Chapter 3

Confirmatory Factor Analysis

In confirmatory factor analysis, as in exploratory factor analysis, a set of unobservable
latent variables called “factors” give rise to a set of observable variables. The princi-
pal difference between exploratory and confirmatory factor analysis is in the treatment
of parameter identifiability. Exploratory factor analysis models include a link between
every factor and every observable variable, and attempt to deal with the resulting lack
of identifiability by rotating the factor solutions. Confirmatory factor analysis behaves
much more like a traditional statistical method. Based on substantive considerations and
re-parameterizations, the dimension of the parameter space is reduced so as to make the
parameters identifiable. Then, estimation and inference proceed as usual. Confirmatory
factor analysis models are directly imported as the measurement model in the general
two-stage model of Chapter 1.

Given a set of data (or proposed set of data), it is generally quite easy to come up with
a confirmatory factor analysis model. Such a model may be blessed with identifiability, or
it may not. If not, it’s back to the drawing board. The primary objective of this chapter
is to develop a set of rules that will allow the reader to determine the identifiability status
of a model without elaborate calculation — usually by just examining the path diagram.
As in Chapters 0 and 1, identifiable almost always means identifiable from the covariance
matrix. The rules for parameter identifiability from throughout the book, including this
chapter, are collected in Appendix D.

Using the conceptual framework of Chapter 1, underlying everything is a regression-
like original model. The parameters of the original model will not be identifiable, so it
is simplified and re-parameterized to obtain a surrogate model whose parameters may be
identifiable. The parameters of the surrogate model bear a systematic relationship to
the the parameters of the original model, and by keeping track of what that relationship
is, it will be possible to draw conclusions about the parameters of the original model.
For example, suppose a parameter ¢; of the surrogate model is a positive multiple of a
parameter in the original model. Then if a test determines that 6; > 0, it can also be
concluded that the parameter of the original model is positive.
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Here is the original model for confirmatory factor analysis. It is a part of the general
two-stage model (1.1). Independently for i = 1,...,n, let

di :V—FAFi—i—ei, (31)
where

e d; is a k x 1 observable random vector. The expected value of d; will be denoted
by p, and the covariance matrix of d; will be denoted by 3.

e vis ak x 1 vector of constants.
e Aisak x (p+ q) matrix of constants.

o F, (F for Factor) is a p x 1 latent random vector whose expected value is denoted
by pr, and whose variance-covariance matrix is denoted by ®.

e ¢; is a k x 1 vector of error terms that is independent of F;. It has expected value
zero and covariance matrix €2, which need not be positive definite.

This looks a lot like a multivariate regression model, and it is more or less acceptable for
all the reasons that regression is acceptable. It may not be exactly correct, but there is
hope that it’s a reasonable approximation of the truth, at least within the range of the
data.

As discussed in Section A.6.1 of Chapter 1, the parameter vectors v and p will almost
never be identifiable separately based on u, even if it were possible to identify A, ® and
Q2 from ¥. Accordingly, we re-parameterize, obtaining a surrogate centered model. As a
warm-up for what is to come, it is helpful to express the re-parameterization as a change
of variables.

d;=v+ AF,; +e;

d;=v+AF, + (Apup — Apg) +e;
di— (v +App) = AF; — pp) +e
(di —p) = A(F; — pp) + e

[

di= A Fi +e;, (3:2)

reee

where the superscript ¢ indicates centered versions of the random vectors, in which d;
and F; are expressed as deviations from their expected values. The centering notation is
dropped, and the result is a model from which v and p, have been eliminated. We are
glad to see them go. They are not identifiable separately anyway, and the function of v
and p that is identifiable, v + Ay, is of very little interest. The parameters we really
care about are the factor loadings in A and the correlations between factors in ®. These
quantities are unaffected by centering.
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Here is a full statement of the centered surrogate model. Independently for ¢ =
1,...,n,

where

e All expected values are zero.

d; is a k x 1 observable random vector, with cov(d;) = X.

A is a k x (p+ ¢) matrix of constants (factor loadings).

e F, (F for Factor) is a p x 1 latent random vector with cov(F;) = ®.

e; is a k x 1 random vector of error terms that is independent of F;. Its covariance
matrix is 2.

In practice, special cases of this model will be fit to data sets where the expected values
of the variables are definitely not zero. There are two ways to justify this, equivalent
in practice. The first solution is to leave d; uncentered in the model, and estimate the
nuisance parameters in g = v + App with the vector of sample means d. The other
solution is to center d; in the data set, by subtracting off d. In either case, inference
about A and ® will be based on the sample covariance matrix 2.

Readers of Chapter 2 will recognize Model (3.3) as almost identical to the “general
factor analysis model” (2.6) on page 213. The only difference is that here, cov(e;) = Q
need not be diagonal, though it is diagonal in many of the simpler models. One could say
that, recognizing exploratory factor analysis as a failure, we are starting over.

It was shown in Chapter 2 (especially Sections 2.2 and 2.3) that the parameters of the
centered surrogate are not identifiable without some further restrictions on the parameter
space. These restrictions are of two kinds. The first kind of restriction is substantive,
based on the nature of the data. Setting parameters equal to one another (for example,
equal factor loadings) or equal to zero are invariably substantive restrictions, and must
be justified in terms of the data set.

The other kind of restriction involves setting certain parameters to the value one.
Thinking of the original Model (3.1) as the “true model,” this might seem like an arbitrary
restriction of the parameter space. However, it will turn out that the resulting model is
a surrogate model, in which the centered model (3.3) has been re-parameterized by a
change of variables. The parameters of the surrogate model are identifiable functions of
the original model parameters. By making the process of re-parameterization explicit, we
will be able to tell what the surrogate model parameters mean.

Again, the primary objective of this chapter is to build up a set of simple rules for de-
ciding whether the parameters of a proposed model are identifiable. Two important rules
have already been established. They are the Parameter Count Rule (Rule 1, first stated
on page 61) and the Double Measurement Rule (Rule 2a, page 178). The parameter count
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rule gives a simple necessary condition for identifiability®, while the double measurement
rule, like most of the other standard rules in this book, describes a sufficient condition.
The double measurement rule fits neatly into the next section.

3.1 Setting Some Factor Loadings to One

In both the original Model (3.1) and the centered surrogate model (3.3), the factor load-
ings in the matrix A are unrestricted. In this section, parameter identifiability will be
obtained by setting some factor loadings to one. We will start by just accepting these
models as given, focusing on the technical details of identifiability. Then later, it will be
shown how these seemingly arbitrary restrictions of the parameter space are actually re-
parameterizations that result in surrogate model, one whose parameters have a systematic
relationship to the parameters of the original model.

Double Measurement Recall the double measurement model (1.22) on page 177,
which arose in the course of checking identifiability for the brand awareness data. Fig-
ure 3.1 shows a simple scalar example.

Each factor is measured by two observable variables; the factor loadings are all equal
to one. There are two sets of measurements, with potentially non-zero covariances within
sets, but not between sets. As in the brand awareness Example 1.2 on page 139, common
extraneous influences on the measurements within each set are to be expected, but pains
have been taken to make the two sets of measurements independent. In general there
can be any number of factors, but it becomes challenging to draw the path diagram.
Figure 1.10 on page 184 is a try with five factors.

To re-state the double measurement model in matrix form, let

di1 = Fitep
dio = F;+ep,

where E(F;) = 0, cov(F;) = ®, F, has zero covariance with e;; and e; 2, cov(e; 1) = €2y,
cov(e; ) = Q9 and cov(e; 1, €;2) = O.

The parameters in this model (which will be most useful as part of a larger model)
are the unique elements of the matrices ®, €2; and €25. The double measurement rule
(Rule 2a) says that these parameters are identifiable.

Three observed variables We now develop an identifiability rule in which for each
factor, there are three observable variables of a certain kind. Figure 3.2 shows the path
diagram when there is one factor. Here is a statement of the model. Independently for

L“Suppose identifiability is to be decided based on a set of moment structure equations. If there are
more parameters than equations, the parameter vector is identifiable on at most a set of volume zero in
the parameter space.”
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Figure 3.1: Scalar Double Measurement
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1=1,...,n, let

di; = Fi+ei
di 9 = )\QE + 61',2 (34)
diz = XsFj+eis,

with all expected values zero, Var(F;) = ¢ > 0, Var(e;;) = w; > 0, and F; and e;; all
independent. Note that this is a centered model, and that in the first equation, a factor
loading that would be denoted \; has been set to one. Centered variables and parameters
equal to one are signs that it’s a surrogate model.

The parameter vector is @ = (¢, A, A3, w1, wq, ws3). There are six unknown parameters,
and the covariance matrix of (d;1,d; 2, d,-,g)T has six unique elements. This means that
there are six covariance structure equations in six unknown parameters. If the parameters
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Figure 3.2: One Unstandardized Factor, Three Observed Variables
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are identifiable, they are just identifiable. Calculating the covariance matrix,

011 012 013 ‘ & @2 ds
o Oy Oas | = di | ¢ +wi , A2 A3
Tas dy A0 + wo 2/\2>\3<Z5
ds A30 + w3
The covariance structure equations are

o = ¢+w

o1z = Ao

o3 = A3

099 = A§¢ + wo

03 = AA30

033 — )\§¢ + ws.

If Ay = A3 = 0, that fact can be determined from o5 = 013 = 0, so that \y and A3 are
identifiable. The parameters wo = 099 and w3 = o33 are also identifiable. However, only
the equation 017 = ¢ + w; remains, and there are infinitely many solutions. This means
that at points in the parameter space where Ay = A\3 = 0, only four of the six parameters
are identifiable.

Suppose just one of Ay and A3 equals zero, say, A,. In that case, Ay and w, are
identifiable, but the equation o93 = 0 is essentially lost. By the parameter count rule,
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the remaining three equations in four unknowns do not have a unique solution, except
possibly on a set of volume zero in that four-dimensional section of the parameter space.
The conclusion is that the parameter vector is not identifiable at points where \y = 0,
A3 = 0, or both.

So assume that Ay £ 0 and A3 # 0. This “assumption” means that we are considering
points in the parameter space where both A\ and A3 are non-zero. In practical situations,
it means that the variables dy and ds (and d; too, of course) need to be chosen so that
they unquestionably reflect the underlying factor F'. In this case, the covariance structure
equations have the unique solution

¢ = 012013
023
Ao = 023/013
Ag = 023/012
012013
W, = 011 — ——— (35)
023
012023
Wo = 022 —
013
o 013023
w3 = 033 — .
013

Suppose we add another observed variable to the model: d; 4 = Ay F;+e€;4. The covariance
matrix is now
¢+ wi A2 A3 Ay
Mo +ws Ao Ao g
Ao +ws  Aghi
)\421¢ + Wy

Whether or not \y = 0, all the parameters are easily identifiable. For five observed
variables, two loadings can be zero, and so on.

With more than three observed variables, the parameters are over-identified. In this
case, testing model fit is a possibility. For example, if there are four observed variables,
then there are eight parameters and ten covariance structure equations, giving rise to
10 — 8 = 2 equality constraints on the covariance matrix.

