearly the independent variable, it’s traditional to put it on the x axis. There are n
points on the scatterplot, where n is the number of cases in the data file.

Often, the points in a scatterplot cluster around a straight line. The correlation
coefficient (Pearson’s r) expresses the extent to which the points cluster tightly around a
straight line.
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• −1 ≤ r ≤ 1

• r = +1 indicates a perfect positive linear relationship. All the points are exactly on
a line with a positive slope.

• r = −1 indicates a perfect negative linear relationship. All the points are exactly
on a line with a negative slope.

• r = 0 means no linear relationship (curve possible)

• r2 represents explained variation, reduction in (squared) error of prediction. For
example, the correlation between scores on the Scholastic Aptitude Test (SAT) and
first-year grade point average (GPA) is around +0.50, so we say that SAT scores
explain around 25% of the variation in first-year GPA.

The test of significance for Pearson’s r assumes a bivariate normal distribution for the
two variables; this means that the only possible relationship between them is linear. As
usual, the assumption of independent observations is always important.

Here are some examples of scatterplots and the associated correlation coefficients. The
number 2 on a plot means that two points are on top of each other, or at least too close
to be distinguished in this crude line printer graphic.
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Simple Regression One independent variable, one dependent. In the usual examples
both are quantitative (continuous). We fit a least-squares line to the cloud of points in
a scatterplot. The least-squares line is the unique line that minimizes the sum of squared
vertical distances between the line and the points in the scatterplot. That is, it minimizes
the total (squared) error of prediction.

Denoting the slope of the least-squares line by b1 and the intercept of the least-squares
line by b0,

b1 = r
sy
sx

and b0 = Y − b1X.

That is, the slope of the least squares has the same sign as the correlation coefficient, and
equals zero if and only if the correlation coefficient is zero.

Usually, you want to test whether the slope is zero. This is the same as testing
whether the correlation is zero, and mercifully yields the same p-value. Assumptions
are independent observations (again) and that within levels of the IV, the DV has a
normal distribution with the same variance (variance does not depend on value of the
DV). Robustness properties are similar to those of the 2-sample t-test. The assumption
of independent observations is always important.

Multiple Regression

Regression with several independent variables at once; we’re fitting a (hyper) plane rather
than a line. Multiple regression is very flexible; all the other techniques mentioned above
(except the chi-squared test) are special cases of multiple regression. More details later.

1.3 Experimental versus observational studies

Why might someone want to predict a dependent variable from an independent variable?
There are two main reasons.

• There may be a practical reason for prediction. For example, a company might wish
to predict who will buy a product, in order to maximize the productivity of its sales
force. Or, an insurance company might wish to predict who will make a claim, or a
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university computer centre might wish to predict the length of time a type of hard
drive will last before failing. In each of these cases, there will be some independent
variables that are to be used for prediction, and although the people doing the study
may be curious and may have some ideas about how things might turn out and why,
they don’t really care why it works, as long as they can predict with some accuracy.
Does variation in the IV cause variation in the DV? Who cares?

• This may be science (of some variety). The goal may be to understand how the
world works — in particular, to understand the dependent variable. In this case,
most likely we are implicitly or explicitly thinking of a causal relationship between
the IV and DV. Think of attitude similarity and interpersonal attraction. . . .

Sample Question 1.3.1 A study finds that high school students who have a computer at
home get higher grades on average than students who do not. Does this mean that parents
who can afford it should buy a computer to enhance their children’s chances of academic
success?

Here is an answer that gets zero points. “Yes, with a computer the student can become
computer literate, which is a necessity in our competitive and increasingly technological
society. Also the student can use the computer to produce nice looking reports (neatness
counts!), and obtain valuable information on the World Wide Web.” ZERO.

The problem with this answer is that while it makes some fairly reasonable points, it
is based on personal opinion, and fails to address the real question, which is “Does this
mean . . . ” Here is an answer that gets full marks.

Answer to Sample Question 1.3.1 Not necessarily. While it is possible that some
students are doing better academically and therefore getting into university because of
their computers, it is also possible that their parents have enough money to buy them a
computer, and also have enough money to pay for their education. It may be that an
academically able student who is more likely to go to university will want a computer
more, and therefore be more likely to get one somehow. Therefore, the study does not
provide good evidence that a computer at home will enhance chances of academic success.

Note that in this answer, the focus is on whether the study provides good evidence
for the conclusion, not whether the conclusion is reasonable on other grounds. And
the answer gives specific alternative explanations for the results as a way of criticizing
the study. If you think about it, suggesting plausible alternative explanations is a very
damaging thing to say about any empirical study, because you are pointing out that the
investigators expended a huge amount of time and energy, but didn’t establish anything
conclusive. Also, suggesting alternative explanations is extremely valuable, because that
is how research designs get improved and knowledge advances.

Now here are the general principles. IfX and Y are measured at roughly the same time,
X could be causing Y , Y could be causing X, or there might be some third variable (or
collection of variables) that is causing both X and Y . Therefore we say that ”Correlation
does not necessarily imply causation.” Here, by correlation we mean association (lack of
independence) between variables. It is not limited to situations where you would compute
a correlation coefficient.
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A confounding variable is a variable not included as an independent variable, that
might be related to both the independent variable and the dependent variable – and that
might therefore create a seeming relationship between them where none actually exists,
or might even hide a relationship that is present. Some books also call this a “lurking
variable.” You are responsible for the vocabulary “confounding variable.”

An experimental study is one in which cases are randomly assigned to the different
values of an independent variable (or variables). An observational study is one in which
the values of the independent variables are not randomly assigned, but merely observed.

Some studies are purely observational, some are purely experimental, and many are
mixed. It’s not really standard terminology, but in this course we will describe indepen-
dent variables as experimental (i.e., randomly assigned, manipulated) or observed.

In an experimental study, there is no way the dependent variable could be causing the
independent variable, because values of the IV are assigned by the experimenter. Also,
it can be shown (using the Law of Large Numbers) that when units of observation are
randomly assigned to values of an IV, all potential confounding variables are cancelled
out as the sample size increases. This is very wonderful. You don’t even have to know
what they are!

Sample Question 1.3.2 Is it possible for a continuous variable to be experimental, that
is, randomly assigned?

Answer to Sample Question 1.3.2 Sure. In a drug study, let one of the independent
variables consist of n equally spaced dosage levels spanning some range of interest, where
n is the sample size. Randomly assign one participant to each dosage level.

Sample Question 1.3.3 Give an original example of a study with one quantitative ob-
served independent variable and one categorical manipulated independent variable. Make
the study multivariate, with one dependent variable consisting of unordered categories and
two quantitative dependent variables. categorical

Answer to Sample Question 1.3.3 Stroke patients in a drug study are randomly as-
signed to either a standard blood pressure drug or one of three experimental blood pressure
drugs. The categorical dependent variable is whether the patient is alive or not 5 years
after the study begins. The quantitative dependent variables are systolic and diastolic blood
pressure one week after beginning drug treatment.

In practice, of course there would be a lot more variables; but it’s still a good answer.
Because of possible confounding variables, only an experimental study can provide

good evidence that an independent variable causes a dependent variable. Words like
effect, affect, leads to etc. imply claims of causality and are only justified for experimental
studies.

Sample Question 1.3.4 Design a study that could provide good evidence of a causal
relationship between having a computer at home and academic success.

Answer to Sample Question 1.3.4 High school students without computers enter a
lottery. The winners (50% of the sample) get a computer and modem to use at home.
The dependent variable is whether or not the student enters university.
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Sample Question 1.3.5 Is there a problem with independent observations here? Can
you fix it?

Answer to Sample Question 1.3.5 Oops. Yes. Students who win may be talking to
each other, sharing software, etc.. Actually, the losers will be communicating too. There-
fore their behaviour is non-independent and standard significance tests will be invalid. One
solution is to hold the lottery in n separate schools, with one winner in each school. If the
dependent variable were GPA, we could do a matched t-test comparing the performance
of the winner to the average performance of the losers.

Sample Question 1.3.6 What if the DV is going to university or not?

