
Multiple Regression 

STA441: Spring 2024 

This slide show is a free open source document.   
See the last slide for copyright information. 
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More than one explanatory 
variable at the same time 



One Explanatory Variable at a Time 
Can Produce Misleading Results 

•  The standard elementary tests all have 
a single explanatory variable, so they 
should be used with caution in practice. 

•  Example: Artificial and extreme, to 
make a point 

•  Suppose the correlation between Age 
and Strength is r = -0.96 
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Comments 
•  This is an example of Simpson’s paradox:  The 

overall relationship between variables is clear, but 
it is reversed when examined separately for the 
values of another variable. 

•  Can be hard to see when there are lots of 
variables. 

•  In the example, species is a confounding variable 
(2 criteria). 

•  Need a systematic way to allow (control) for 
potential confounding variables by including them 
in the analysis. 



Least Squares Line 



Least Squares Plane 
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Statistical MODEL 
•  There are p-1 explanatory variables. 
•  For each combination of explanatory 

variables, the conditional distribution of 
the response variable Y is normal, with 
constant variance. 

•  The conditional population mean of Y 
depends on the X values, as follows: 
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Conditional Distributions are normal 

•  Same variance, and population mean 

•  This means the only way Y can be 
related to any x is through the β values. 
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Correlation and causation 
•  Model says that y values have the same variance, 

and population mean that depends on x in a 
particular way: 

•  Nobody said how it got to be this way. 
•  It could be because of unobserved variables that 

are not in the model.  
•  It could be direct or indirect influence of x on y. 
•  It could be influence of y on x. 

•  The regression model is a model of relationship. 
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Summary 

•  The regression model is a model of 
relationship. 

•  Null hypothesis will usually say there is 
no relationship. 

•  If you reject the null hypothesis, you 
conclude there is a relationship. 

•  How you talk about it depends on the 
design of the study. 

10 



Statistics b estimate 
parameters β 
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Three Meanings of Control 

•  Procedural 
•  Sub-division 
•  Model-based 

Multiple regression is the prime example of model-based 
Control. 
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What is b2? 

•    
•  Hold x1 constant at some fixed level 
•  What is predicted Y, as a function of x2? 
•    
•  b1x1 is now part of the intercept, 
•  And b2 is the slope.  

13 



  

•  b2 is the slope 
•  It’s the rate at which predicted Y 

changes as a function of x2, with x1 held 
constant. 

•  Say “controlling” for x1. 
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Plain language ways to say 
“controlling for” 

•  Allowing for 
•  Adjusting for 
•  Correcting for 
•  Taking into account 
•  Holding constant 

15 



Control for x1, x3 and x4 
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Significance tests for the 
Regression Coefficients 

•  Test for bk tells you whether, xk makes a 
non-chance contribution to predicting Y, 
controlling for the other explanatory 
variables 
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High School Calculus and University Calculus 

•  With the sub-division approach, you need a lot of data 
at a particular value to give a good estimate of the 
conditional population mean. 

•  Here, we can easily give a good estimate of university 
calculus mark for a HS Calculus mark of 59, (estimate 
is 20.76) even though there was just one person with a 
59 in the data and he dropped the course. 

•  We can do this because of the assumption (model)  
    E(Y|x) = β0 + β1x. 
•  The more data you have, the less you need to 

assume. 

�Y = �84.85 + 1.79x
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 Categorical explanatory 
variables 

•  X=1 means Drug, X=0 means Placebo 

•  Population mean is  

•  For patients getting the drug, population 
mean response is  

•  For patients getting the placebo, mean 
response is 



20 
0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

x

y

Scatterplot with Binary x



•  x1 = 1 if Drug A, Zero otherwise 
•  x2 = 1 if Drug B, Zero otherwise 
•    

Regression coefficients are CONTRASTS with the category that has no indicator - The REFERENCE category 
 

More than two categories 
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Indicator dummy variable 
coding with intercept 

•  Need p-1 indicators to represent a 
categorical explanatory variable with p 
categories 

•  If you use p dummy variables, trouble 
•  Regression coefficients are contrasts 

with the category that has no indicator 
•  Call this the reference category 
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Now add a quantitative 
variable (covariate) 

•  x1 = Age 
•  x2 = 1 if Drug A, Zero otherwise 
•  x3 = 1 if Drug B, Zero otherwise 
•    

Parallel regression lines (equal slopes):  ANCOVA 23 



What do you report? 
•  x1 = Age 
•  x2 = 1 if Drug A, Zero otherwise 
•  x3 = 1 if Drug B, Zero otherwise 
•    
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Set all covariates to their 
sample mean values 

•  And compute Y-hat for each group 
•  Call it an “adjusted” mean or something, 

like “average university GPA adjusted 
for High School GPA.” 

•  SAS calls it a least squares mean 
(lsmeans) 
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Analysis of Variance 
•  Variation to explain:  Total Sum of 

Squares 

•  Variation that is still unexplained:  Error 
Sum of Squares 

•  Variation that is explained:  Regression 
(or Model) Sum of Squares 
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ANOVA Summary Table 
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Proportion of variation in the 
response variable that is accounted 
for by the explanatory variables is  

28 

SSTO = SSR + SSE 



Significance Testing 

•  Overall F test for all the explanatory variables 
at once, 

•  t-tests for each regression coefficient: 
Controlling for all the others, does that 
explanatory variable matter? 