Now add another factor to Model (3.4), as in Figure 3.3. A single factor loading has
been set to one for each factor, cov(F;) = ® = [¢], and Var(e;) = w; for j =1,...,6.
The model equations are

d = Fi+e
dy = MFi+e
ds = M3Fi+es
dy = Fy+ey
ds = MsFh+es
de = MeFs + e,
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Figure 3.3: Two Unstandardized Factors
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and the covariance matrix of the observable variables is

w1 + 1 A1 A3d11 ?12 AsP12 A6D12
/\%Qbu + wa A2 A3011 Ao12 A2 A5012 A2 A6 P12
A1 + ws A3P12 A3A5P12 A3A6P12

> =
Wy + Pa2 A5 P22 A6 P22
)\g%z + ws A5 A6022
/\2%2 + we

Typesetting that covariance matrix would have been a chore. SageMath kindly agreed to
do it for me; then I manually removed the lower triangle to make the matrix easier to
look at. Here is the code.

sem = ’http://www.utstat.toronto.edu/ brunner/openSEM/sage/sem.sage’
load(sem)

# Two unstandardized factors

L = ZeroMatrix(6,2)

L[0,0]= 1; L[1,0]= var(’lambda2’); L[2,0]= var(’lambda3’)

L[3,1]= 1; L[4,1]= var(’lambda5’); L[5,1]= var(’lambda6’); L

P = SymmetricMatrix(2,’phi’); P

0 = DiagonalMatrix(6,symbol=’omega’); O

Sig = FactorAnalysisCov(L,P,0); Sig

print(latex(Sig))

Assuming A9, A3, A5 and A\g to be non-zero, these factor loadings along with ¢;1, ¢oo and
w1, ...ws may be recovered as for the one-factor model. The remaining parameter, ¢o,
is identified from ¢35 = o14. Thus, all the parameters are identifiable. Identifiability
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is preserved when more factors are added under these same conditions. Adding more
variables in any set also does no harm.

Reference variables We are at the point of stating an important general rule, but
first, please notice a special feature of the observed variables in the models we have been
considering. Each observed variables is influenced by only one factor and an error term.
This is almost never seen in exploratory factor analysis, except that it might be considered
an extreme case of Thurstone’s “simple structure.” In confirmatory factor analysis models,
such variables are quite common, and it helps to have a name for them. The term is taken
from Joreskog’s (1969) classic article in Psychmetrika [36].

Definition 3.1 A reference variable for a latent variable is an observable variable that is
a function only of that latent variable and an error term. The factor loading is non-zero.

Obviously, not all observable variables are reference variables by this definition. For
example, in the two-factor model of Figure 2.1 on page 214, there are no reference variables
at all. In the latent variable regression model of Figure 13 on page 49, W; and W, are
reference variables, but Y is not. Reference variable are very useful for establishing
identifiability, and many of the standard sufficient conditions for parameter identifiability
involve reference variables for the latent variables.

Before the introduction of reference variables, the following rule was established. If
the conditions seem overly restrictive, I agree. We can and will do better.

Three-variable Rule for Unstandardized Factors The parameters of a factor anal-
ysis model are identifiable provided

e There are at least three reference variables for each factor.
e For each factor, the factor loading of at least one reference variable is equal to one.

e Errors are independent of one another and of the factors.

Only one reference variable per factor is really needed. The three-variable rule
is widely used in practice, but it is more restrictive than it needs to be. It is a lot to ask
that each factor have three observed variables that are influenced by that factor and none
of the others. It’s tough enough to come up with one such pure measurement for each
factor. Fortunately, it turns out that only one of the three observed variables for each
factor needs to be a reference variable. The other two can be influenced by all the factors.

The reference variable rule is a matrix version of the three-variable rule. For it to
apply, there must be at least three observable variables for every factor, including one
reference variable per factor. The observable variables are collected into three or possibly
four vectors. For case i (there are n cases), d;; contains reference variables for the factors,
with the factor loadings for the reference variables set to one. The number of variables
in d; 2 and d; 3 is also equal to the number of factors. If there are any more observable
variables, they are placed in d, 4.
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Here is the model. Independently for i =1,...,n,

di; = Fi+e;

dio = AF,+es (3.6)
dizs = AsF;+e3

dis = AF;+eq,

where

d;i, d;2 and d; 3 are p x 1 observable random vectors. If d;, is present, it is an
m X 1 observable random vector.

F; (F for Factor) is a p x 1 latent random vector with expected value zero cov(F;) =

P.

A5 and Aj are p X p non-singular matrices of constants.

Ay, if it is present, is an m by p matrix of constants.

— cov(e;1,€;9) = cov(e;1,€;3) = cov(e;a,€;3) = O, all p X p matrices.
— cov(e;1,€,4) = O, a p X m matrix.

— cov(e;a,€,4) = Qo4 and cov(e; s, €;4) = Q3 4.

The parameters of this model are the unique elements of the matrices ®, Ay, Az, €1,
25 and €233. If there are more than 3p observable variables and d, 4 is necessary, the
list of parameter matrices also includes Ay, €294, €254 and €2y 4.

Detailed discussion of this model is deferred until Section 3.4. For now, just note that
while the three-variable rule allows observable variables to be influenced by only a single
factor, Model (3.6) says that at least two-thirds of the variables can be influenced by all
the factors, through the matrices Ay and A3 (and possibly A,). Also, the three-variable
rule requires all error terms to have zero covariance. In Model (3.6), however, the first 3p
variables are divided into sets; error terms are allowed to have non-zero covariance within
sets, but not between sets. If there is a fourth set of variables, its set of error terms may
be correlated with the error terms of sets two and three, as well as with each other — but
not with the error terms of set one.
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Identifiability The covariance matrix of the observable variables may be written as a
partitioned matrix.

di, g | Yo | Bz | X
d; > b b
Y o 2 _ 22 | 223 | 224 (3.7)
d; s 333 | 234
d;4 34
D+, DA, DA, DA,

Ay®A, + Qo Ay®A; Ay®A, + Qs y
As®A; + Q33 | AsPA, + Qs y
Ay®A, + Qyy

Viewing (3.7) as a compact way to express the covariance structure equations, one obtains
solutions that are directly analogous to (3.5). To avoid transpose signs, the solutions use
B =5
P = z317322_7;1;232,1
Ay = 3y335
As = 33,50, (3.8)
Qi1 = T —Ti38555),
Qoo = Yoo — 22,123:&23,2
Q33 = X33— 23,221_7%21,3-

In case there are more than 3p observed variables and d;, is needed, solutions for the
additional parameter matrices are

Ay = 2471257;1[22,3217,;1;
Qoy = Xoy— 227321_711,,2174 (3.9)
Q34 = 34— 23,221521,4
Qig = Yya— 2471231123,221_7521,4-

This establishes identifiability of all the parameters, except on that set of volume zero in
the parameter space where Ay and A3 do not have inverses. This is like the requirement
that Ay and A3 be non-zero in the three-variable model (lusfactor), so that one may
“divide” by them. It’s a set of volume zero because if A; or A3 were singular, then the
columns would be linearly dependent, and at least one column would be a perfect linear
combination of the others.

We have the following important rule. Full discussion will be deferred until Section 3.4,
where an even stronger version will be given.
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The Reference Variable Rule for Unstandardized Factors The parameters of
a factor analysis model are identifiable except possibly on a set of volume zero in the
parameter space, provided

e The number of observable variables (including reference variables) is at least three
times the number of factors.

e For each factor, there is at least one reference variable, with a factor loading of one.

e Divide the observable variables into sets. The first set contains one reference variable
for each factor; the factor loadings all equal one. The number of variables in the
second set and the number in the third set is also equal to the number of factors.
The fourth set may contain any number of additional variables, including zero. The
error terms for the variables in the first three sets may have non-zero covariance
within sets, but not between sets. The error terms for the variables in the fourth set
may have non-zero covariance within the set, and with the error terms of sets two
and three, but they must have zero covariance with the error terms of the reference
variables.

Two reference variables per factor In some models, a factor may influence fewer
than three observable variables, a condition that would force either A5 or A3 to be singular
in the preceding discussion. If the model has at least two such factors and non-zero
covariance between the factors, we can get away with two reference variables for each
factor. Understanding that this may be only part of a larger model, the model equations
would be

di = Fit+e
dy = XoFi+ey
d3 = Fy+e;3
di = MFy+ey,
: Fy
with all expected values zero, cov B = ® = [¢;;], Var(e;) = w;, and the error

terms independent of the factors and each other. An additional critical stipulation is that
Cov(Fy, Fy) = ¢12 # 0.
The covariance matrix of the observable variables is

011 012 013 O14 11 +wr X211 ¢12 AsP12
O 023 O | _ A3p11 + wo A2z Ao Agd12 (3.10)
033 034 G2 + w3 AsP22 '
044 Moz + wy

Provided ¢15 # 0, all the parameters are easily identifiable. If ¢15 = 0, then that pa-
rameter is identifiable, but then identifying the other parameters would require a unique
solution to six equations in eight unknowns. By the parameter count rule, this is impos-
sible in most of the parameter space. Thus, identifiability requires ¢15 # 0.
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With more factors and two observed variables per factor, identifiability is maintained
provided that each factor has a non-zero covariance with at least one other factor. Nat-
urally, three or more variables for some of the factors is okay. We have the following
rule.

Two-varisble Rule for Unstandardized Factors The parameters of a factor analysis
model are identifiable provided

There are at least two factors.

There are at least two reference variables per factor.

For each factor, the factor loading of at least one reference variable is equal to one.
e Each factor has a non-zero covariance with at least one other factor.

e Errors are independent of one another and of the factors.

Re-parameterization and surrogate models Setting some of the factor loadings to
one is a useful technical device for obtaining identifiability, but does the resulting model
make sense? When a factor loading is set to one, it means that the observed variable is
just the factor plus a piece of random noise. Models like this were common in Chapter 0,
but the regression-like “original” model with a slope possibly not equal to unity is much
easier to believe. While it may be true that “all models are wrong?,” it is still not a good
idea adopt models that are obviously unrealistic, unless there is a good reason.

A common justification for setting factor loadings to one to to describe the process
as “setting the scale,” as in Bollen [10] (p. 198). Suppose the latent variable is length,
and it is measured twice. One measurement is in inches, and the other is in centimeters.
What’s the scale of measurement of the latent variable? This is un-knowable® and not
very interesting anyway, so the scale of the latent variable is arbitrarily made to agree
with one of the observed variables, by setting its factor loading to one.

As I see it, this “setting the scale” interpretation does not really hold up. Suppose
the latent variable is amount of debt, measured in dollars. One of the observed variables
is reported debt, also in dollars. Clearly, the latent and observed variables are on the
same scale. I think the factor loading could easily be a constant strictly less than one,
so that, for example, for every one dollar increase in true debt, the average person might
report 75 cents. Setting the factor loading to one when it is really 0.75 would be to model
an interesting phenomenon out of existence. There must be some other explanation for
setting a factor loading to one.

To see what is really going on, consider the following one-factor example. None of the
factor loadings is necessarily equal to one.

Example 3.1.1 A centered model with one factor.

2The famous quote is from Box and Draper (1987, p. 424) who said, “Essentially all models are wrong,
but some are useful.” [11]
3A symptom of non-identifiability.
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Independently for i =1,...,n, let

din = MFi+ein
dio = XoF,+eio
diz = NsFj+ei3

dia = MF;+eiq,

with all expected values zero, Var(F;) = ¢, Var(e; ;) = w;, and F; and e; ; all indepen-
dent.

As usual, identifiability is to be established by solving the covariance structure equa-
tions for the unknown parameters. There are nine unknown parameters, and the co-
variance matrix of the observable variables has ten unique variances and covariances.
The parameter count rule says that identifiability is possible, but not guaranteed. The
covariance matrix is

o1 012 013 014 Ao+ wi A2 AMA3d A0

022 023 024 A3d + wo A2 A3 A2y
%= = 3.11
033 O34 )\;Ze,¢ + ws AzA10 ( )

044 /\igb + Wy

If two distinct parameter sets yield the same covariance matrix, the parameter vector is
not identifiable. Table 3.1 shows two such parameter sets — actually, infinitely many.

Table 3.1: Non-identifiability

91‘ ¢ Ao A A3 N W Wy W3 wy

02‘¢/02 C)\l C/\Q C/\3 C>\4 W1 Wy W3 W4

For any ¢ # 0, both 6; and 6, yield the covariance matrix in (3.11).