Answer to Sample Question 1.3.6 We are getting into deep water here. Here is how
I would do it. In each school, give a score of “1” to each student who goes to university,
and a “0” to each student who does not. Again, compare the scores of the winners to the
average scores of the losers in each school using a matched t-test. Note that the mean
difference that is to be compared with zero here is the mean difference in probability of
going to university, between students who get a computer to use and those who do not.
While the differences for each school will not be normally distributed, the central limit
theorem tells us that the mean difference will be approximately normal if there are more
than about 20 schools, so the t-test is valid. In fact, the t-test is conservative, because the
tails of the t distribution are heavier than those of the standard normal. This answer is
actually beyond the scope of the present course.

Artifacts and Compromises

Random assignment to experimental conditions will take care of confounding variables,
but only if it is done right. It is amazingly easy for for confounding variables to sneak back
into a true experimental study through defects in the procedure. For example, suppose
you are interested in studying the roles of men and women in our society, and you have
a 50-item questionnaire that (you hope) will measure traditional sex role attitudes on a
scale from 0 = Very Non-traditional to 50 = Very Traditional. However, you suspect that
the details of how the questionnaire is administered could have a strong influence on the
results. In particular, the sex of the person administering the questionnaire and how he
or she is dressed could be important.

Your subjects are university students, who must participate in your study in order to
fulfill a course requirement in Introductory Psychology. You randomly assign your sub-
jects to one of four experimental conditions: Female research assistant casually dressed,
Female research assistant formally dressed, Male research assistant casually dressed, or
Male research assistant formally dressed. Subjects in each experimental condition are
instructed to report to a classroom at a particular time, and they fill out the questionaire
sitting all together.

This is an appealing procedure from the standpoint of data collection, because it is
fast and easy. However, it is so flawed that it may be a complete waste of time to do the
study at all. Here’s why. Because subjects are run in four batches, an unknown number
of confounding variables may have crept back into the study. To name a few, subjects
in different experimental conditions will be run at different times of day or different days
of the week. Suppose subjects in the the male formally dressed condition fill out the
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questionnaire at 8 in the morning. Then all the subjects in that condition are exposed
to the stress and fatigue of getting up early, as well as the treatment to which they have
been randomly assigned.

There’s more, of course. Presumably there are just two research assistants, one male
and one female. So there can be order effects; at the very least, the lab assistant will be
more practiced the second time he or she administers the questionnaire. And, though the
research assistants will surely try to administer the questionnaire in a standard way, do
you really believe that their body language, facial expressions and tone of voice will be
identical both times?

Of course, the research assistants know what condition the subjects are in, they know
the hypotheses of the study, and they probably have a strong desire to please the boss —
the investigator (professor or whatever) who is directing this turkey, uh, excuse me, I mean
this research. Therefore, their behaviour could easily be slanted (perhaps unconsciously
so) to produce the hypothesized effects.

This kind phenomenon is well-documented. It’s called experimenter expectancy. Ex-
perimenters find what they expect to find. If they are led to believe that certain mice
are very intelligent, then those mice will do better on all kinds of learning tasks, even
though in fact the mice were randomly assigned to be labelled as “intelligent.” This kind
of thing applies all the way down to flatworms. The classic reference is Robert Rosen-
thal’s Experimenter expectancy in behavioral research (cite it). Naturally, the expectancy
phenomenon applies to teachers and students in a classroom setting, where it is called
teacher expectancy. The reference for this is (Pygmalion in the classroom – find it).

In Industrial-Organizational psychology, we have the Hawthorne Effect, which takes
its name from the Hawthorne plant of General Electric, where some influential studies of
worker productivity were carried out in the 1930’s. The basic idea is that when workers
know that they are part of a study, almost anything you do will increase productivity.
Make the lights brighter? Productivity increases. Make the lights dimmer? Productivity
increases. This is how the Hawthorne Effect is usually described. The actual details of
the study and its findings are more complex (reference), but that’s the right idea.

It is wrong (and complacent) to believe that expectancy effects are confined to psy-
chological research. In medicine, placebo effects are well-documented. Patients who are
given an inert substance like a sugar pill do better than patients who are not, provided
that they (or their doctors) believe that they are getting medicine that works. Is it the
patients’ expectancies that matter, or the doctors’? Probably both. The standard solu-
tion, and the only acceptable solution in clinical trials of new drugs, is the so called double
blind, in which subjects are randomly assigned to receive either the drug or a placebo, and
neither the patient nor the doctor knows which it is. This is the gold standard. Accept
no substitutes.

Until now, we have been discussing threats to the Internal Validity of research. A
study has good internal validity if it’s designed to eliminate the influence of confound-
ing variables, so one can be reasonably sure that the observed effects really are being
produced by the independent variables of interest. But there’s also External Validity. Ex-
ternal validity refers to how well the phenomena outside the laboratory or data-collection
situation are being represented by the study. For example, well-controlled, double-blind
taste tests indicated that the Coca-cola company had a recipe that consumers liked bet-
ter than the traditional one. But attempts to market “New” Coke were an epic disaster.
There was just more going on in the real world of soft drink consumption than in the

17



artificial laboratory setting of a taste test.
Medical research on non-human animals is always at least subject to discussion on

grounds of external validity, as is almost any laboratory research in Psychology. Do you
know why the blood vessels running away from the heart are called “arteries?” It’s because
they were initially thought to contain air. Why? Because medical researchers were basing
their conclusions entirely on dissections of dead bodies. In live bodies, the arteries are
full of blood.

Generally speaking, the controlled environments that lead to the best internal validity
also produce the greatest threats to external validity. Is a given laboratory setup captur-
ing the essence of the phenomena under consideration, or is it artificial and irrelevant?
It’s usually hard to tell. The best way to make an informed judgement is to compare
laboratory studies and field studies that are trying to answer the sme questions. The
laboratory studies usually have better internal validity, and the field studies usually have
better external validity. When the results are consistent, we feel more comfortable.
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Chapter 2

First set of tools: SAS running
under unix (including linux)

The SAS language is the same regardless of what hardware you use or what operating
system is running on the hardware. SAS programs are simple text files that can be trans-
ported from one machine to another with minimal difficulty. In this course, everything
will be illustrated with SAS running under the unix operating system, but it’s not a prob-
lem even if the next place you go only has PCs. The adjustment to SAS-PC should be
fast and fairly painless.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graphical shell that
runs on top of unix), but we won’t bother with it. Basically, you type a command, press
Enter, and unix does something for (or to) you. It may help to think of unix as DOS on
steroids, if you remember DOS. The table below has all the unix commands you will need
for this course. Throughout, fname stands for the name of a file.
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A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man sort).

ls Lists names of the files in your directory.

less fname Displays fname on screen, one page at a time. Spacebar for next page, q to
quit.

lpr fname Prints hard copy on a laser printer. lpr stands for line printer. These physical
devices no longer exist in most installations.

rm fname Removes fname, erasing it forever.

cp fname1 fname2 Makes a copy of fname1. The new copy is named fname2.

mv fname1 fname2 Moves (renames) fname1

emacs fname Starts the emacs text editor, editing fname (can be new file).

R Gets you into the R implementation of the S environment.

sas fname Executes SAS commands in the file fname.sas, yielding fname.log and (if
no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when you can’t log
off because there are stopped jobs. Use ps to see the job numbers.

mail yourname@yourisp.com ¡ fname Email a file to yourself. Very handy for get-
ting files to your home computer for printing.

This really is a minimal set of commands. The unix operating system is extremely
powerful, and has an enormous number of commands. You can’t really see the power
from the minimal set of commands above, but you can see the main drawback from
the standpoint of the new user. Commands tend to be terse, consisting of just a few
keystrokes. They make sense once you are familiar with them (like ls for listing the files
in a directory, or rm for remove), but they are hard to guess. The man command (short for
manual) gives very accurate information, but you have to know the name of the command
before you can use man to find out about it.

Just for future reference, here are a few more commands that you may find useful, or
otherwise appealing.