•  Test a collection of explanatory variables 
controlling for another collection, 

•  Most general: Testing whether sets of linear 
combinations of regression coefficients differ 
from specified constants. 29 



Interpretation 
•  Null hypotheses always have = signs. 

There are no one-sided t-tests or z-tests 
in this course.  

•  Draw directional conclusions for  
–  t-tests 
– z-tests 
– F-test with numerator df=1 
– Chi-squared tests with df=1 

•  Avoid causal conclusions from 
observational data. 
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Controlling for mother’s education and 
father’s education, are (any of) total family 
income, assessed value of home and total 
market value of all vehicles owned by the 

family related to High School GPA? 
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Full vs. Restricted Model 

•  You have 2 sets of variables, A and B 
•  Want to test B controlling for A 
•  Fit a model with both A and B: Call it the 

Full Model 
•  Fit a model with just A: Call it the 

Restricted Model (or Reduced Model) 
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When you add explanatory 
variables, R2 can only go up 

•  By how much? Basis of F test. 
•  Same as testing H0: All betas in set B 

(there are s of them) equal zero 
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Looking at the formula 

•  Numerator is average improvement in 
explained SS. 

•  Anything that reduces MSE increases F 
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F test is based not just on 
change in R2, but upon 

Increase in explained variation expressed as a fraction 
of the variation that the restricted model does not explain.  
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•  For any given sample size, the bigger a 
is, the bigger F becomes. 

•  For any a ≠0, F increases as a function 
of n. 

•  So you can get a large F from strong 
results and a small sample, or from 
weak results and a large sample. 
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Can express a in terms of F 

•  Often, scientific journals just report F, numerator 
df = s, denominator df = (n-p), and a p-value. 

•  You can tell if it’s significant, but how strong are 
the results? Now you can calculate it. 

•  This formula is less subject to rounding error 
than the one in terms of R-squared values 

37 



Polynomial regression 
•  To model curvilinear trends. 
•  Justified by Taylor’s Theorem. 
•  E(Y|x) = β0 + β1x + β2x2 + β3x3 + ��� 
•  Include as many terms as you think you need, based 

on a scatterplot or residual plot. 
•  One bend = quadratic, 2 bends = cubic, etc. 
•  Include other variables if you wish. 
•  Center x if you wish, replacing it by (x-xbar). 

–  (x-xbar) and (x-xbar)2 will have low correlation. 
–  R2 is unaffected. 
–  Full versus reduced tests will mean what you think they do. 
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More about Dummy Variables 

•  Indicator dummy variables with intercept 
•  Indicator dummy variables without 

intercept (Cell means coding) 
•  Effect coding 
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Recall indicators with intercept 

•  x1 = Age 
•  x2 = 1 if Drug A, Zero otherwise 
•  x3 = 1 if Drug B, Zero otherwise 
•    

40 

E[Y |X = x] = �0 + �1x1 + �2x2 + �3x3



Can test contrasts controlling 
for covariates 

•  Valuable 
•  Sometimes very easy, sometimes can 

require a bit of algebra 
•  An easy example: Are responses to 

Drug A and B different, controlling for 
age? 

41 



Are responses to Drug A and 
B different, controlling for 

age? 
 

42 



Test whether the average response to 
Drug A and Drug B is different from 
response to the placebo, controlling for 
age. What is the null hypothesis? 

43 



Show your work 

We want to avoid this kind of thing 
44 



Cell means coding: p 
indicators and no intercept 

(This model is equivalent to the one with the intercepts.) 
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Add a covariate: x4 

•  Parallel regression lines 
•  Equivalent to the model with intercept 
•  Regression coefficients for the dummy vars 

are the intercepts 
•  Easy to specify contrasts 46 



Effect coding 
•  p-1 dummy variables for p categories 
•  Include an intercept 
•  Last category gets -1 instead of zero 
•  What do the regression coefficients 

mean? 
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Meaning of the regression 
coefficients 
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With effect coding 
•  Intercept is the Grand Mean 
•  Regression coefficients are deviations of 

group means from the grand mean 
•  Equal population means is equivalent to zero 

coefficients for all the dummy variables 
•  Last category is not a reference category 
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Add a covariate: Age = x1 

Regression coefficients are deviations from the 
average conditional population mean (conditional on 
x1). 
 
So if the regression coefficients for all the dummy 
variables equal zero, the categorical explanatory 
variable is unrelated to the response variable, 
controlling for the covariates. 50 



We will see later that effect coding is 
very useful when 

•  There is more than one categorical 
explanatory variable and  

•  We are interested in interactions --- 
ways in which the relationship of an 
explanatory variable with the response 
variable depends on the value of 
another explanatory variable. 
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What dummy variable coding 
scheme should you use? 