As usual when parameters are not identifiable, this is a serious problem. Regardless
of what the true parameter values are, there are infinitely many sets of untrue parameter
values that yield exactly the same 3. Since inference is based on the covariance matrix
of the observable data, there is no way to even approach the full truth based on the data,
no matter how large the sample size. However, there is a way to get at the partial truth,
because certain functions of the parameter vector are identifiable. For example, at points
in the parameter space where A1, Ay, A3 # 0,

e 0] — "102—2‘;13 = w1, and the other error variances are identifiable by a similar calcu-

lation.
o 2 — M0 _ M g4 pytins of factor loadings are identifiable.
023 A2 A3 A2
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e If the sign of one factor loading is known (say by naming the factor?), then the signs
of the others can be identified from the covariances in (3.11).

o1p013 _ _ Mo
023011 M op+w
for this model.

, the reliability of d; as a measure of F'. Reliabilities are identifiable

The point here is that while the entire parameter vector may not be identifiable, the
covariance matrix still contains useful information about the parameters. It’s difficult
to get at, though. If we try to fit a model like the one in Example (3.1) by maximum
likelihood, lack of identifiability will cause the likelihood function to have a maximum
that is not unique, and unpleasant numerical things will happen.

The solution is re-parameterization. It cannot be a one-to-one re-parametrization,
because that would leave the identifiability of the model parameters unchanged. Instead,
it’s a sort of collapsing re-parameterization, one that results in a parameter space of lower
dimension. It is accomplished by a change of variables, and the resulting model is a
surrogate model. We have already seen how a change of variables is used to transform
the original model (3.1) into the centered surrogate model (3.3).

In the model of Example 3.1, assume A; # 0. It can be made positive by naming the
factor appropriately, so let A; > 0. Setting F' = \F, we have d; = F' + e1, and it looks
as if \; has been set to one (if you ignore the prime). The consequences for the other
factor loadings are, for example,

d2 = /\2F+62

A
= <)\—j) (>\1F) + ey
= )\/QF/ —I— €9,

and we have

dl = FI + €1
dy = N,F' + ey
d3 = /\gF/ + es, etc.

Losing the primes, the result looks exactly like Model (3.4). It is a surrogate for the
model of Example 3.1, except that there are three factors instead of four. In terms of the
original model parameters, the parameter Ay is really Ao/A;. The variance parameter ¢
is really A\2¢. As shown in Table 3.2, these are identifiable functions of the parameters of
the original model.

4Suppose that the factor is left-right political orientation. Do extremely high scores reflect right-wing
ideology, or left-wing ideology? Nobody knows. However, you have an observed variable, score on a
questionnaire asking about politics. It is scored so that agreement with certain statements gets you a
higher Left score or a higher Right score. Which one? It’s up to the investigator. So just make a choice,
and assume that the factor loading is positive. This way, you have decided whether to call the factor
”Left-wing orientation” or “Right-wing orientation.” This always works, but you only want to do it when
the connection between the factor and the observable variable is completely clear and non-controversial.
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Table 3.2: Identifiable Functions in Model (3.4)

Value under model
Function of ¥ | Surrogate Original

023/013 A2 Ao/ A
023/012 A3 >\3/)\1
012013/023 o A%Cb

Suppose there is more than one factor, with a factor loading set to one for each factor.
Then

¢y = Cou(F,F)
= COU()\lFl,)\4F2)
== )\1/\4COU(F1,F2)
= )\1/\4¢12-

To summarize, setting a factor loading to one for each factor is not an arbitrary restriction
of the parameter space. It is a very useful re-parameterization, resulting in a surrogate
model. The parameters of the surrogate model are identifiable functions of the original
model parameters. Their meanings are limited but clear. Everything is relative to the
values of the parameters that have apparently been suppressed. The error variances w;
are unaffected, but all the other parameters are positive multiples of the corresponding
parameters of the original model. Any estimated factor loading or covariance is really
an estimate of that quantity times an unknown positive constant. If the latent vari-
able model has a causal structure (rather than just covariances between factors), the
re-parameterization has cascading effects that run down the chain of causality.

Unless one is actually interested in ratios of factor loadings, point and interval esti-
mates of the surrogate model parameters are not very meaningful. However, a test of
whether a surrogate model parameter is positive, negative or zero is also a valid test
about the original model parameter. This is good enough for many applications. In the
social and biological sciences, the primary research question is often whether a relation-
ship between variables exists, and if so, whether the relationship is positive or negative.
In such cases, setting factor loadings to one can be an excellent way to achieve parameter
identifiability and get on with the data analysis.

3.2 Standardized Factors

Setting a factor loading to one for each factor is path to identifiability. The other common
trick is to set the variances of the factors to one. Please consider again the one-factor
model of Example 3.1 on page 288. Recall that this model is centered, but otherwise it has
not been re-parameterized, and its parameters are not identifiable. To obtain Var(F’) =1
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in a re-parameterized model, let ' = ﬁF Then Var(F') = éVar(F) = 1 as desired,
and

d‘ = )\jF+6j

1
= )‘j¢1/2WF+€j
= )\;.F/—i—ej.

Under the new, re-parameterized model, the factor loading is expressed as a multiple of
the unknown standard deviation of the factor; )\3- = )\j<b1/ 2 is the expected increase in
d; when F' is increased by one standard deviation unit. Since the standard deviation is
unknown (and un-knowable) except for being positive, this means that an estimate of
could be informative about the sign of the original factor loading, but that’s all.

Discarding the primes, we have a surrogate model. Consider the following three-
variable version. Independently for ¢ =1,...,n, let

din = MFi+ei
dia = XFi+ein
diz = MF;+e;3,

with all expected values zero, Var(F;) =1, Var(e; ;) = w; and F; and e; ; all independent.

The covariance matrix of an observable data vector is,

011 012 013 M+w M A3
E = 099 093 = )\% + Wwo )\2)\3 . (312)
033 A3+ ws

There are six covariance structure equations in six unknown parameters. If two or three
of the factor loadings are equal to zero, all three covariances equal zero, it’s impossible to
tell whether two loadings or three equal zero, and none of the parameters is identifiable.
So, consider what happens when just one factor loading equals zero — say, A;. Since
o012 = 013 = 0 but g93 # 0, it is clear that \; = 0. That is, its value is identifiable. Also,
011 = w1, and w; is identifiable. However, the covariance structure equation ooz = a3
has infinitely many solutions; identification of wy and ws is also impossible.

Accordingly, assume that A;, Ay and A3 are all non-zero. Asin Section 1.3 of Chapter 1,
this is an acknowledgement that parameter identifiability need not be the same in different
regions of the parameter space. Viewing (3.12) as a compact statement of the covariance
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structure equations and trying to solve, we have

012013 A1A2 A1 A3

A\ = —
1
023 A2 A3
0190
2 12023
)\2 -
013
013023
A o= —= (3.13)
012
o 012013
w1 = 011 —
023
. 012023
Wy = 02 —
013
N 013023
w3 = 033 —
012

The error variances are identifiable, but only the squares of the factor loadings can be
uniquely identified. To see this clearly, note that if all three A; are replaced with —\;, we
get same 3. The likelihood function will have two maxima, of the same height. Which
one is located will depend on where the numerical search starts.

The solution is to decide on the sign of one factor loading. It really is a decision that
is up to the user, and it’s based on the meaning of the hypothesized factor. If the three
variables are scores on three math tests, is F' math ability, or math inability? You decide.
Once the sign of one loading is fixed, the signs of the other two may be determined from
the signs of the o;;. Identifiability is purchased by cutting the parameter space in half,
but it really doesn’t cost anything.

Now suppose we add another observed variable to the model: d; 4 = A\ F; + ;4. The
covariance matrix is

)\% + w1 )\1)\2 )\1)\3 )\1)\4
)\% “+ Wy )\2>\3 A2y
/\% + w3 /\3/\4

A2+ wy

(3.14)

The parameters will all be identifiable as long as three out of four loadings are non-zero,
and one sign is known. For example, if only A; = 0 then the top row = 0, and it is
possible to solve for s, A3, Ay as before. For five observed variables, two loadings can
be zero, and so on. With more than three observed variables, the parameters are over-
identified. For example, with four observed variables, there are eight parameters and
ten covariance structure equations, giving rise to 10 — 8 = 2 equality constraints on the
covariance matrix.

Returning to three observed variables per factor, add another factor as in Figure 3.4.
The variances of both factors equal one, and Var(e;) = w; for j = 1,...,6. The model
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Figure 3.4: Two factors

1 €, © e, e, €
AR TR S S
d, d, d, d, d_ d,

A, AZT A, A A A
F, F,

equations are

di = MFi+e
do = XFi+ ey
ds = A3F| +es
dy = MFy+ey
ds = MsFy+e5
dg = IgFs+ eg,

and the covariance matrix of the observable variables is

M+ w; A1 A2 AMA3 AMAd12 MAsP12 AiAedr2
A2+ wy A3 Mgz AoAsdia Aodedi2

A3t ws Ashadiz AsAsdia Ashedia

)\i + wy /\4)\5 /\4)\6

)\g + ws )\5)\6

)\g + wsg

Assuming that all the factor loadings are non-zero and the sign of one factor loading is
known in each set (one set per factor), Ai, A2, A3 may be identified from set One and
A4, A5, A¢ may be identified from set Two. Then ¢1o may be identified from any unused
covariance, and the w; are identifiable from the variances. Thus, all the parameters are
identifiable.

Adding more standardized factors, the parameters remain identifiable provided there
are at least three variables for each factor with non-zero factor loadings, and the sign of
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one factor loading is known in each set. Adding more variables in any set also does no
harm.

This establishes the three-variable rule for standardized factors. The parameters will
be identifiable provided that there are at least three reference variables per factor, and the
errors are independent of one another and of the factors. Comparing these conditions to
the three-variable rule for unstandardized factors on page 284, we see the only difference
is that the variance of the factor equal to one (and one sign known) is substituted for
the factor loading of one (in which case its sign is positive). The result is the following
widely-used rule.

Rule 2b: Three-variable Rule The parameters of a factor analysis model are identi-
fiable provided

e There are at least three reference variables for each factor.

e For each factor, either the variance equals one and the sign of one factor loading is
known, or the factor loading for at least one reference variable is equal to one.

e Errors are independent of one another and of the factors.

3.3 Equivalence of the Surrogate Models

The three-variable rules for standardized and unstandardized factors were very similar,
and it was quite easy to combine them into a single rule. The extreme similarity suggests
that the two common surrogate models — the one with a factor loading set to one for
each factor, and the one with the variances of the factors set to one — might be the same
thing in disguise. In fact, this is correct. The surrogate models in question are one-to-one.

What this means is that if the parameters of the two surrogate models are expressed
in terms of the parameters of the original model, then there is a one-to-one (injective)
function connecting their parameter vectors. There are two important consequences.
First, if the parameters of one surrogate model are shown to be a function of 3 and hence
identifiable, then the parameters of the other surrogate model are immediately identified
as well. This means that it is permissible to check identifiability for one surrogate model
even when you intend to fit the other one to your data. Usually, this means doing
calculations for a model with factor loadings set to one.

The other consequence is that since the parameter vectors of the two surrogate models
are one to one, they capture the same information about the the parameters of the original
model — and again, the original model is what we really care about. In this sense, the
two surrogate models are equally good. However, the form of the information may be
more convenient for one of the models, depending on the interests and research objectives
of the investigator. Section 3.8 includes examples of extracting the same information the
easy way and the hard way.
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3.3.1 Demonstration of Equivalence

The following is fully rigorous, but much too long and chatty to be called a proof. It
is based on three surrogate models. All three models have p factors and %k observable
variables, and error terms independent of the factors. The first model will be called the
centered original model. In this model, the intercepts and non-zero expected values in
the original model have been swallowed by a re-parameterization, as in the “centered
surrogate model” (3.3) on page 278. Note that while the centered original model is
a surrogate model, the factor loadings, the covariance matrix of the factors, and the
covariance matrix of the error terms are all identical to their counterparts in the original
model.