A Few More unix Commands

mkdir dirname Makes a new sub-directory (like a folder) named dirname. You can
have sub-directories within sub-directories; it’s a good way to organize your work.
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cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory dirname.

cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

ls > fname Sends the output of the ls command to the file fname instead of to the
screen.

cat fname Lists the whole file on your screen, not one page at a time. It goes by very
fast, but usually you can scroll back up to see the entire file, if it’s not too long.

cat fname1 fname2 > fname3 Concatenates fname1 and fname2 (sticks them to-
gether) and re-directs the output to fname3

grep ERROR cartoon1.log Searches for the string ERROR in the file cartoon1.log.
Echos each line containing the string. Silent if ERROR does not occur. Case
sensitive.

alias chk ”grep ERROR *.log ; grep WARN *.log” Makes a new command called
chk. It checks for the string ERROR and the string WARN in any log file.

cal Displays a calendar for this month

cal 1 3002 Displays a calendar for January 3002.

unset noclobber

rm fname1 fname2

rm -f fname

alias rm ”rm -f”

rm -r dirname

R –vanilla < fname1 > fname2

Printing files at home This is a question that always comes up. Almost surely, the
printer connected to your printer at home is not directly connected to the university
network. If you want to do something like print your SAS output at home, you have to
transfer the file on the unix machine to the hard drive of your home computer, and print
it from there. One way is to use some kind of ftp (file transfer protocol) tool to get the
file in question onto your hard drive. For short files, you can also use the less or cat
command to list the file on your screen, select it with your mouse, copy it, paste it to a
word processing document, and print it from there. It is a good idea to use a fixed-width
font like courier, and not the Times or Times Roman font. Everything will be lined up
better.

Perhaps easiest of all is to email yourself the file. This is illustrated in the first set of
unix commands. To repeat, mail yourname@yourisp.com < fname .
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2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs as well as
on bigger computers, it is truly the last of the great old mainframe statistical packages.
The first beta release was in 1971, and the SAS Institute, Inc. was spun off from North
Carolina State University in 1976, the year after Bill Gates dropped out of Harvard. This
is a serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency is beyond any question. For
the purposes of this class, there are no bugs. The disadvantages of SAS are all related to
the fact that it was designed to run in a batch-oriented mainframe environment. So, for
example, the SAS Institute has tried hard to make SAS an “interactive” program, but
the interface still basically file and text oriented, not graphical.

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is called drp.dat.

• The Program File: This is also sometimes called a “command file,” because it’s
usually not much of a program. It consists of commands that the SAS software
tries to follow. You create this file with a text editor like emacs. The command file
contains a reference to the raw data file (in the infile statement), so SAS knows
where to find the data. In the first example we will consider below, the command
file is called reading.sas. SAS expects program files to have the extension .sas,
and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is successful of
unsuccessful. It contains a listing of the command file, as well any error messages or
warnings. The name of the log file is automatically generated by SAS; it combines
the first part of the command file’s name with the extension .sas. So for exam-
ple, when SAS executes the commands in reading.sas, it writes a log file named
reading.log.

• The List File: The list file contains the output of the statistical procedures re-
quested by the command file. The list file has the extension .lst— so, for example,
running SAS on the command file reading.sas will produce reading.lst as well
as reading.log. A successful SAS run will almost always produce a list file. The
absence of a list file indicates that there was at least one fatal error. The presence
of a list file does not mean there were no errors; it just means that SAS was able to
do some of what you asked it to do. Even if there are errors, the list file will usually
not contain any error messages; they will be in the log file.
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2.2.2 Running SAS from the Command Line

There are several ways to run SAS. In this text, all the examples will be run from the
unix command line (terminal). In my view, this way is simplest and also the best way
to start. Also, it is by far the easiest way to use SAS from home, assuming that SAS is
running on a remote server and not your home computer.

The following illustrates a simple SAS run from the command line (using an application
called terminal in some unix and linux environments). Initially, there are only two files
in the directory — reading.sas (the program file) and drp.dat (the raw data file). The
command sas reading produces two additional files — reading.log and reading.lst.
In this and other examples, the unix prompt is appsrv01.srv (the name of the unix
machine used to produce the examples), followed by a > sign.

appsrv01.srv> ls

drp.dat reading.sas

appsrv01.srv> sas reading

appsrv01.srv> ls

drp.dat reading.log reading.lst reading.sas

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

• Most SAS commands belong either in data step or in a proc step;they will generate
errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside of the data
and proc steps, but there are relatively few of these.

The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to the raw data file, telling SAS where to look for the
data. It specifies variable names and labels, and provides instructions about how to read
the data; for example, the data might be read from fixed column locations. Variables
from the raw data file can be modified, and new variables can be created.

Each data step creates a SAS data set, a file consisting of the data (after modifica-
tions and additions), labels, and so on. Statistical procedures operate on SAS data sets,
so you must create a SAS data set before you can start computing any statistics.

A SAS data set is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data sets were always
written to temporary scratch files on the computer’s hard drive; these days, they may be
maintained in RAM if they are small enough. In any case, the default is that a SAS data
set disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data set on disk for later use. We won’t do this
here, but it makes sense when the amount of processing in a data step is large relative
to the speed of the computer. As an extreme example, one of my colleagues uses SAS
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to analyze data from Ontario hospital admissions; the data files have millions of cases.
Typically, it takes around 20 hours of CPU time on a very strong unix machine just to
read the data and create a SAS data set. The resulting file, hundreds of gigabytes in size,
is saved to disk, and then it takes just a few minutes to carry out each analysis. You
wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are distinct
concepts. A SAS data step is part of a SAS program; it generates a SAS data set, which
is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical procedures
can create SAS data sets, too. For example, proc univariate can take an ordinary SAS
data set as input, and produce an output data set that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data set containing residuals for plotting and use in further analysis;
there are many other examples.

The proc Step “Proc” is short for procedure. Most procedures are statistical proce-
dures; the most noticeable exception is proc format, which is used to provide labels for
the values of categorical variables. The proc step is where you specify a statistical pro-
cedure that you want to carry out. A statistical procedures in the proc step will take a
SAS data sets as input, and write the results (summary statistics, values of test statistics,
p-values, and so on) to the list file. The typical SAS program includes one data step and
several proc steps, because it is common to produce a variety of data displays, descriptive
statistics and significance tests in a single run.

2.2.4 A First Example: reading.sas

Earlier, we ran SAS on the file reading.sas, producing reading.log and reading.lst.
Now we will look at reading.sas in some detail. This program is very simple; it has
just one data step and one proc step. More details will be given later, but it’s based on a
study in which one group of grade school students received a special reading programme,
and a control group did not. After a couple of months, all students were given a reading
test. We’re just going to do an independent groups t-test, but first take a look at the raw
data file. You’d do this with the unix less command.

Actually, it’s so obvious that you should look at your data that nobody ever says it.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. It’s so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file is big, do it
anyway. At least page through it a screen at a time, looking for anything strange. Check
the values of all the variables for a few cases. Do they make sense? If you have obtained
the data file from somewhere, along with a description of what’s in it, never believe that
the description you have been given is completely accurate.

Anyway, here is the file drp.dat, with the middle cut out to save space.
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Treatment 24
Treatment 43
Treatment 58

...
...

Control 55
Control 28
Control 48

...
...

Now we can look at reading.sas.

/******************* reading.sas **********************

* Simple SAS job to illustrate a two-sample t-test *

*******************************************************/

options linesize=79 noovp formdlim=’_’;

title ’More & McCabe (1993) textbook t-test Example 7.8’;

data reading;

infile ’drp.dat’;

input group $ score;

label group = ’Get Directed Reading Programme?’

score = ’Degree of Reading Power Test Score’;

proc ttest;

class group;

var score;

Here are some detailed comments about reading.sas.

• The first three lines are a comment. Anything between a /* and */ is a comment,
and will be listed on the log file but otherwise ignored by SAS. Comments can
appear anywhere in a program. You are not required to use comments, but it’s a
good idea.

The most common error associated with comments is to forget to end them with */.
In the case of reading.sas, leaving off the */ (or typing \* by mistake) would cause
the whole program to be treated as a comment. It would generate no errors, and
no output — because as far as SAS would be concerned, you never requested any.
A longer program would eventually exceed the default length of a comment (it’s
some large number of characters) and SAS would end the “comment” for you. At
exactly that point (probably in the middle of a command) SAS would begin parsing
the program. Almost certainly, the first thing it examined would be a fragment of
a legal command, and this would cause an error. The log file would say that the
command caused an error, and not much else. It would be very confusing, because
probably the command would be okay, and there would be no indication that SAS
was only looking at part of it.
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• The next two lines (the options statement and the title statement) exist outside
the proc step and the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can extend for
several physical lines in the program file (for example, see the label statement).
Spacing, indentation, breaking up s statement into several lines of text – these are
all for the convenience of the human reader, and are not part of the SAS syntax.