•  Whichever is most convenient, and 
gives you the information you want most 
directly 

•  They are all equivalent, if done 
correctly. 

•  Same test statistics, same conclusions 
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Interactions 

•  Interaction between explanatory 
variables means “It depends.” 

•  Relationship between one explanatory 
variable and the response variable 
depends on the value of another 
explanatory variable.  

•  Note that an interaction is not a 
relationship between explanatory 
variables (in this course). 

53 



Interactions between 
explanatory variables can be 

• Quantitative by quantitative 
• Quantitative by categorical 
• Categorical by categorical 

54 



General principle 

•  Interaction between A and B means 
– Relationship of A to Y depends on value of B 
– Relationship of B to Y depends on value of A 

•  The two statements are formally 
equivalent 



Quantitative by Quantitative 
 

Y = �0 + �1x1 + �2x2 + �3x1x2 + ⇥

E(Y |x) = �0 + �1x1 + �2x2 + �3x1x2

For fixed x2 

E(Y |x) = (�0 + �2x2) + (�1 + �3x2)x1

Both slope and intercept depend on value of x2 

And for fixed x1, slope and intercept relating x2 to E(Y) depend  
on the value of x1 56 



Quantitative by Categorical 
•  Separate regression line for each value of 

the categorical explanatory variable.  
•  Interaction means slopes of regression 

lines are not equal. 

57 



One regression Model 
•  Form a product of quantitative variable 

times each dummy variable for the 
categorical variable 

•  For example, three treatments and one 
covariate: x1 is the covariate and x2, x3 are 
dummy variables 

Y = �0 + �1x1 + �2x2 + �3x3

+�4x1x2 + �5x1x3 + ⇥
58 



E(Y |x) = �0 + �1x1 + �2x2 + �3x3 + �4x1x2 + �5x1x3

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1
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Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

What null hypothesis would you test for 

•  Equal slopes 
•  Compare slopes for group one vs three 
•  Compare slopes for group one vs two 
•  Equal regressions 
•  Interaction between group and x1 60 



Equal regressions = 
Conditional independence 

•  H0: β2  = β3 = β4 = β5 = 0 
•  For any fixed value of x1, E(y) is the same for all three 

groups. 
•  And the variances are always the same. 
•  So the distributions are the same. 
•  Conditionally on x1, Y is independent of Group. 
•  Allowing for x1, Group does not matter at all. 

•  It’s not a very standard null hypothesis, but it’s 
meaningful. 

E(Y |x) = �0 + �1x1 + �2x2 + �3x3 + �4x1x2 + �5x1x3

61 



What to do if H0: β4=β5=0 is rejected 

62 

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

•  Test for group differences with x1 set to 
mean value? 

•  Test pairwise differences between 
slopes. 

•  Bonferroni correction would be 
reasonable. 



“Centering” the explanatory variables 
•  Subtract mean (for entire sample) from 

each quantitative explanatory variable. 

63 



Properties of Centering 
•  When explanatory variables are 

centered, estimates and tests for 
intercepts are affected. 

•  Relationships between explanatory 
variables and response variables are 
unaffected. 

•  Estimates and tests for slopes are 
unaffected.  

•  R2 is unaffected. 
•  Predictions and prediction intervals are 

unaffected. 64 



More Properties 

•  Suppose a regression model has an intercept. 
•  Then the residuals add up to zero. But there are 

models without intercepts where the sum of residuals 
is zero. These are often equivalent to models with 
intercepts. 

•  Suppose the residuals do add to zero. Then if each 
explanatory variable is set to its sample mean value, 
Y-hat equals Y-bar, the sample mean of all the Y 
values. 

•  In this case, if all explanatory variables are centered 
by subtracting off their means, then the intercept 
equals Y-bar, exactly. 
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Comments 

•  Often, X=0 is outside the range of explanatory 
variable values, and it is hard to say what the 
intercept means in terms of the data. 

•  When explanatory variables are centered, the 
intercept is the average Y value for average value(s) 
of X. 

•  If there are both quantitative variables and 
categorical variables (represented by dummy 
variables), it can help to center just the quantitative 
variables. 
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“Centering” just the quantitative 
explanatory variables 

•  Subtract mean (for entire sample) from each 
quantitative explanatory variable. 

•  Then, comparing intercepts is the same as 
comparing expected values for “average” X 
values.  It’s more convenient than testing  
complicated linear combinations. 

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1 67 



For Example 

•  Suppose you want to test for differences 
among population mean Y values when x1 
equals its sample mean value. 

•  You could test H0:  
•  Or, center x1 and test H0: β2=β3=0 

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

�2 + �4x1 = �3 + �5x1 = 0

68 



Categorical by Categorical 

•  Soon 
•  But first, an example. 
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Copyright Information 

 
    This slide show was prepared by Jerry Brunner, Department of 

Statistical Sciences, University of Toronto. It is licensed under a 
Creative Commons Attribution - ShareAlike 3.0 Unported 
License. Use any part of it as you like and share the result 
freely. These Powerpoint slides are available from the course 
website: 

 
http://www.utstat.toronto.edu/brunner/oldclass/441s24 
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