In the centered original model, the observed variables are sorted into two vectors; this
is the only difference between the present centered original model and the earlier centered
surrogate model. For case i, (there are n cases), d;; consists of p reference variables for
the factors. These are the best available representatives of the factors. If the factors
are named appropriately, the factor loadings linking each factor to its reference variable
may be assumed strictly positive. The remaining k — p observed variables are collected
into d; 2. In the equations for the centered original model, the subscript i is suppressed®
to reduce notational clutter. Implicitly, everything is independent for ¢ = 1,...,n. The
model equations are

d1 = A1F+61 (315)
d; = AyF +ey,

where all expected values are zero, the p X p matrix A; is diagonal with positive diagonal
elements, cov(F) = @, cov(e;) = Qy, cov(ez) = Ny and cov(ey, €2) = Q4 2. The parameter
vector for this model is

0 = <A17 A27 (bv Ql? 927 Ql,2>'

Of course, only the non-redundant elements of the covariance matrices are intended as
part of the parameter vector.

The centered original model is then re-parameterized in two different ways, leading to
two further surrogate models. These models will cleverly be called Model One and Model
Two. Figure 3.5 indicates the process.

In Model One, the number one figures prominently, because it looks like the non-zero
factor loadings in A; have all been set to one. That is, a factor loading appears to have
been set to one for each factor. Actually, it is a re-parameterization accomplished by a
change of variables. Letting F' = A{F yields

d1 = F, + e
dy = AAT'AF + ey (3.16)
= AIQF/ —+ €9,

5
Ford;, di2, Fi, e;1 and e; 2
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Figure 3.5: Surrogate Models

Model One

Original Model mmmp Centered Original Model <

Model Two

where A, = AyA;". The covariance matrix of the transformed factors is
®' = cov(AF) = A, PA],

and the covariance matrices of the error terms are the same as for the centered original
model. The parameters of Model One are

0, = ( A/27 (I)/7 Qll? 9/27 9/1,2 )

y . (3.17)
= ( AQAI ) Al(ﬁAl ) Ql; ﬂQa 91,2 )

In Model Two, the factors are scaled to have variance one. Since they are already have
expected value zero, this means they are standardized. Let V denote a diagonal matrix
with the variances of the factors (the diagonal elements of ®) on the main diagonal.
Transforming the factors by F” = V—1/2F,

dl = A1F+e1

= A VV2VI2F ye
= AF' +e,

and

C].Q = AQF + e
= AVPVTPF 4e
= AIQIF” + €9.

Summarizing, the equations for Model Two are

d1 = A/IIF” + e (318)
d2 = A/2/F// + eo,
where A} = A; VY2 and AJ = A;V'/2. The covariance matrix of the transformed factors

for Model Two is
®" = cou(V'°F) = V2@V 172,
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and the parameter vector is

0, = (A, Al d", Q, Q;, Qf, ) (3.19)
= ( A1V1/2, A2V1/27 V71/2¢V71/2, Ql) QQ, QI,Z ) '
The objective here is to show that 6, in Expression (3.17) and 65 in Expression (3.19) are
connected by a one-to-one function; that is, 8, is a function of @5, and 8, is a function of
0,.
To find @, as a function of 6, it is enough to express A, and ®’ in terms of the
elements of 8,. We have

NIAIE = AV (A V)
_ A2V1/2V*1/2A1_1
= AQA!
= A (3.20)

and

A/I/(I)//A/I/T _ (A1V1/2) (V_1/2<I>V_1/2T) (A1V1/2)T
= ABVIAVIZAT
= APA]
= @ (3.21)

Notice that going in this direction, the assumption that A; is diagonal is not used. All
that’s necessary is the existence of an inverse. Also notice that by the invariance principle
of maximum likelihood estimation, one could simply place hats on the parameter matrices
of (3.20) and (3.21) to obtain estimates for Model One from those for Model Two, without
re-fitting the model. Similarly, expressions (3.22), (3.23) and (3.24) below may be used
to obtain Model Two estimates directly from Model One estimates.

To go from Model One to Model Two, a bit of background is required. Let A and
B be diagonal (and square) matrices of the same size. Then AB = BA, and if all the
elements are non-negative, (AB)'/2 = AY2BY2, Also, let A be a square matrix, and let
dg(A) denote the diagonal matrix with diagonal elements equal to the diagonal elements
of A. For example, in the current problem, dg(®) = V.

Now, suppose the diagonal elements of A; are labelled A;,...,\,. Because A; is
diagonal, the jth diagonal element of ® = A;®A] is Nj@jiN; = /\ggbjﬂj. This is also
the jth diagonal element of A; VA, which is diagonal because the product of diagonal
matrices is diagonal. In short, dg(®') = A;VA,.

The task is to find 85 as a function of ;. That is, we need to express A}, A; and ®”
in terms of single-prime quantities. The variances and covariances in Qf, 5 and Qf , are
automatic, because the transformations considered here do not affect these error matrices.
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Using the special properties of diagonal matrices indicated above,

dg(®)'?* = (AVA)'?
_ (A1V1/2V1/2A1)1/2
_ (A1V1/2A1V1/2)1/2
= A V2
= Af (3.22)

and

Aydg(®)'? = (A2AT)(ALVY?)
= AV'/?
= A} (3.23)

and

dg(®) 2@ dg(®) 7 = (AVV)THALBA]) (A V)T
= V2ATIA @A VTI2A
= V12eA AV Y2
_ V_1/2(PV_1/2
= & (3.24)

This establishes that the parameters of Models One and Two are one to one. In Figure 3.5,
there could be a two-headed arrow between Model One and Model Two®. As a corollary,
we have the following useful rule.

Rule 2i: The Equivalence Rule For a centered factor analysis model with at least
one reference variable for each factor, suppose that surrogate models are obtained by
either standardizing the factors, or by setting the factor loading of a reference variable
equal to one for each factor. Then the parameters of one surrogate model are identifiable
if and only if the parameters of the other surrogate model are identifiable.

6The student may be like, Okay, this is all correct, but how would anyone even think of some of these
functions, especially the formula for ®” in (3.24)? The key is that surprisingly, if you standardize F’
you get F”. This makes it easy to write the double-prime matrices in terms of the single-prime matrices.
Going in the other direction, try a change of variables in which AY is absorbed into F”, effectively setting
a factor loading to one for each factor. The change of variables is F”” = A{F”, which happens to equal
F'.

This is so remarkable that it bears repeating. If you set a factor loading to one for each factor in
the centered original model, you get Model One. If you standardize the factors in the centered original
model, you get Model Two. If you standardize the factors in Model One, you get Model Two. If you set
a factor loading to one for each factor in Model Two, you get Model One. It feels like a projection of
some kind.
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3.3.2 Choosing a Surrogate Model

So, the two standard surrogate models are equivalent. Their identifiability status is the
same, and they contain the same information about the parameters of the original model.
In actual data analysis, which one should you use?

An advantage of unit factor loadings Certainly, when factor loadings are set to
one it’s easier to calculate X by hand as a function of the surrogate model parameters.
It’s also easier to solve for model parameters in terms of o0;; quantities — again, if the
calculations are done by hand. For models to which the standard identifiability rules do
not apply, this can be very helpful.

An advantage of standardized factors Recall that the identifiable parameters of
a surrogate model are actually identifiable functions of the parameters of the original
model. It’s helpful if these functions correspond directly to something you want to know
about. When a factor loading is seemingly set to one, the other factor loadings (which
would appear on the other arrows coming from that factor) are actually ratios of factor
loadings, with the invisible factor loading in the denominator. Thus, all the other factor
loadings are relative to the one that disappeared, making the invisible factor loading a
kind of reference quantity. When such ratios of factor loadings are of interest, setting a
factor loading to one for each factor is a good choice.

On the other hand, the variances and covariances of the factors under the surrogate
model are the original quantities multiplied by the reference factor loadings. This pre-
serves nothing of interest from the original model, apart from the signs of the covariances.

In contrast, consider the covariances between factors when the factors are standard-
ized. For a general factor analysis model, suppose that the factor Fj has been stan-
dardized. Using double primes for consistency with the notation of Section 3.3.1, let

"o__ 1 . : " _ 1
F' = \/EF] As well, the factor F; has been standardized by F, \/‘Z’TL’FZ Then the

covariance between the transformed factors is

Sy = conlFl )

1 1
( Fj,
V P ’ / Pre

1
= —————=cov(Fj}, Fy)

V@), Pee
oy,

\V PiiPue

= Corr(F;, Fy).

'K

Fy)

= Cov

The covariances between factors under the surrogate model are not just correlations,
which they must be since the factors have variance one. They are the correlations — that
is, they are exactly the correlations between factors under the original model. As such,
those qb;-’j quantities are very easy to understand and interpret. Confidence intervals are
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meaningful. This is a significant advantage to standardizing the factors, though it’s more
helpful for pure factor analysis than for general structural equation models with a causal
structure in the latent variables.

While it might be tempting to set a factor loading to one for a factor and also stan-
dardize that same factor, it’s a very bad idea. You can do it, but this reduction of the
original parameter space cannot be accomplished by a change of variables. Consequently
the connection of the resulting model parameters to the parameters of the original model
would be mysterious. Furthermore, doing both at once usually implies equality constraints
on X that do not follow from the original model, invalidating the goodness of fit test. It’s
something you just should not do.

To summarize, setting a factor loading to one for each factor (Model One) is attractive
because it makes calculations easier. Standardizing factors (Model Two) is attractive be-
cause the resulting covariances between factors are the correlations between factors under
the original model. As the following example shows, it is possible to enjoy the benefits
of both surrogate models. If identifiability is unclear and you prefer the interpretability
of the model with standardized factors, you can safely show identifiability for Model One
and then Fit Model Two to the data.

Example 3.3.1 The Political Democracy Frample

This data set is discussed by Bollen [10] and other authors. Based on news reports and
other sources, a panel of experts rated a sample of 72 developing countries on the following
variables.

dy: Freedom of the press in 1960

ds: Freedom of political opposition in 1960

ds: Fairness of elections in 1960

dy: Effectiveness of the elected legislature in 1960

The variables ds through dg represent the same quantities for the year 1965. There are
two hypothesized factors, strength of political democracy in 1960, and strength of political
democracy in 1965. Figure 3.6 shows a path diagram, which in my humble opinion is an
improvement on Bollen’s Figure 7.3 on page 235 — even though they contain the same
information. The factor F} is political democracy in 1960, and F; is political democracy in
1965. The factor loadings are hypothesized to be the same in 1960 and 1965, though the
variances of the error terms might not be. Though the variables d5 through dg correspond
directly to d; through d4, they are sorted in the opposite order to allow for the curved
arrows between arrow terms.

It is those curved arrows, representing covariances between error terms, that make
this model unusual. There are two sources of covariance between the 1960 and 1965
variables, only one of which the covariance between factors. Even so, it turns out that all
the parameters are identifiable.
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Figure 3.6: Political Democracy Factor Model

The curved arrows between error terms reflect really thoughtful, good modelling. For
example, freedom of the press in 1960 and freedom of the press in 1965 are assessed based
on similar information from mostly the same sources, so that both observed variables are
impacted by similar sources of bias. The latent variables involved are not part of the
model, so they are represented by a covariance between error terms. The same applies to
the other three pairs of variables (dy and dg, d3 and dy, dy and dg). Covariances within
years are in red just for visual contrast. The measurement of dy and d; have something
extra in common, as do dg and dg. I'm not sure what it is. Anyway, this is good. Most
people just assume error terms uncorrelated without really thinking about it.

We are interested in a surrogate model with standardized factors, and we need to
verify identifiability before trying to fit the model. Identifiability will be a lot easier to
check for a surrogate model with \; = 1. The equivalence rule says that it’s okay to check
one model and then feel comfortable fitting the other one.