• The most common error in SAS programming is to forget the semi-colon. When
this happens, SAS tries to interpret the following statement as part of the one you
tried to end. This often causes not one error, but a cascading sequence of errors.
The rule is, if you have an error and you do not immediately understand what it is,
look for a missing semi-colon. It will probably be before the portion of the program
that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a chain
reaction of errors (if the program is long enough for it to cause any error messages
at all). If you have a lot of errors in your log file, fix the first one and don’t waste
time trying to figure out the others. Some or all of them may well disappear.

• options linesize=79 noovp formdlim=’_’;

These options are highly recommended. The linesize=79 option is so highly rec-
ommended it’s almost obligatory. It causes SAS to write the output 79 columns
across, so it can be read on an ordinary terminal screen that’s 80 characters across.
You specify an output width of 79 characters rather than 80, because SAS uses one
column for printer control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of 132 char-
acters across, the width of sheet of paper from an obsolete line printer you probably
have never seen. Why would the SAS Institute hang on to this default, when
changing it to match ordinary letter paper would be so easy? It probably tells
you something about the computing environments of some of SAS’s large corporate
clients.

• The noovp option makes the log files more readable if you have errors. When SAS
finds an error in your program, it tries to underline the word that caused the error.
It does this by going back and overprinting the offending word with a series of
“underscores” ( characters). On many printers this works, but when you try to
look at the log file on a terminal screen (one that is not controlled by the SAS
Display Manager), what often appears is a mess. The noovp option specifies no
overprinting. It causes the “underlining” to appear on a separate line under the
program line with the error. If you’re running SAS from the unix command line
and looking at your log files with the less command or the cat command, you will
probably find the noovp option to be helpful.

• The formdlim=’_’ option specifies a “form delimiter” to replace most form feeds
(new physical pages) in the list file. This can save a lot of paper (and page printing
charges). You can use any string you want for a form delimiter. The underscore
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(the one specified here) causes a solid line to be printed instead of going to a new
sheet of paper.

• title This is optional, but recommended. The material between the single quotes
will appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

• data reading; This begins the data step, specifying the name of the SAS data set
that is being created.

• infile Specifies the name of the raw data file. The file name, enclosed in single
quotes, can be the full unix path to the file, like /dos/brunner/public/senic.raw.
If you just give the name of the raw data file, as in this example, SAS assumes that
the file is in the same directory as the command file.

• input Gives the names of the variables.

– A character variable (the values of group are “Treatment’ and “Control”) must
be followed by a dollar sign.

– Variable names must be eight characters or less, and should begin with a letter.
They will be used to request statistical procedures in the proc step. They
should be meaningful (related to what the variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can be very pow-
erful; for example, you can read data from different locations and in different
orders, depending on the value of a variable you’ve just read, and so on. It can
get complicated, but if the data file has a simple structure, the input statement
can be simple too.

• label Provide descriptive labels for the variables; these will be used to label the
output, usually in very nice way. Labels can be quite useful, especially when you’re
trying to recover what you did a while ago. Notice how this statement extends over
two physical lines.

• proc ttest; Now the proc step begins. This program has only one data step and
one proc step. We are requesting a two-sample t-test.

• class Specifies the independent variable.

• var Specifies the dependent variable(s). You can give a list of dependent variables.
A separate univariate test (actually, as you will see, collection of tests is performed
for each dependent variable.

reading.log Log files are not very interesting when everything is okay, but here is an
example anyway. Notice that in addition to a variety of technical information (where the
files are, how long each step took, and so on), it contains a listing of the SAS program —
in this case, reading.sas. If there were syntax errors in the program, this is where the
error messages would appear.
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appsrv01.srv> cat reading.log

1 The SAS System

11:40 Thursday, September 2, 2004

NOTE: Copyright (c) 1999-2001 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 8.2 (TS2M0)

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987001.

NOTE: This session is executing on the Linux 2.6.8.1-smp-athlon-bk platform.

This message is contained in the SAS news file, and is presented upon

initialization. Edit the files "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:

real time 0.08 seconds

cpu time 0.01 seconds

1 /******************* reading.sas **********************

2 * Simple SAS job to illustrate a two-sample t-test *

3 *******************************************************/

4

5 options linesize=79 noovp formdlim=’_’;

6 title ’More & McCabe (1993) textbook t-test Example 7.8’;

7

8 data reading;

9 infile ’drp.dat’;

10 input group $ score;

11 label group = ’Get Directed Reading Programme?’

12 score = ’Degree of Reading Power Test Score’;

NOTE: The infile ’drp.dat’ is:

File Name=/homes/students/u0/stats/brunner/drp.dat,

Owner Name=brunner,Group Name=stats,

Access Permission=rw-r-----,

File Size (bytes)=660

NOTE: 44 records were read from the infile ’drp.dat’.

The minimum record length was 14.

The maximum record length was 14.

NOTE: The data set WORK.READING has 44 observations and 2 variables.

NOTE: DATA statement used:

28



real time 0.01 seconds

cpu time 0.01 seconds

13 proc ttest;

14 class group;

15 var score;

NOTE: There were 44 observations read from the data set WORK.READING.

NOTE: The PROCEDURE TTEST printed page 1.

NOTE: PROCEDURE TTEST used:

real time 0.08 seconds

cpu time 0.01 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

2 The SAS System

11:40 Thursday, September 2, 2004

NOTE: The SAS System used:

real time 0.24 seconds

cpu time 0.03 seconds

reading.lst Here is the list file. Notice that the title specified in the title statement
appears at the top, along with the time and date the program was executed. Then we get
statistical output — the t-test we want, and also a bunch of other stuff, whether we want
it or not. This is typical of SAS, and most other mainstream statistical packages as well.
The default output from any given statistical procedures will contain more information
than you wanted, and probably some things you don’t understand at all. There are usually
numerous options that can add more information, but almost never options to reduce the
default output. So, you just learn what to ignore. It is helpful, but not essential,to have
at least a superficial understanding of everything in the default output from procedures
you use a lot.
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appsrv01.srv> cat reading.lst

_______________________________________________________________________________

More & McCabe (1993) textbook t-test Example 7.8 1

11:40 Thursday, September 2, 2004

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL

Variable group N Mean Mean Mean Std Dev Std Dev

score Control 23 34.106 41.522 48.937 13.263 17.149

score Treatmen 21 46.466 51.476 56.487 8.4213 11.007

score Diff (1-2) -18.82 -9.954 -1.091 11.998 14.551

Statistics

Upper CL

Variable group Std Dev Std Err Minimum Maximum

score Control 24.271 3.5758 10 85

score Treatmen 15.895 2.402 24 71

score Diff (1-2) 18.495 4.3919

T-Tests

Variable Method Variances DF t Value Pr > |t|

score Pooled Equal 42 -2.27 0.0286

score Satterthwaite Unequal 37.9 -2.31 0.0264

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

score Folded F 22 20 2.43 0.0507

Now here are some comments about reading.lst.

• The first part of the output is labelled “Statistics,” containing confidence intervals
and some descriptive statistics. There are three rows to this display: one for the
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Control group, one for the Treatment group, and one for the difference between
groups.

– Variable: score The first column, labelled “Variable,” tells you what the
dependent variable is – particularly useful if you have more than one.

– groupThe independent variable. Underneath are the values of the independent
variable in the first two rows. The third row is for the difference, computed as
Control minus Treatment (1-2).

Well actually, if you look carefully, you see that we do not quite get the values
of the independent variable under GROUP. The values of the (alphanumeric, or
character-valued) variable group are Control and Treatment, but the print-
out says “Treatmen.” This is not a printing error; it is a subtle error in the
reading of the data. The default length of an alphanumeric data value is 8
characters, but “Treatment” has 9 characters. So SAS just read the first eight.
No error message was generated and no harm was done in this case, but in
other circumstances this error can turn a data file into a giant pile of trash,
without warning. Later we will see how to override the default and read longer
strings if necessary.

– N The third column gives sample sizes; n=23 for the control group, and n=21
for the treatment group.

– The next three columns contain means and their associated 95% confidence
intervals. The middle column has the means. For the Control group, the
sample mean score on the DRP test was 41.522; for the Treatment group, the
sample mean was 51.476. The difference between means is -9.954 = 41.522-
51.476 (One minus Two).

To the left of the mean, labelled “Lower CL Mean,” is the lower confidence
limit of the 95% confidence interval for the population mean. Thus, the 95%
confidence interval for the Treatment mean is from 46.466 to 56.487, and the
95% confidence interval for the difference between means is from -18.82 to -
1.091. The fact that this last interval does not contain zero means that the
usual two-tailed t-test will be statistically significantly at the 0.05 level. This
lovely consistency between the classical tests and confidence intervals is actually
of no interest in the present course. In fact, we won’t pay much attention to
confidence intervals at all, but anyway we will continue here in the interest of
completeness.

– The next three columns give confidence intervals for the standard deviations.
We have the lower confidence limit, the standard deviation, and the upper
confidence limit in the continuation below.

– Then we get standard errors (estimated standard deviations of the sample mean
or difference between means), and finally the minimum and maximum for each
group.

• Then finally, under “T-Tests,” we get what we want – a t-test for the difference
between the means of the Control and Treatment groups. Two tests are given;
as usual there seems to be more output than we were expecting or wishing for.
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Probably we were looking for the first one, using the Pooled Method. This is the
traditional test, which assumes equal population variances, and therefore is based
on a Pooled estimate of the common within-groups standard deviation.

– The value of the test statistic is -2.27.

– The degrees of freedom n1 + n2 − 2 is given in the DF column.
– The column Prob>|t| gives the two-tailed (two-sided) p-value. It is less than
the traditional value of 0.05, so the results are statistically significant.

Sample Question 2.2.1 What do we conclude from this study? Say something about
reading, using non-technical language.

Answer to Sample Question 2.2.1 Students who received the Directed Reading Pro-
gram got higher average reading scores than students in the control condition.

It’s worth emphasizing here that the main objective of doing a statistical analysis is to
draw conclusions about the data — or to refrain from drawing such conclusions, for good
reasons. The question “What do we conclude from this study?” will always be asked. The
right answer will always be either “Nothing; the results were not statistically significant,”
or else it will be something about reading, or fish, or potatoes, or AIDS, or whatever is
being studied. Many students, even when they have been warned, respond with a barrage
of statistical terminology. They go on and on about the null hypothesis and Type I error,
and usually say nothing that would tell a reasonable person what actually happened in
the study. In the working world, a memo filled with such garbage could get you fired.
Here, it will get you a zero for the question, even if the technical details you give are
correct.

Remember, the purpose of writing up a statistical analysis is not to sound impressive
and technical, but to impart information. To say things in a simple way is a virtue. It
shows you understand what is going on. Now back to the printout.

• The Satterthwaite method gives a sort of t-test that does not assume equal variances.
Well, it’s not really a t-test, because the test statistic does not really have a t
distribution, even when the data are exactly normal. But, the (very unpleasant)
distribution of the test statistic is well approximated by a t distribution with the
right degrees of freedom — not n1 + n2 − 2, but something messy that depends on
the data. See the odd fractional degrees of freedom? See [3] for details. In any case,
it does not matter much in this case, because the p-value is almost the same as the
p-value from the traditional test. They lead to the same conclusions, and there is
no problem. What should you do when they disagree? I’d go with the test that
makes fewer assumptions.

• Next we see a test for Equality of Variances. This “Folded” F is the traditional
test for whether the variances of two groups are equal, and it’s almost significant.
This test is provided so people can test for differences between variances; if it is
significantly different they can use the unequal variance t-test, and otherwise they
can use the traditional test. This seems reasonable, except for the following.

Both the two-sample t-test and the F -test for equality of variances assume that
the data are normally distributed. However, the normality assumption does not
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matter much for the t-test when the sample sizes are large, while for the variance
test it matters a lot, regardless of how much data you have. When the data are
non-normal, the test for variances will be significant more than 5% of the time even
when the population variances are equal. If you have equal population variances
and a large sample of non-normal data, the F -test for variances could easily be
significant, leading you to worry unnecessarily about the validity of the t-test.

2.2.5 Background of the First Example

We don’t do statistical analysis in a vacuum. Before proceeding with more computing
details, let’s find out more about the reading data. This first example is from an introduc-
tory text. It’s Example 7.8 (p. 534) in More and McCabe’s excellent Introduction to the
practice of statistics [3]. We are interested in analyzing real data, not in doing textbook
exercises. But we will not turn up our noses just yet, because

Data Analysis Hint 2 When learning how to carry out a procedure using unfamiliar
statistical software, always do a textbook example first, and compare the output to the
material in the text. Regardless of what the manual might say, never assume you know
what the software is doing until you see an example.

More and McCabe do a great job of explaining the t-test with unequal variances, some-
thing SAS produces (along with usual t-test that assumes equal variances) without being
asked when you request a t-test. Besides, the data actually come from someone’s Ph.D.
thesis, so there is an element of realism. Here is Moore and McCabe’s description of the
study.

An educator believes that new directed reading activities in the classroom will
help elementary school pupils improve some aspects of their reading ability.
She arranges for a third grade class of 21 students to take part in these ac-
tivities. A control classroom of 23 third graders follows the same curriculum
without the activities. At the end of 8 weeks, all students are given a Degree
of Reading Power (DRP) test, which measures the aspects of reading ability
that the program is designed to improve.

Sample Question 2.2.2 What’s wrong with this study?

Answer to Sample Question 2.2.2 The independent variable was manipulated by the
experimenter, but it is not an experimental study. Even if classrooms were assigned ran-
domly to conditions (it is impossible to tell whether they were, from this brief description),
a large number of unobserved variables are potentially confounded with treatment. The
teacher in the classroom that received the treatment might be better than the teacher in
the control classroom, or possibly there was a particularly aggressive bully in the control
classroom, or maybe a mini-epidemic of some childhood disease hit the control classroom
.... The list goes on. The point here is that there are many ways in which the classroom
experiences of children in the treatment group differ systematically from the experiences
of children in the control group.

Sample Question 2.2.3 How could the problem be fixed?

Answer to Sample Question 2.2.3 Assign classrooms at random to treatments. The
unit of analysis should be the classroom, not the individual student.
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2.2.6 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns not aligned. Here
are the first few lines.

appsrv01.srv> less statclass1.dat

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 .

1 1 10 6 7 9 8 8 5 7 10 9 10 9 5 6 4 8 10 57 52

0 1 0 0 9 9 10 5 2 2 8 7 7 10 10 6 3 7 10 49 .

0 1 10 9 5 8 9 8 5 6 8 7 5 6 10 6 5 9 9 77 64

0 1 10 8 6 8 9 5 3 6 9 9 6 9 10 6 5 7 10 65 42

1 1 10 5 6 7 10 4 6 0 10 9 10 9 10 6 7 8 10 73 .

0 1 9 0 4 6 10 5 3 3 10 8 10 5 10 10 9 9 10 71 37

...