Without the curved arrows, this model would be identifiable at a glance by the three-
variable rule. With the curved arrows, it will be possible to get the job done by combining
rules and a few simple calculations. Bear in mind that once a parameter has been iden-
tified, it may be used in the solutions for other parameters.



3.3. EQUIVALENCE OF THE SURROGATE MODELS

Here are the model equations for the model with factor loadings set to one.

dr
da
ds
dy
ds
ds
dr
ds

First, apply the three-variable rule

to the submodel with F}, d;, ds and d3”.
parameters A9, A3, @11, wii, woo and wssz are identified.

Fi+e

Ao F1 + e
A3l +e3
AFy + ey
Fy +e5

Aol + eg
A3y +er
Mo + eg

303

The

Adding d4 to the system is non-standard, because of the covariance between e, and

es. However,

o1y = cov(dy,dy)

= CO’U(Fl + 61)()\4F1 + 64)
= MVar(Fy)+0+0+0
= )\4¢117

and \y = 014/¢1; is identified. Then,

024 — CO’U(dQ, d4)
= cov(AaF1 + e2)( M F) + ey)
= M\ Var(Fy) 4+ 040+ cov(es, e4)

= AoAd11 + wou,

and Woyq = 094 — )\2)\4@511 is identified.

Repeating these operations for the submodel with Fy, d5, dg, d7 and dg, the variance
parameters wss, . . . ,wgg are identified. Also, it is clear that if the factor loadings for 1965

were different from 1960, they would be identified as well.

Now we turn to the sources of covariance between the 1960 and 1965 measurements.

018

Then, ¢12 = 0'18/)\4 is identified.

= cov(dy,ds)
cov(Fy + e1) (A Fy + es)
Agcov(Fy, Fy)
= \o12.

"What about the curved arrows? There are no curved arrows connecting e;, es and es, so the

calculations for this subsystem, if we had to re-do them, would be unaffected.
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Now it’s straightforward to solve for the remaining covariances between errors.

o5 = cov(dy,ds)

cov(Fy + e1)(Fy + es5)

cov(Fy, Fy) 4 cov(ey, es)
= ¢rtuws

= w15 =015 — P12,

and

g6 = cov(dy,dg)

cov( Ao F + e2)(AaFy + €6)

Ncov(Fy, Fy) + cov(es, e6)
= A2 + was

= W2 = 02 — )\§¢127

and similarly for w37 and wysg.

I got a bit carried away here, and showed elementary details that you are probably
able to do in your head. This may obscure the fact that establishing identifiability for
this interesting model is really pretty easy, especially when working with the surrogate
model in which factor loadings are set to one. It’s not necessary to calculate the whole
covariance matrix 3, and all the calculations that are really needed could be done on a
sheet of scratch paper.

3.4 The Reference Variable rule

This rule comes from applying the equivalence rule to the reference variable rule for
unstandardized factors, on page 286, so that it holds for both the common surrogate
factor analysis models. It says that under some other conditions that are fairly mild and
easy to satisfy, the parameters of a model with three observable variables per factor will
be identifiable, provided that one of the variables is a reference variable. The other two
variables may be influenced by all the factors. Here is the rule.
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Rule 2c: The Reference Variable Rule The parameters of a factor analysis model
are identifiable except possibly on a set of volume zero in the parameter space, provided

e The number of observable variables (including reference variables) is at least three
times the number of factors.

e There is at least one reference variable for each factor.

e For each factor, either the variance equals one and the sign of the reference variable’s
factor loading is known, or the factor loading of the reference variable is equal to
one.

e Divide the observable variables into sets. The first set contains one reference variable
for each factor. The number of variables in the second set and the number in the
third set is also equal to the number of factors. The fourth set may contain any
number of additional variables, including zero. The error terms for the variables in
the first three sets may have non-zero covariance within sets, but not between sets.
The error terms for the variables in the fourth set may have non-zero covariance
within the set, and with the error terms of sets two and three, but they must have
zero covariance with the error terms of the reference variables.

The last condition is unusually long. It describes patterns of permissible covariances
between error terms. That’s important and we will get back to it, but for now just observe
that the condition is satisfied for models in which all the error terms are independent —
something that is almost the default for factor analysis models®.

The rule with independent errors Figure 3.7 illustrates the reference variable rule
with independent errors, and also gives an idea of the modelling flexibility the rule per-
mits. The black part of the model is a direct copy of the unrestricted exploratory factor
analysis model of Figure 2.1 in Chapter 2. Then, reference variables for the factors (the
observable variables dy and d;o) have been added in red. The resulting model is immedi-
ately identifiable, assuming the factors are standardized or the factor loadings on the red
arrows are set to one.

This shows that with a few extra variables of the right kind, the parameters of an
exploratory factor analysis can be estimated without any fuss. If the factors are stan-
dardized, the covariances between factors are the correlations between factors under the
original model. The factor loadings under the surrogate model are positive multiples of
the the corresponding factor loadings under the original model. While the actual values
of the original factor loadings are not knowable, it is possible to estimate and test whether
their signs are positive, negative or zero. That’s enough for many purposes. All the tech-
nical gymnastics from Chapter 2, like rotation to simple structure, viewing the resulting
factor solution as a scientific theory and invoking Occam’s Razor from the philosophy of

8Independent errors are universal in exploratory factor analysis, and many confirmatory factor analysis
models seem to have inherited this feature. In Chapter 2 on page 214, independent errors are traced to
Spearman’s (1904) “Law of the Universal Unity of the Intellective Function.” [60]
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Figure 3.7: Adding reference variables to an unrestricted factor model
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science to justify it on the grounds of simplicity — all of that is unnecessary if you have
the right kind of data set. The reference variable rule tells you what kind of data set you
need.

There is a general point here. Lack of identifiability is often a problem with the study
design, not the model. This makes sense. Identifiability is literally about what can be
known. Naturally, there is an intimate connection to research design.

One other observation is that while the black part of Figure 3.7 is an exploratory
factor analysis model, the whole analysis can’t be completely exploratory. You really
need to have a good idea of what the factors are before designing measurement procedures
(reference variables) that clearly tap one factor but not any of the others.

Statement of the model Rule 2¢c goes on and on about covariances between error
terms. To clarify the discussion, a full statement of the model will be helpful. This is an
adaptation of Model 3.1 on page 286. Independently for i =1,... n,

di; = AF,+e;
dio = AF,+es (3.25)
dizs = AsF;+e3
dis = AF;+e,,

where

e d;;, d;» and d; 3 are p X 1 observable random vectors.
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e d;, need not be present. If it is present, it is an m X 1 observable random vector.

e F, (F for Factor) is a p x 1 latent random vector with expected value zero cov(F;) =
P.

e A, is a p X p diagonal of constants, with non-zero diagonal elements. The diagonal
elements may be assumed positive.

e Ay and Aj3 are p X p non-singular matrices of constants.
e A, if it is present, is an m by p matrix of constants.

® e;,...,€4 are vectors of error terms, with expected value zero, covariance matrix
cov(e; ;) =€, for j=1,...,4, and

— cov(e;1,€2) = cov(e;1,€;3) = cov(e;q,€;3) = O, all p x p matrices.
— cov(e;1,€,4) = O, a p x m matrix.

- cov(ei,g, ei,4) = 9274 and CO’U(G@:;, 8174) = 9374.
e Either the diagonal elements of A; or the diagonal elements of ® are equal to one.

What’s happening here is that the reference variables for the factors are being placed
in d; 1, and then the remaining observable variables are being allocated to d; 2, d; 3, and
possibly d; 4, depending on the potential for non-zero covariance between their error terms.

Figure 3.8 is a re-arranged version of Figure 3.7, showing the covariances between
errors that the rule allows. The reference variables dg and djy are grouped together in
d;, while d;» contains d; and ds, and d, 3 contains ds and d4. The remaining observed
variables, ds through dg, are placed in d; 4. With the colour coding, perhaps you can see
it. eg and eqg are correlated, e; and e, are correlated, ez and ey4 are correlated, es through
eg are correlated, and there are four blue connectors running to each of e, es, e and ey.

Correlated error terms To understand how error terms might be correlated, consider
what an error term represents. In a path diagram, suppose that a variable y has three
arrows pointing toward it from 1, 5 and x3, and one more arrow coming from e, an error
term. The model is saying that y is influenced by the = variables, but it’s not completely
determined by them. There are other, unmeasured variables that affect y. We don’t know
what they all are, or even how many there are. Anyway, we roll them together and call
them e. That is, the error term in a model equation is everything else that affects the
endogenous variable, apart from the other variables on the right side of the equation.

Thinking of an error term as a giant linear combination of unmeasured and perhaps
even unimagined variables (probably not a bad approximation), it is clear that if any
variables appear in more than one such linear combination, or if some of the variables in
two different linear combinations have non-zero covariance, then the error terms will have
non-zero covariance as well. This is how the curved arrows between error terms arise.
“Everthing else” includes some of the same influences, or related influences.
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Figure 3.8: Allowable covariances between error terms

When observable variables are recorded at roughly the same time and by the same
method, then correlated errors of measurement are practically unavoidable. For example,
suppose that a sample of high school students takes a standardized test, consisting of sub-
tests on mathematical and verbal material. Scores on the sub-tests will be two different
observable variables. Some students will suffer from test anxiety more than others, some
will be more test-wise than others, some will have gotten more sleep the night before,
and some students will simply be having a better day than others. The list goes on. The
point is that these unmeasured factors are not explicitly part of the model, but they will
influence performance on both the math test and the verbal test. They are a source of
covariance between the two measures, over and above any covariance between the factors
(say, verbal ability and mathematical ability) that the tests seek to measure. All this
would be represented by a curved, double-headed arrow between the error terms.

If the variables in a study come from questionnaires, the case for correlated error terms
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is even stronger. Consider a questionnaire with a lot of questions about the respondent’s
workplace. Mixed together are questions from several sub-scales that seek to assess the
quality of relations with co-workers, the perceived overall fairness of management, op-
portunities for advancement, and the respondent’s job satisfaction. In the model, these
sub-scales are going to be separate observed variables, each with its own error term. The
respondent’s current mood will certainly affect all the responses, as may happy or unhappy
events outside the workplace. Some respondents will not really believe their responses will
not get back to the employer, and will play it safe by saying that everything is great — on
all the questions. Others will take the opportunity to vent their frustrations, and paint
a picture of everything that is darker than the one they actually experience from day to
day.

Also, one should not minimize the extent to which social science research (including
market research and behavioural economics) is a social transaction between the participant
and the investigator. Many people answering questionnaires certainly seek to represent
themselves in a favourable light [19],[52] and often politely tell the investigator what they
think the investigator wants to hear [49]. All these dynamics (which are only rarely what
the investigator wants to study) push the responses to clusters of questions up or down
together. In the path diagram they are represented by curved, double-headed arrows
connecting error terms.

It would be nice if all error terms could have covariances with one another that are
unknown parameters, and not assumed zero. This is how it goes in ordinary multivariate
regression, with all variables observable. Once there are latent variables, however, iden-
tifiability becomes an issue. Certainly, if all the error terms in a factor analysis model
have non-zero covariance with each other, then the parameter count rule establishes that
all the parameters of the model cannot be identifiable. So, what should we do?

One alternative is to assume the covariances are zero, and hope. Just hope that
the processes involving the variables in the model are a lot stronger than the processes
leading to correlated error terms. The model is not quite correct and everyone knows
it, but it should not be too misleading. I think it’s fair to say that almost all the usual
factor analysis models with independent error terms are based on this kind of hope. Too
often, the model does not fit; this can include negative variance estimates, the so-called
Heywood case described on page 226. Note that the negative variance in Example 1.5.1
was produced by correlated error terms.