Notice the periods at the ends of lines 5, 7 and 10. The period is the SAS missing
value code. These people did not show up for the final exam. They may have taken a
makeup exam, but if so their scores did not make it into this data file. When a case has
a missing value recorded for a variable, SAS automatically excludes that case from any
statistical calculation involving the variable. If a new variable is being created based on
the value of a variable with a missing value, the new variable will usually have a missing
value for that case too.
Here is the SAS program textttstatmarks1.sas. It reads and labels the data, and then
does a variety of significance tests. They are all elementary except the last one, which il-
lustrates testing for one set of independent variables controlling for another set in multiple
regression.
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appsrv01.srv> cat statmarks1.sas

/* statmarks1.sas */

options linesize=79 noovp formdlim=’_’;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass1.dat’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

/* Now the proc steps */

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

35



proc means n mean std;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title3 ’Independent t-test’;

class sex;

var mark;

proc means n mean std t;

title3 ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;

proc glm;

title3 ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title3 ’Chi-squared Test of Independence’;

tables sex*ethnic sex*grade ethnic*grade / chisq;

proc freq; /* Added after seeing warning from chisq test above */

title3 ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic grade*(sex ethnic) / norow nopercent chisq expected;

proc corr;

title3 ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title3 ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */

proc reg;

title3 ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc reg simple;

title3 ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

run;

/* Note that the final run statement is not needed when

running SAS from the unix command line. */

Noteworthy features of this program include

• options: Already discussed in connection with reading.sas.
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• title2: Subtitle

• proc format: This is a non-statistical procedure – a rarity in the SAS language.
It is the way SAS takes care of labelling categorical variables when the categories
are coded as numbers. proc format defines printing formats. For any variable
associated with the printing format named sexfmt, any time it would print the value
“0” (in a table or something) it instead prints the string “Male.” The associations
between variables and printing formats are accomplished in the format statement
at the end of the data step. The names of formats have a period at the end to
distinguish them from variable names. Of course formats must be defined before
they can be associated with variables. This is why proc format precedes the data
step.

• quiz1-quiz8: One may refer to a range of variables ending with consecutive num-
bers using a minus sign. In the input statement, a range can be defined (named)
this way. It saves typing and is easy to read.

• Creating new variables with assignment statements. The variables quizave,compave
and mark are not in the original data file. They are created here, and they are
appended to the end of the SAS data set in oder of creation. Variables like this
should never be in the raw data file.

Data Analysis Hint 3 When variables are exact mathematical functions of other
variables, always create them in the data step rather than including them in the raw
data file. It saves data entry, and makes the data file smaller and easier to read. If
you want to try out a different definition of the variable, it’s easy to change a few
statements in the data step.

• sum(of quiz1-quiz8): Without the word “of,” the minus sign is ambiguous. In
the SAS language, sum(quiz1-quiz8) is the sum of a single number, the difference
between quiz1 and quiz8.

• format sex sexfmt.;Associates the variable sexwith its printing format. In ques-
tionnaire studies where a large number of items have the same potential responses
(like a scale from 1 = Strongly Agree to 7=Strongly Disagree), it is common to
associate a long list of variables with a single printing format.

• quiz1 -- mark in the first proc means

• Title inside a procedure labels just that procedure.

• proc means n mean std t A matched t-test is just a single-variable t-test carried
out on differences, testing whether the mean difference is equal to zero.

• proc glm

– class Tells SAS that the IV ethnic is categorical.

– model Dependent variable(s) = independent variable(s)

– means ethnic: Mean of mark separately for each value of ethnic.
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– means ethnic / Tukey Bon Scheffe: Post hoc tests (multiple comparisons,
probing, follow-ups). Used if the overall F -test is significant, to see which
means are different from which other means.

• chisq option on proc freq: Gives a large collection of chisquare tests. The first one
is the familiar Pearson chisquare test of independence (the one comparing observed
and expected frequencies).

• tables sex*ethnic / norow nopercent chisq expected; In version 2 of proc
freq

• proc corr

• proc plot; plot final*midterm; Scatterplot: First variable named goes on the
y axis.

• proc reg: model Dependent variable(s) = independent variable(s) again

• simple option on proc reg gives simple descriptive statistics. This last procedure
is an example of multiple regression, and we will return to it later once we have
more background.

statmarks1.lst

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

Frequency distributions of the categorical variables

10:10 Sunday, September 5, 2004

The FREQ Procedure

Cumulative Cumulative

sex Frequency Percent Frequency Percent

-----------------------------------------------------------

Male 39 62.90 39 62.90

Female 23 37.10 62 100.00

Apparent ethnic background (ancestry)

Cumulative Cumulative

ethnic Frequency Percent Frequency Percent

-------------------------------------------------------------

Chinese 41 66.13 41 66.13

European 15 24.19 56 90.32

Other 6 9.68 62 100.00

Cumulative Cumulative

grade Frequency Percent Frequency Percent

---------------------------------------------------------------

A 3 4.84 3 4.84

B 6 9.68 9 14.52

C 18 29.03 27 43.55

D 21 33.87 48 77.42

F 10 16.13 58 93.55

Incomplete 4 6.45 62 100.00

_______________________________________________________________________________
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Grades from STA3000 at Roosevelt University: Fall, 1957 2

Illustrate Elementary Tests

Means and SDs of quantitative variables

10:10 Sunday, September 5, 2004

The MEANS Procedure

Variable Label N Mean Std Dev

----------------------------------------------------------------------------

quiz1 62 9.0967742 2.2739413

quiz2 62 5.8870968 3.2294995

quiz3 62 6.0483871 2.3707744

quiz4 62 7.7258065 2.1590022

quiz5 62 9.0645161 1.4471109

quiz6 62 7.1612903 1.9264641

quiz7 62 5.7903226 2.1204477

quiz8 62 6.3064516 2.3787909

comp1 62 9.1451613 1.1430011

comp2 62 8.8225806 1.7604414

comp3 62 8.3387097 2.5020880

comp4 62 7.8548387 3.2180168

comp5 62 9.4354839 1.7237109

comp6 62 7.8548387 2.4350364

comp7 62 6.6451613 2.7526248

comp8 62 8.8225806 1.6745363

comp9 62 8.2419355 3.7050497

midterm 62 70.1935484 13.6235557

final 58 50.3103448 17.2496701

quizave Quiz Average (drop lowest) 62 7.6751152 1.1266917

compave Computer Average (drop lowest) 62 8.8346774 1.1204997

mark Final Mark 58 68.4830049 10.3902874

----------------------------------------------------------------------------

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 3

Illustrate Elementary Tests

Independent t-test

10:10 Sunday, September 5, 2004

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL

Variable sex N Mean Mean Mean Std Dev Std Dev

mark Male 36 65.604 68.57 71.535 7.1093 8.7653

mark Female 22 62.647 68.341 74.036 9.8809 12.843

mark Diff (1-2) -5.454 0.2284 5.9108 8.8495 10.482

Statistics

Upper CL

Variable sex Std Dev Std Err Minimum Maximum

mark Male 11.434 1.4609 54.057 89.932

mark Female 18.354 2.7382 48.482 95.457

mark Diff (1-2) 12.859 2.8366

T-Tests

Variable Method Variances DF t Value Pr > |t|

mark Pooled Equal 56 0.08 0.9361

mark Satterthwaite Unequal 33.1 0.07 0.9418

Equality of Variances
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Variable Method Num DF Den DF F Value Pr > F

mark Folded F 21 35 2.15 0.0443

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 4

Illustrate Elementary Tests

Matched t-test: Quiz 1 versus 8

10:10 Sunday, September 5, 2004

The MEANS Procedure

Variable Label N Mean Std Dev t Value

---------------------------------------------------------------------------

quiz1 62 9.0967742 2.2739413 31.50

quiz8 62 6.3064516 2.3787909 20.87

diff Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.96

---------------------------------------------------------------------------

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 5

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2004

The GLM Procedure

Class Level Information

Class Levels Values

ethnic 3 Chinese European Other

Number of observations 62

NOTE: Due to missing values, only 58 observations can be used in this analysis.