There is another, better solution: careful research design. This means doing some
thinking about the model to before collecting the data. The first thing to note is that
some error terms can legitimately be assumed to have zero covariance — on the basis of
reasonable modelling, not just hope. For example, suppose that a medical technician
records the height of a patient, and also asks about occupation (later to be converted into
a numerical index of occupational prestige). There is surely measurement error in both
operations, but no particular reason to suspect that the errors might vary systematically
with one another. Again, suppose a participant in a study fills out several questionnaires
designed to assess racism and other social attitudes. The error terms are correlated,
without a doubt. But if the person also grants access to her cell phone data, then a
racism measure derived from Facebook likes (again imperfect, as always) could arguably
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have an error term independent of the error terms of the self-report data.

As another example, here’s a quote from page 84 in Section 0.10.3 on the double
measurement design in Chapter 0: “...farmers who overestimate their number of pigs
may also overestimate their number of cows. On the other hand, if the number of pigs is
counted once by the farm manager at feeding time and on another occasion by a research
assistant from an areal photograph, then it would be fair to assume that the errors of
measurement for the different methods are uncorrelated.” There are more examples in
the BMI Health Study (Section 0.10.4 of Chapter 0, page 89). The point is that error
terms need not always be correlated. If two observable variables are measured by different
methods, on different occasions and ideally by different personnel, it’s usually reasonable
to assume that their errors are independent.

This is where the reference variable rule comes in. Like the double measurement rule,
it allows correlated errors within certain sets of observed variables, as long as there is
zero covariance between sets — and identifiability is still preserved. It requires advance
planning, and the data collection will inevitably be more demanding. However, it’s not
really a lot to ask. In experimental research (with random assignment of cases to treatment
conditions), it is quite common to plan the data collection and statistical analysis at the
same time, and to take a lot of care about the details of procedure. The same thing
applies to good research using strictly observational data. It’s not enough to just hand
out a bunch of questionnaires.

Example 3.4.1 Student Mental Health

Let’s give some content to Figure 3.8. The result will be a re-arrangement of the
observed variables, with some of the curved, double-headed arrows eliminated. Suppose
it’s a study of student mental health. The investigators believe that anxiety and depression
are the two main mental health problems that many young people face. They mean long-
lasting, chronic anxiety and depression, not just getting anxious or sad about something,
and then the feeling passes. The investigators are interested in how these traits are related
to one another. Specifically, they want to estimate the correlation between true (not just
reported) long-term anxiety and true long-term depression.

The participants are volunteer High School students. They all take part in a one-on-
one interview with a clinical psychologist, who asks some very carefully chosen questions,
and assesses them on level of persisting anxiety and level of persisting depression. I am
willing to believe that the anxiety assessment reflects true anxiety plus error, and is not
directly influenced by true depression. I also can believe that the depression assessment
reflects true depression plus error, and is not directly influenced by true anxiety. So both
clinical assessments are reference variables.

Regardless of what the clinical psychologist might claim, it’s unavoidable that common
extraneous factors will affect both assessments. For example, regardless of how skilled and
non-threatening the psychologist might be, some people will just be less likely to report
symptoms; it’s a matter of personal style. The measurement errors of the two clinical
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assessments are correlated, but we can live with it. The variables in the first set are:

dy: Clinical rating of anxiety.

dyp: Clinical rating of depression.

Using security camera recordings of students eating lunch in the cafeteria (with everyone’s
permission, of course), the investigators record four social behaviour variables during a
designated twenty-minute period. Correlated errors within this set are very likely.

dy: Speaking time (not on phone).

dy: Listening time (head turned toward speaker).

ds: Number of smiles/laughs while not on cell phone solo®.
dg: Time solo on cell phone.

The following variables are obtained from school records. Measurement errors may not
be correlated within this set, but we will be conservative, and assume they might be. In
any case, it wll be testable.

dsz: Grade point average last academic session.

dy: Attendance last academic session.

d7: Hours per week playing school sports.

dg: Hours per week spent on extra-curricular activities, not including school sports.

Comparing the variable numbering and colour coding to Figure 3.8, it can be seen that
two blue variables (ds and dg) have been grouped with the social behaviour variables, and
the other two blue ones (d; and dg) have been grouped with the school record variables.
The flexibility of the reference variable rule has been exploited to assemble a model that
makes substantive sense, and still has identifiable parameters because it’s a special case
of what’s allowed. The result is the model of Figure 3.9. This is a good way to apply
the reference variable rule in practice. The proof requires three sets of observed variables,
each with as many observed variables as there are factors, and it allows an additional set
with as many variables as you like. But in practice, one may have an arbitrary number
of variable sets, each with error terms correlated only within the set — provided the
following conditions are met.

e One set consists of a reference variable for each factor.

e Two or more of the other sets of variables have at least as many variables as there
are factors.

91f two people are looking at a phone together, it’s not “solo,” and if they smile or laugh it would be
counted
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Figure 3.9: Model for the student mental health example (Example 3.4)
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Again, the sets of observed variables are defined by having error terms that are correlated
with one another, and uncorrelated with the error terms of variables in the other sets.
The uncorrelated error terms are to be justified by specific features of the research design.
This is both an opportunity and an obligation.

The reference variable rule is much stronger than the three-variable rules (also called
three-indicator rules) given in other textbooks I have seen. For example, in Bollen’s classic
text [10] the “three-indicator” rule on p. 244 is exactly our three-variable rule (Rule 2b).
All the observed variables are reference variables, and the covariance matrix of the error
terms is diagonal. The result is a very restrictive model like the one in Figure 3.4, where
observable variables can be influenced by only one factor. Surely it is better to hypothesize
that certain factor loadings are zero and then test the hypothesis, than to simply assume
that they are zero. Of course the assumption of independent errors is hard to justify as
well, for most data sets. The reference variable rule is a welcome alternative.
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Overfitting There is potential for abuse here. Suppose that as usual, data are collected
without much thought to the confirmatory factor analysis model that will be fit. The error
terms all could be correlated; who knows? All the factors could potentially affect all the
observable variables; who knows? So the data analyst (who knows about the reference
variable rule) picks some variables to be reference variables for the factors, assumes all
the error terms to be independent, and runs the software. The model does not fit. So
he picks some different variables as reference variables, and also semi-arbitrarily groups
the observable variables into clusters, allowing non-zero covariance between error terms
within a cluster. Now the fit is a lot better. The chi-squared test for lack of fit might
even be non-significant. If it is still significant and the investigator keeps trying different
combinations, then sooner or later, one of the models will almost surely fit the data. It is
sort of like ordinary p-hacking!® in reverse. The data analyst keeps trying different things
until the result is not statistically significant.

Has something real been discovered, or is it just an exploitation of random features of
the data? The boundary between data snooping and legitimate exploratory data analysis
is often fuzzy, and this is no exception. The solution, if you engage in this kind of practice,
is replication and cross-validation. An example will be given in Section 3.8.

3.5 More Identification Rules

Combining the two-variable rule for unstandardized factors (page 288) with the equiva-
lence rule yields

Rule 2d: Two-variable Rule The parameters of a factor analysis model are identifi-
able provided

e There are at least two factors.

e There are at least two reference variables for each factor.

For each factor, either the variance equals one and the sign of one factor loading is
known, or the factor loading of at least one reference variable is equal to one.

Each factor has a non-zero covariance with at least one other factor.

e Errors are independent of one another and of the factors.

The two-variable rule requires at least two factors, each with two reference variables. In
practice, factors that influence only two observable variables are often part of a larger
system, and there might be only one such factor in the model. The following shows how a
factor with two reference variables can be combined with a model whose parameters have
already been identified in some other way.

10Simonsohn et al. [59] deserve credit for the catchy term “p-hacking. I do not necessarily endorse their
work on the “p-curve.”
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Rule 2e: Two-variable Addition Rule A factor with just two reference variables may
be added to a measurement model whose parameters are identifiable, and the parameters
of the combined model will be identifiable provided

e The errors for the two additional reference variables are independent of one another
and of the error terms already in the model.

e For each factor, either the variance equals one and the sign of one factor loading is
known, or the factor loading of at least one reference variable is equal to one.

e In the existing model with identifiable parameters,

— There is at least one reference variable for each factor, and

— At least one factor has a non-zero covariance with the new factor.

The proof of this rule will be given for standardized factors; the equivalence rule says that
it also applies when a factor loading is set to one for each factor. Assume that there are
already p factors and £k observable variables in the model. The additional factor is Fj1,
and its reference variables are dj,1 and dj .

In the existing model, there is a factor that has non-zero covariance with F,;;. Without
loss of generality, label this factor F}, and let its reference variable be d;. We have

di = MF+e
dp1 = )\k+1Fp+1+6k+1 (326)

drya = Apyalpi1 + epyo.

The new parameters that need to be identified are \;y1, Ag12, Wrt1, Wrio, and the covari-

ances between the existing factors and the new factor: ¢;,; for j =1,...,p.
dy
The covariance matrix of | dpiq is
dy2
01,1 O01,k+1 01,k+2 )\% + wy )\1)\k+1¢1,p+1 Al)\k+2¢1,p+l
Ok+1k+1 Ok+lk+2 | = A%H + Wi+1 A1 kg2
Ok+2,k+2 )‘z+2 + Wit2

Since the signs of \; and Ax41 are known, the sign of ¢; 51 can be determined from o j41.
Also, note that since \; is already identified, it may used along with the o; ; to solve for
new parameters. Then,

2 2
- A A - 1¢1,p+1'
Ok41,k+2 k+1\k+2

Assuming A\; and A\g,; are positive (which they can always be, by naming the factors
appropriately), ¢1 11 = sign(o1 k1), / % Since ¢ 11 is now identified, it can be
1 s
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used to solve for other parameters, and

01kt
Myl =
>\1¢1,p+1
O1,k+2
)\k+2 = 3 I
)\1(/51,p+1
2
W41 = Uk+1,k+1—>\k+1
2
Wit+2 = 0k+2,k+2—>\k+2-

To identify the covariances of the other factors with F,., place the primary reference
variables for those factors into positions 2,...,p of the covariance matrix of observable
variables. Then, for j =2,...,p,

05 k+1
cov(dj, dy11) = Oj k11 = NjAet1@jpr1 = Qjpi1 = T J)\Jr :
G Ak+1

This establishes the two-variable addition rule.

The Combination Rule The two-variable addition rule reflects how parameter identi-
fiability is usually established in practice for big measurement models. Parts of the model
are identified, and then they are combined with other factors and variables to produce
larger sub-models whose parameters are identifiable. Then the sub-models are combined.
The combination rule says that sub-models with identifiable parameters may be combined,
provided that the error terms of the two models have zero covariance.

Rule 2f: Combination Rule Suppose that two factor analysis models are based on
non-overlapping sets of observable variables from the same data set, and that the param-
eters of both models are identifiable. The two models may be combined into a single
model provided that the error terms of the first model are independent of the error terms
in the second model. The additional parameters of the combined model are the covari-
ances between the two sets of factors. These are all identifiable, except possibly on a set
of volume zero in the parameter space.

Proof. Let the first model have p; factors and k; observable variables, and let the second
model have p, factors and ky observable variables. Separate the first set of observable
variables into two subsets, with p; variables in the first subset, and k; — p; variables in
the other subset. Do the same thing for the other model. The criteria for separating the
variables into subsets will be described presently. The model equations are now

d = AF,+e
d, = AF |+ e
d; = AzF>;+es
d;, = AFr+ey
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The matrix of factor loadings Ay is p; X p;. The variables in d; are selected to ensure that
A; has an inverse. The variables in d3 are selected so that As has an inverse. Suppose
it is impossible to select a subset of observable variables so that A; has an inverse. If
so, the columns of the combined matrix of factor loadings for the first model are linearly
dependent. This holds only a set of volume zero in the parameter space. The same applies
to the second model.

In the combined model, the only new parameters are contained in the p; X py matrix
cov(F1, Fy), which will be denoted by ®;,. We have

cov(dy,d3) = cov(A1F; + e, A3Fy + e3)
= AlcOU(Fl,Fg)A; +O+O+O
== Al(plQA;’r

Since the matrices A; and Aj are already identified, they may be used to solve for ®,.
Denoting cov(dy, ds3) by X3,

AT (AT = ATIA@LAT (AT
— @127

completing the proof.