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 6

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2004

The GLM Procedure

Dependent Variable: mark Final Mark

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1238.960134 619.480067 6.93 0.0021

Error 55 4914.649951 89.357272

Corrected Total 57 6153.610084

R-Square Coeff Var Root MSE mark Mean

0.201339 13.80328 9.452898 68.48300

Source DF Type I SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021

Source DF Type III SS Mean Square F Value Pr > F
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ethnic 2 1238.960134 619.480067 6.93 0.0021

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 7

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2004

The GLM Procedure

Level of -------------mark------------

ethnic N Mean Std Dev

Chinese 37 65.2688224 7.9262171

European 15 76.0142857 11.2351562

Other 6 69.4755952 13.3097753

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 8

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2004

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for mark

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of Studentized Range 3.40649

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.460 17.538

European - Chinese 10.745 3.776 17.715 ***

Other - European -6.539 -17.538 4.460

Other - Chinese 4.207 -5.814 14.228

Chinese - European -10.745 -17.715 -3.776 ***

Chinese - Other -4.207 -14.228 5.814

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 9

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2004

The GLM Procedure

Bonferroni (Dunn) t Tests for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of t 2.46941
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Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.737 17.814

European - Chinese 10.745 3.600 17.891 ***

Other - European -6.539 -17.814 4.737

Other - Chinese 4.207 -6.067 14.480

Chinese - European -10.745 -17.891 -3.600 ***

Chinese - Other -4.207 -14.480 6.067

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 10

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2004

The GLM Procedure

Scheffe’s Test for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of F 3.16499

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.950 18.027

European - Chinese 10.745 3.466 18.025 ***

Other - European -6.539 -18.027 4.950

Other - Chinese 4.207 -6.260 14.674

Chinese - European -10.745 -18.025 -3.466 ***

Chinese - Other -4.207 -14.674 6.260

_______________________________________________________________________________
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Illustrate Elementary Tests

Chi-squared Test of Independence

10:10 Sunday, September 5, 2004

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Percent |

Row Pct |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 43.55 | 11.29 | 8.06 | 62.90

| 69.23 | 17.95 | 12.82 |
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| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 22.58 | 12.90 | 1.61 | 37.10

| 60.87 | 34.78 | 4.35 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

66.13 24.19 9.68 100.00

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

_______________________________________________________________________________
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Illustrate Elementary Tests

Chi-squared Test of Independence

10:10 Sunday, September 5, 2004

The FREQ Procedure

Table of sex by grade

sex grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Male | 1 | 3 | 13 | 14 | 5 | 3 | 39

| 1.61 | 4.84 | 20.97 | 22.58 | 8.06 | 4.84 | 62.90

| 2.56 | 7.69 | 33.33 | 35.90 | 12.82 | 7.69 |

| 33.33 | 50.00 | 72.22 | 66.67 | 50.00 | 75.00 |

---------+--------+--------+--------+--------+--------+--------+

Female | 2 | 3 | 5 | 7 | 5 | 1 | 23

| 3.23 | 4.84 | 8.06 | 11.29 | 8.06 | 1.61 | 37.10

| 8.70 | 13.04 | 21.74 | 30.43 | 21.74 | 4.35 |

| 66.67 | 50.00 | 27.78 | 33.33 | 50.00 | 25.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of sex by grade

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253
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Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

_______________________________________________________________________________
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Illustrate Elementary Tests

Chi-squared Test of Independence

10:10 Sunday, September 5, 2004

The FREQ Procedure

Table of ethnic by grade

ethnic(Apparent ethnic background (ancestry)) grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Chinese | 0 | 2 | 11 | 17 | 7 | 4 | 41

| 0.00 | 3.23 | 17.74 | 27.42 | 11.29 | 6.45 | 66.13

| 0.00 | 4.88 | 26.83 | 41.46 | 17.07 | 9.76 |

| 0.00 | 33.33 | 61.11 | 80.95 | 70.00 | 100.00 |

---------+--------+--------+--------+--------+--------+--------+

European | 2 | 4 | 5 | 3 | 1 | 0 | 15

| 3.23 | 6.45 | 8.06 | 4.84 | 1.61 | 0.00 | 24.19

| 13.33 | 26.67 | 33.33 | 20.00 | 6.67 | 0.00 |

| 66.67 | 66.67 | 27.78 | 14.29 | 10.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Other | 1 | 0 | 2 | 1 | 2 | 0 | 6

| 1.61 | 0.00 | 3.23 | 1.61 | 3.23 | 0.00 | 9.68

| 16.67 | 0.00 | 33.33 | 16.67 | 33.33 | 0.00 |

| 33.33 | 0.00 | 11.11 | 4.76 | 20.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of ethnic by grade

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

_______________________________________________________________________________
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Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

10:10 Sunday, September 5, 2004

The FREQ Procedure
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Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 15

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

10:10 Sunday, September 5, 2004

The FREQ Procedure

Table of grade by sex

grade sex

Frequency |

Expected |

Col Pct |Male |Female | Total

-----------+--------+--------+

A | 1 | 2 | 3

| 1.8871 | 1.1129 |

| 2.56 | 8.70 |

-----------+--------+--------+

B | 3 | 3 | 6

| 3.7742 | 2.2258 |

| 7.69 | 13.04 |

-----------+--------+--------+

C | 13 | 5 | 18

| 11.323 | 6.6774 |

| 33.33 | 21.74 |

-----------+--------+--------+

D | 14 | 7 | 21

| 13.21 | 7.7903 |

| 35.90 | 30.43 |

-----------+--------+--------+
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F | 5 | 5 | 10

| 6.2903 | 3.7097 |

| 12.82 | 21.74 |

-----------+--------+--------+

Incomplete | 3 | 1 | 4

| 2.5161 | 1.4839 |

| 7.69 | 4.35 |

-----------+--------+--------+

Total 39 23 62

Statistics for Table of grade by sex

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

10:10 Sunday, September 5, 2004

The FREQ Procedure

Table of grade by ethnic

grade ethnic(Apparent ethnic background (ancestry))

Frequency |

Expected |

Col Pct |Chinese |European|Other | Total

-----------+--------+--------+--------+

A | 0 | 2 | 1 | 3

| 1.9839 | 0.7258 | 0.2903 |

| 0.00 | 13.33 | 16.67 |

-----------+--------+--------+--------+

B | 2 | 4 | 0 | 6

| 3.9677 | 1.4516 | 0.5806 |

| 4.88 | 26.67 | 0.00 |

-----------+--------+--------+--------+

C | 11 | 5 | 2 | 18

| 11.903 | 4.3548 | 1.7419 |

| 26.83 | 33.33 | 33.33 |

-----------+--------+--------+--------+

D | 17 | 3 | 1 | 21

| 13.887 | 5.0806 | 2.0323 |

| 41.46 | 20.00 | 16.67 |

-----------+--------+--------+--------+

F | 7 | 1 | 2 | 10

| 6.6129 | 2.4194 | 0.9677 |

| 17.07 | 6.67 | 33.33 |

-----------+--------+--------+--------+

Incomplete | 4 | 0 | 0 | 4

| 2.6452 | 0.9677 | 0.3871 |

| 9.76 | 0.00 | 0.00 |

-----------+--------+--------+--------+

Total 41 15 6 62
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Statistics for Table of grade by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 17

Illustrate Elementary Tests

Correlation Matrix

10:10 Sunday, September 5, 2004

The CORR Procedure

4 Variables: final midterm quizave compave

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

final 58 50.31034 17.24967 2918 15.00000 89.00000

midterm 62 70.19355 13.62356 4352 44.00000 103.00000

quizave 62 7.67512 1.12669 475.85714 4.57143 9.71429

compave 62 8.83468 1.12050 547.75000 5.00000 10.00000

Simple Statistics

Variable Label

final

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

Pearson Correlation Coefficients

Prob > |r| under H0: Rho=0

Number of Observations

final midterm quizave compave

final 1.00000 0.47963 0.41871 0.06060

0.0001 0.0011 0.6513

58 58 58 58

midterm 0.47963 1.00000 0.59294 0.41277

0.0001 <.0001 0.0009

58 62 62 62

quizave 0.41871 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0011 <.0001 <.0001

58 62 62 62

compave 0.06060 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.6513 0.0009 <.0001

58 62 62 62

_______________________________________________________________________________
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Illustrate Elementary Tests

Scatterplot 10:10 Sunday, September 5, 2004

Plot of final*midterm. Legend: A = 1 obs, B = 2 obs, etc.
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NOTE: 4 obs had missing values.
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Illustrate Elementary Tests

Simple regression

10:10 Sunday, September 5, 2004

The REG Procedure

Model: MODEL1

Dependent Variable: final

Analysis of Variance

Sum of Mean
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Source DF Squares Square F Value Pr > F

Model 1 3901.64751 3901.64751 16.73 0.0001

Error 56 13059 233.19226

Corrected Total 57 16960

Root MSE 15.27063 R-Square 0.2300

Dependent Mean 50.31034 Adj R-Sq 0.2163

Coeff Var 30.35287

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 6.88931 10.80304 0.64 0.5263

midterm 1 0.61605 0.15061 4.09 0.0001
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Illustrate Elementary Tests