Note that if the factor analysis sub-models have been identified using any of the rules
given so far in this chapter, then there is at least one reference variable for each factor.
In this case, A; and A3 are diagonal matrices with non-zero diagonal elements, and both
inverses exist. If factor loadings have been set to one in the surrogate models, then A; and
A3 are identity matrices. In practice, the part of the combination rule that says “except
possibly on a set of volume zero” does not come into play.

The Extra Variables Rule The extra variables rule says that if the parameters of
a factor analysis model are identifiable, more observable variables may be added to the
model without adding any new factors. Identifiability is preserved, provided that the error
terms for the new variables are uncorrelated with the error terms for observable variables
already in the model (as well as being uncorrelated with the factors, of course). It is okay
for the error terms of the additional variables to be correlated with one another. Straight
arrows with factor loadings on them may point from each existing factor to each new
variable. It is not necessary to include all such arrows. There are no restriction on the
factor loadings of the variables that are being added to the model. There are no restriction
on the covariances of error terms for the new set of variables, except that they must not
be correlated with error terms already in the model.

The extra variable rule and the reference variable rule have something in common.
They both allow inclusion of an additional set of observable variables that are influenced
by all factors, and whose error terms need not be independent. When both rules apply,
the reference variable rule may be preferable, because it allows some covariances between
the error terms of the new variables and the error terms of variables already in the model;
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hence; it is more flexible. On the other hand, to add more observable variables to a non-
standard model like the one in the political democracy Example 3.3.2, the extra variables
rule is the way to go.

Rule 2g: Extra Variables Rule If the parameters of a factor analysis model are
identifiable, then a set of additional observable variables (without any new factors) may
be added to the model. In the path diagram, straight arrows with factor loadings on
them may point from each existing factor to each new variable. Error terms for the new
variables may have non-zero covariances with each other. If the error terms of the new
set have zero covariance with the error terms of the initial set and with the factors, then
the parameters of the combined model are identifiable, except possibly on a set of volume
zero in the parameter space.

Proof. In the initial model, there are p factors and k; observed variables. All parameters
of the initial model are identifiable. The observed variables of the initial model are divided
into two subsets, one with p variables, and the other with k; — p variables. The model
equations are

d1 = AlF + e
d2 = AQF + €9
d3 = A.JF + €3,

where the observed variables from the initial model are in d; and ds, and the new variables
are in d3. The variables in d; are chosen so that the p x p matrix A; has an inverse. This
will be impossible if and only if the entire matrix of factor loadings for the initial model
has columns that are linearly dependent, a condition that holds on a set of volume zero
in the parameter space.

We have cov(F) = ® and

€] Q1 | Q12 0
Cov (SH) = QQQ 0
€3 Q33

The parameters to be identified are in the matrices A3 and €233. The covariance matrix
of the observable variables is

d; Y| X | X3
cov | dy =X = Yoo | o3
d3 Z)33

T T

® + Q) PA] DA,

= Ay®A, + Qg Ay ®A;

As®A; + Qs
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The parameters of the initial model are all identifiable, so they may be used to solve for
the matrices A3 and (233. This is straightforward:

Ay = T80
Q33 = Ty — Az®A; W

The Error-free Rule Starting with a factor analysis model with identifiable parame-
ters, add an observable variable to the factors. Often it’s an observed exogenous variable
(like sex or a dummy variable for experimental condition) that is hypothesized to affect
some of the latent variables in a general structural equation model. It is convenient to
make such variables part of the latent variable model.

Suppose parameters of an existing factor analysis model with p factors) are all iden-
tifiable. Add an observable scalar variable x that is independent of the error terms, and
may have non-zero covariances with the factors. Thinking of x as an additional factor,
we are adding a row (and column) to 3, and a row (and column) to ®. There are p + 1
additional parameters that need to be identified. One of these is the variance of x, which
is obtained immediately as ¢p41,p+1 = Ok+1,k+1. The other new parameters are covariances
between x and the factors, which are identified as follows.

As in a couple of earlier proofs, the observed variables from the existing model are
divided into two vectors d; and d,, yielding the model equations

d1 = A1F+e1
d2 = A2F+e2

where the variables in d; are chosen so that the p x p matrix A; has an inverse. This will
be impossible if and only if the entire matrix of factor loadings for the existing model has
columns that are linearly dependent, a condition that holds on a set of volume zero in
the parameter space.

Let 3, 4, denote the vector of covariances between = and the variables in d;, and let
®, » denote the vector of covariances between x and the other factors. 3, 4 is part of
the last row (column) of 3, and ®, p is part of the last row (column) of ®. We have

.4 = cov(x,dy)
= cov(x, A\F + ey)
Ajcov(z, F + cov(x, e))
= AP, +0,

so that ®, p = Al_lzr,dl. Since A is already identified, this completes the proof of the
error-free rule. The rule will be stated as it applies to a vector of new observed variables.

Rule 2h: The Error-free Rule A set of observable variables may be added to the
factors of a measurement model whose parameters are identifiable, provided that the new
observed variables are independent of the error terms that are already in the model. The
parameters of the resulting model are identifiable, except possibly on a set of volume zero
in the parameter space.
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3.6 Putting the Rules Together

Figure 3.10 shows a big, hairy confirmatory factor analysis model. Trying to establish

Figure 3.10: A Confirmatory Factor Analysis Model
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identifiability by solving covariance structure equations would be a huge clerical task;
instead, we will use the identifiability rules. See Appendix D for a collection of the
identifiability rules in outline form.

There are twelve observable variables, so that 3 has 12(12+1)/2 = 78 unique elements.
The number one on some of the straight arrows tells us that this is a surrogate model in
which at least one factor loading has been set to one for each factor. Counting parameters,
there are 4 variances of the factors (denoted ¢, ;), 4 possibly non-zero covariances between
factors, and 7 factor loadings that are not fixed to the value one. There are 12 error
variances (denoted wj ;), and 2 possibly non-zero covariances between error terms. In all,
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that’s 78 covariance structure equations in 4 +4 4 7 + 12 + 2 = 29 unknown parameters.
Because there are more covariance structure equations than parameters, the model passes
the test of the parameter count rule, and identifiability cannot be ruled out.

We will establish identifiability in two ways, first without using the reference variable
rule, and then using it.

Without using the reference variable rule The strategy will be to apply the rules to
parts of the model, and then put the sub-models together. First, consider the sub-model
involving Fy, di, dy and dz. Its parameters are identifiable by the three-variable rule,
provided that Ay and A3 are both non-zero. This could be verified empirically by testing
Hy : Corr(dy,dy) =0 and Hy : Corr(dy,ds) = 0. We have identified six parameters: ¢y 1,
A2, A3, W11, w2 and ws 3.

Next, look at the part involving F3, Fy, and ds through dg. The double measurement
rule covers this, including the covariance between eg and e;. Just consider dg and d7 to
be part of the same “set” of measurements, perhaps conducted at the same time by the
same personnel. This identifies eight more parameters: ¢33, ¢44, P34, Ws5, We 6, Wr,7, Ws.s
and We,7-

Now put the two sub-models together using the combination rule. Notice that the
variables d4 and dis are not included yet; they are being saved for later. Also, the zero
covariance between F} and the other factors presents no obstacle. No new parameters
have been identified in this case, but merging the sub-models helps with the next step.

The next step is to add the part involving F5, dg and dy( to the combined sub-model.
The two-variable addition rule allows this, provided ¢; 2, ¢23 and ¢34 are not all zero.
According to the model, if ¢; 5 were zero, then dy and dyp would be uncorrelated with dy,
dy and ds; this is testable. The conditions ¢o3 # 0 and ¢34 # 0 could be verified in a
similar way, and only one of the three covariances with F; needs to be non-zero for the
two-variable addition rule to apply. In this way, seven more parameters are identified:
<Z52,2, <Z51,2, ¢2,3, ¢2,4, A6 Wo 9 and w10,10-

At this point, we have a (big) sub-model whose parameters are all identifiable, and
which includes all the factors. Now use the extra variables rule to add the remaining
observable variables dy4, di; and dy5, quickly checking that their error terms are not cor-
related with any of the error terms already in the model. Eight more parameters are
identified: /\4, /\5, )\7, )‘87 Wa4, W11,11, W12,12 and W11,12-

That does it. There were 29 parameters to identify, and we identified 64+8+47+8 = 29.
Notice how, at several points in the argument, empirical tests were proposed to verify that
the true parameter vector was in a region of the parameter space where the parameters
involved were identifiable. One can extend this dual strategy of identification checking
and empirical testing, by testing sub-models for fit, and then testing fit again as the sub-
models are combined. This way, if the final model does not fit the data, you probably
will have a good idea why.

Checking identifiability using the reference variable rule The rule requires that
the number of observable variables be at lest three times the number of factors. The model
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has four factors and twelve observable variables, so the first requirement is satisfied —
just barely. The next requirement is that every factor have at least one reference variable.
A quick glance verifies this condition. In fact, every factor has at least two reference
variables. At least one reference variable for every factor has a factor loading of one, so
this is a nice unstandardized surrogate model; the third condition of the rule is satisfied.

The model has only two non-zero covariances between error terms, so as long as dg and
d7 go in the same set of variables and d;; and di5 do in the same set, all the parameters
are identifiable except possibly on a set of volume zero in the parameter space. Let’s take
a closer look at this issue.

Referring back to Model (3.25) on page 306, observe that the lowerdimensional set of
parameter values where identifiability fails is the set where the square sub-matrices Ay
and A3 do not have inverses. Mathematically, this could happen just because of the values
that the factor loadings happen to have, and there’s really nothing we can do about it.
More concerning would be if it happened because of definite zeros in a model we more
or less believe, like the model of Figure 3.10. To check this, I wrote down the factor
matrix, shown in (3.27). The rows are re-arranged (there is more than one way to do it)
so that Ay and Az both have inverses, provided that most of the A; are non-zero. The
only exception I see is that A4 could be zero. The other way of proving identifiability
(without the reference variable rule) also requires that most of the A; be non-zero.

o F F3 Fy

d |1 0 0 0

d |0 1 0 0

ds |0 0 1 O

d |0 0 0 1

Al d2 )\2 O 0 0
Ay | = dio| 0 X 0 O (3.27)

A; ds |0 0 1 0

dg |0 0 0 1

dy Ay 0 X5 O

ds |3 0 0 0

dp| 0 X 0 O

dia| 0 0 0 Ag

Most of the time, it is not necessary to write down the complete factor matrix in order to
verify that the reference variable rule applies — but it’s quite informative here. The main
lesson is that while the model of Figure 3.10 seems to have a lot of arrows, it is actually
a very sparse special case of the model (Model 3.25) that underlies the reference variable
rule. In (3.27), 25 factor loadings are set to zero or one, while they are unconstrained under
Model (3.25). These all represent testable null hypotheses!! rather than assumptions. In
addition, Figure 3.10 has only two potentially non-zero covariances between error terms,
while Model (3.25) allows 3 x p(p — 1) = 36. In all, that’s 25+ 34 = 59 ways in which the

1A factor loading will equal one under this surrogate model if and only if two factor loadings are equal
under the original model.
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model of Figure 3.10 might fail to fit the data, while Model (3.25) could fit very well.

This raises a question. What should be done if the model does not fit? If one is using
the reference variable rule, the answer is pretty obvious. Fit a model with the factor
loadings in Ay and Az unconstrained, and test the 25 null hypotheses with z-tests. Any
null hypothesis that is rejected points to a constraint on the parameter values that is
contributing to the lack of fit. If the model with unconstrained factor loadings still does
not fit, a second line of attack is to start testing hypotheses about covariances between
error terms. This is tough to do in an honest way without more information about how
the data were collected. The observable variables may not naturally divide themselves
into subsets whose error terms can be assumed independent, because the study may not
have been planned with this in mind.