Multiple Regression

10:10 Sunday, September 5, 2004

The REG Procedure

Descriptive Statistics

Uncorrected Standard

Variable Sum Mean SS Variance Deviation

Intercept 58.00000 1.00000 58.00000 0 0

midterm 4088.00000 70.48276 298414 180.35935 13.42979

quizave 451.57143 7.78571 3576.51020 1.06498 1.03198

compave 515.50000 8.88793 4641.50000 1.04862 1.02402

final 2918.00000 50.31034 163766 297.55112 17.24967

Descriptive Statistics

Variable Label

Intercept Intercept

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

final

_______________________________________________________________________________
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Illustrate Elementary Tests

Multiple Regression

10:10 Sunday, September 5, 2004

The REG Procedure

Model: MODEL1

Dependent Variable: final

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 4995.04770 1665.01590 7.51 0.0003

Error 54 11965 221.58085

Corrected Total 57 16960
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Root MSE 14.88559 R-Square 0.2945

Dependent Mean 50.31034 Adj R-Sq 0.2553

Coeff Var 29.58754

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error

Intercept Intercept 1 9.01839 19.02591

midterm 1 0.50057 0.18178

quizave Quiz Average (drop lowest) 1 4.80199 2.46469

compave Computer Average (drop lowest) 1 -3.53028 2.17562

Parameter Estimates

Variable Label DF t Value Pr > |t| Type I SS

Intercept Intercept 1 0.47 0.6374 146806

midterm 1 2.75 0.0080 3901.64751

quizave Quiz Average (drop lowest) 1 1.95 0.0566 509.97483

compave Computer Average (drop lowest) 1 -1.62 0.1105 583.42537

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 22

Illustrate Elementary Tests

Multiple Regression

10:10 Sunday, September 5, 2004

The REG Procedure

Model: MODEL1

Test smalstuf Results for Dependent Variable final

Mean

Source DF Square F Value Pr > F

Numerator 2 546.70010 2.47 0.0943

Denominator 54 221.58085

Data in fixed columns When the data values have at least one space between them,
the variables are recorded in the same order for each case, and missing values are indicated
by periods, the default version of the input statement (list input) does the job perfectly.
It is a bonus that the variables need not always be separated by the same number of
spaces for each case. Also, there can be more than one line of data for each case, and in
fact there need not even be the same number of data lines for all the cases, just as long
as there are the same number of variables.

Another common situation is for the data to be lined up in fixed columns, with blanks
for missing values. Sometimes, especially when there are many variables, the data are
packed together, without spaces between values. For example, the Minnesota Multiphasic
Personality Inventory (MMPI) consists of over 300 questions, all to be answered True or
False. It would be quite natural to code 1=True and 0=False, and pack the data together.
There would still be quite a few data lines for each case.

Here is the beginning of the file statclass2.dat. It is the same as statclass1.dat,
except that the data are packed together. Most of the blanks occur because two columns
are reserved for the marks on quizzes and computer assignments, because 10 out of 10 is
possible. Three columns are reserved for the midterm and final scores, because 100% is
possible. For all variables, missing values are represented by blanks. That is, if the field
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occupied by a variable is completely blank, it’s a missing value.

appsrv01.srv> less statclass2.dat

12 9 1 7 8 4 3 5 2 6101010 5 0 0 0 0 55 43

021010 5 910 8 6 81010 8 9 9 9 91010 66 79

121010 5101010 9 8101010101010 91010 94 67

121010 8 910 710 9101010 91010 91010 81 65

0110 1 0 0 8 6 5 210 9 0 010 6 0 5 0 54

1110 6 7 9 8 8 5 710 910 9 5 6 4 810 57 52

01 0 0 9 910 5 2 2 8 7 71010 6 3 710 49

0110 9 5 8 9 8 5 6 8 7 5 610 6 5 9 9 77 64

0110 8 6 8 9 5 3 6 9 9 6 910 6 5 710 65 42

1110 5 6 710 4 6 010 910 910 6 7 810 73

01 9 0 4 610 5 3 310 810 51010 9 910 71 37

...

Now we will take a look at statread.sas. It contains just the proc format and the
data step; There are no statistical procedures. This file will be read by programs that
invoke statistical procedures, as you will see.

/* statread.sas

Read the statclass data in fixed format, define and label variables. Use

with %include ’statread.sas’; */

options linesize=79 noovp formdlim=’_’;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass2.dat’ missover;

input (sex ethnic) (1.)

(quiz1-quiz8 comp1-comp9) (2.)

(midterm final) (3.);

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;
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diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

/*************************************************************/

The data step in statread.sas differs from the one in statmarks1.sas in only two
respects. First, the missover option on the infile statement causes blanks to be read as
missing values even if they occur at the end of a line and the line just ends rather than
being filled in with space characters. That is, such lines are shorter than the others in the
file, and when SAS over-reads the end of the line, it sets all the variables it would have
read to missing. This is what we want, so you should always use the missover option
when missing values are represented by blanks.

The other difference between this data step and the one in statmarks1.sas is in the
input statement. Here, we are using formatted input. sex and ethnic each occupy 1
column. quiz1-quiz8 and comp1-comp9 each occupy 2 columns. midterm and final

each occupy 3 columns. You can supply a list of formats for each list of variables in
parentheses, but if the number of formats is less than the number of variables, they are
re-used. That’s what’s happening in the present case.

The program statread.sas reads and defines the data, but it requests no statisti-
cal output; statdescribe.sas pulls in statread.sas using a %include statement, and
produces basic descriptive statistics. Significance tests would be produced by other short
programs.

Keeping the data definition in a separate file and using %include (the only part of the
powerful SAS macro language presented here) is often a good strategy, because most data
analysis projects involve a substantial number of statistical procedures. It is common to
have maybe twenty program files that carry out various analyses. You could have the
data step at the beginning of each program, but in many cases the data step is long.
And, what happens when (inevitably) you want to make a change in the data step and
re-run your analyses? You find yourself making the same change in twenty files. Probably
you will forget to change some of them, and the result is a big mess. If you keep your
data definition in just one place, you only have to edit it once, and a lot of problems are
avoided.
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/* statdescribe.sas */

%include ’statread.sas’;

title2 ’Basic Descriptive Statistics’;

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

proc means n mean std;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark2; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc univariate normal; /* the normal option gives a test for normality */

title3 ’Detailed look at mark and bumped mark (mark2)’;

var mark mark2;

2.2.7 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation, and certainly
without discussion of all the options. If you need more detail, there are several approaches
you can take. The most obvious is to consult the SAS manuals. The full set of manuals
runs to over a dozen volumes, and most of them look like telephone directories. For a
beginner, it is hard to know where to start. And even if you know where to look, the SAS
manuals can be hard to read, because they assume you already understand the statistical
procedures fairly thoroughly, and on a mathematical level. They are really written for
professional statisticians. The SAS Institute also publishes a variety of manual-like books
that are intended to be more instructional, most of them geared to specific topics (like
The SAS system for multiple regression and The SAS system for linear models). These
are a bit more readable, though it helps to have a real textbook on the topic to fill in the
gaps.

A better place to start is a wonderful book by Cody and Smith [2] entitled Applied
statistics and the SAS programming language. They do a really good job of presenting
and documenting the language of the data step, and and they also cover a set of statistical
procedures ranging from elementary to moderately advanced. If you had to own just one
SAS book, this would be it.

If you consult any SAS book or manual (Cody and Smith’s book included), you’ll need
to translate and filter out some details. Here is the main case. Many of the examples you
see in Cody and Smith’s book and elsewhere will not have separate files for the raw data
and the program. They include the raw data in the program file in the data step, after a
datalines or cards statement. Here is an example from page 3 of [2].

data test;

input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A
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4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so attractive for
small datasets that most textbook writers cannot resist it. But think how unpleasant it
would be if you had 10,000 lines of data. The way we would do this example is to have
the data file (named, say, example1.dat) in a separate file. The data file would look like
this.

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.

data test;

infile ’example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook example into
the program-file data-file format used in this course.
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