This is all possible with the reference variable rule in hand. Without the rule, it would
be hard to know what to do. The only real choice would be to start guessing and trying
to solve equations. Good luck.

More examples of applying the rules
Example 3.6.1 A latent variable regression

This example is based on the fact that a regression model with latent explanatory variables
and observed response variables may be viewed as a confirmatory factor analysis model.
Figure 3.11 reproduces Figure 19 on page 117. The reference variable rule does not apply

Figure 3.11: Regression with latent explanatory variables as a confirmatory factor analysis
(Reproduction of Figure 19)

because there are two factors and only 5 < 6 observable variables, but the parameters are
immediately identifiable by the two-variable rule, except at points in the parameter space
where ¢; 2 = 0. Detailed calculations like the ones in Chapter 0 are usually unnecessary
if you know some identifiability rules.
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Example 3.6.2 A second-order factor analysis

Figure 3.12 shows a simple second-order factor analysis model. The idea behind higher
order factor analysis is that the observed variables reflect a set of unobservable factors,
and those factors in turn reflect the operation of another set of factors at a deeper level.
In principle, there could be third-order factors influencing the second-order factors, and

Figure 3.12: Second-order factor analysis

SO On.

In a higher-order factor analysis model, the higher-order factors (second order and
above) have no direct influence on the observed variables. Perhaps surprisingly, it is still
possible to apply the identifiability rules we have. In Figure 3.12, none of the factor
loadings is explicitly set to one, so assume the factors are standardized, and that the sign
of one factor loading is known for each factor. This includes the set Aig, A11 and Aqs.

To check identifiability, adopt a two-stage approach. First, look at the first-order
factors Fy, Fy and F3. Imagine curved, double headed arrows connecting them. The
covariances will be determined by Aig, A1; and Ao, but ignore Fj and the straight arrows
from F} to the first-order factors for now.

It’s clear that the system involving F5, F3 and d3 through dg is identified by the three-
variable rule, and then the system involving Fj, d; and ds can be brought in with the
two-variable addition rule. The factor loadings A\; through A9 and the error variances w;
through wg have all been identified, as have the covariances (correlations) of Fy, F, and
Fg.

Now think of F} through F3 as observed variables, and let their correlation matrix
(identified by the argument above) play the role of 3. By the three-variable rule, the
factor loadings A\ig through A5 are all identifiable, provided they are non-zero. That’s it,
and that’s how it goes in general. The stages in the identifiability proof follow the stages
in the model.
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Example 3.6.3 Another higher-order model

Figure 3.13 shows another confirmatory factor analysis model. This one is a sort of
hybrid, with both first-order and second-order features. A picture like this could arise

Figure 3.13: Mixed first-order and second-order factor analysis

—» d

quite naturally in the course of model development. The investigator has several factors
in mind, and several observed variables designated to measure each one. For example in
Figure 3.13, d; through d4 could be measures of left-right political orientation, ds through
dy1 could be measures of academic performance (which would be called “intelligence” by
some), and dy5 through dy4 could be measures of self-esteem. To check uni-dimensionality,
the investigator carries out separate exploratory factor analyses (yes, ezploratory) on the
three subsets of observable variables. If everything is okay, a single-factor model should
fit each one.

It works out okay for political orientation and self esteem, but for ds through d;, two
factors are required. After rotation, it looks like ds through d; load primarily on one
factor, while dg through d;; load on the other. The first set of variables depend on solving
puzzles and math problems, while the second set depend on knowing the definitions of
words and on reading a brief passage and then answering questions about it. One could
call these factors “Math” and “Verbal,” and nobody would argue.

Unfortunately, the factors are orthogonal, because it’s a generic exploratory factor
analysis model. It may fit the data, but only because of the arrows running from Fj to
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dg through d;;, and from F; to ds through d;. This crossover pattern is not identifiable
(the extra variables rule does not apply), and it’s incompatible with the path diagram
in Figure 3.13. Also, separate Math and Verbal factors do not accord with the investi-
gator’s theory or research questions, which are about a single thing called “intelligence.”
Figure 3.13 shows a really nice solution, which allows the Math and Verbal factors to be
somewhat distinct, but correlated because they both reflect a second-order factor — and
that factor is what the investigator wants to study.

Two comments are in order. First, I did not think of this cute data analysis trick. I
saw it in a low-grade empirical research paper, and I am still searching for the source of the
idea so I can give proper credit. Second, the forgoing discussion points out the fact that
like most statistical methods, confirmatory factor analysis is often used in an exploratory
way. In practice, the user will try quite a few models until finding one that fits the data
adequately, and then carry out a boatload of statistical tests. In the end, only one model
and a few of the tests will be reported, and the discussion will make it seem like it was
planned all along. There is lots of opportunity for overfitting, and for apparent findings
that actually reflect coincidences in the data. The solution is to replicate the results on
a second, independent set of data. Without this kind of cross-validation, the so-called
“conclusions” should be treated as data-driven hypotheses. Again, this situation is not
limited to confirmatory factor analysis and structural equation models. It is true of most
statistical applications.

Now consider identifiability for Figure 3.13. Parameters of the first-order system
involving Fy and Fy (with a curved, double-headed arrow between the factors) and dj
through d;; are identifiable by the three-variable rule. Now bring d; through d, and
dyo through dy4 into the first-order model, using the error-free rule. That is, treat these
observable variables as factors that are measured without error. The result is an ordinary
second-order factor analysis model in which the second-order factors are F3, Fy and F5.
The system involving Fy and Fy is identified'? by the three-variable rule. The system
involving Fp, F5 and F} is then brought in with the two-variable addition rule.

All the parameters are identifiable except on a set of volume zero in the parameter
space, so it’s mission accomplished — sort of. In this case, the set of volume zero where
identifiability fails happens to include some interesting points, namely the points where
Cov(Fs, Fy) = 0 and Cov(Fy, F5) = 0. At least one of these covariances needs to be
nonzero in order for the two-variable addition rule to work in the last stage of the proof.

The whole point of the study is probably the connections between F3, F; and Fj. If
the investigator tries to test the null hypothesis that all three covariances are zero using a
likelihood ratio test, the process will fail. It will be impossible to fit the restricted model,
because the likelihood function will have a non-unique maximum on an infinte connected
set. If in reality part of the null hypothesis is true, with both Cov(Fs, Fy) = 0 and
Cov(Fy, F5) = 0, then there could easily be numerical difficulties in fitting the unrestricted
model. Fortunately, the model says that Cov(F3, Fy) = 0 if and only if the matrix of
covariances between (dy, ds, ds,ds)" and (ds,...,d;;)" consists only of zeros. This can

12That is, the parameters are a function of the variances and covariances of the first-order factors,
which in turn are functions of the variances and covariances of the observable variables.
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be tested with off-the-shelf canonical correlation methods (see R’s CCP package), and
Cov(Fy, F5) = 0 can be diagnosed in a similar way.

3.7 Standardized Observed Variables

Standardizing the observed variables is familiar from exploratory factor analysis; see
Chapter 2. In confirmatory factor analysis, it is a change of variables that leads to another
level of surrogate model, beyond the standard choices of standardizing factors or setting
factor loadings to one. Figure 3.14 shows the most common situation. Standardizing

Figure 3.14: Standardizing the Observed Variables

Model One

Original Model mmmp Centered Original Model /

N

Model TWO - N\ odel Three

the observed variables just means dividing them by their standard deviations, since they
already have expected value zero under the common centered surrogate models. While
this operation may be applied at any point in the re-parameterization process, it is most
commonly applied to a model with standardized factors (Model Two). The surrogate
model with both standardized factors and standardized observed variables will be called
Model Three.

Consider the model equations d = AF + e, with the double primes (if any) hidden,
and not bothering to separate the data vector into d; and dy. Let W = dg(3X), where as
usual, 3 = cov(d). Then,

z = W'/
= W 2(AF +e)
= (W Y2A)F + (W /2%)
— A/,/F+e///,

where
A" =W2A and cov(e”) = Q" = WT2QW1/2, (3.28)

One thing to notice about standardizing the observed variables is that while it affects A
and €2, the covariances between factors in the matrix ® are unaffected. This is a fortunate,
since observed variables are usually standardized only if the factors are standardized, and
when the factors are standardized, covariances between factors equal correlations under
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the original model. The nice interpretation is preserved — so at least, standardizing the
observed variables does no harm.

It can also do some good. We will now see that when the observed variables are
standardized, the factor loading for a reference variable is the correlation of the reference
variable with the latent variable it measures, under the original model. Also, the variance
of the error term (for all observed variables, not just reference variables) is the proportion
of variance in that variable that is due to error — again, under the original model.

Correlations between factors and their reference variables Let d, be a refer-
ence variable for factor j, so that under the centered original model, d, = A ; F; + ey.
Choosing explicitness over simplicity, we will employ the notation of Section 3.3.1, and
use double primes to indicate quantities under Model Two, in which the factors have been
standardized. We have

cov(Fj,dg) = cov(Fj, M\ i Fj + eq)

cov(Fy, N/'; Fj +¢')

e jcov(Fj, Fy) + cov(Fj, ep)
= A%,

so that

Ae,j P
V ¢j,j\/ 0&@
EAERVAUT) (3.29)

VO

corr(Fj, dy)

Consider the model with both F} and d, standardized. Recalling how we got there,

dg = /\&ij—f—eg

1
AeiV 0i <\/T> Fj+e
757

g /E/,j FJII + eg.
Then standardizing d, as well,

1 1
2 = —)\ZJF;’—i——eg
\Oes O¢e

_ " ! "
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Now un-wrap )\Z’j, the factor loading of the reference variable under this “completely

standardized” model*?.

1
n I
)\f’j = \/m)\&j
1
= Ve,
m 7.7 J7J

which is exactly expression (3.29) for the correlation between the factor and its reference
variable, under the original model. Squaring the factor loading yields the reliability of the
reference variable — the proportion of variance in the reference variable that arises from
the quantity it is measuring, and not error. It is always helpful when the parameters of a
surrogate model correspond to something important about the original model.

Uniqueness As discussed in Chapter 2, the uniqueness of an observed variable is the
proportion of its variance that comes from error (the unique factor) and not the common
factors. For reference variables, the uniqueness is one minus the reliability.

Let Ay denote row ¢ of the factor matrix A in the original model. This is the row
corresponding to the observed variable d,. If d, is a reference variable, A; has only one
non-zero element, but that need not be the case here. If the observed variables are not
standardized, d; = A/F + e¢,. When the observed variables are standardized (whether or

not the factors are standardized as well), z, = A}'F + €', and

Var(z) = cov(A/F+¢))
= A/@N]T 4w (3.30)

By (3.28), wy'y = wee/ 0. Tt is exactly the uniqueness of dy under the original model. That
is, it is the proportion of variance in the observed variable d, that comes from error (the
unique factor) and not the common factors. For example, if the value of such a parameter
is something like 0.85, it means that the variable in question is 85% noise. Uniqueness
is worth estimating, and standardizing the observed variables makes the process more
convenient.

Reduction of the parameter space Because var(z, = 1), expression (3.30) says that
wyy = Var(e}') =1 — AJ®A]"". That is, the variances of the error terms are functions
of the other parameters in the model. The dimension of the parameter space has been
reduced by k, the number of observed variables. We will now see that for almost all models
used in practice, this reduction of the parameter space has no effect on identifiability or
model fit.

13Some software, including lavaan, calls models and their estimates “completely” standardized when
both the factors and the observable variables are standardized
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A modest assumption Asin 3.30, dy = AJF+e, implies Var(dy) = ¢ = Ag‘I)AZ—H,Ug’g.
That is, the variances of the observed variables are something plus an wy,. Suppose that
this is the only place in ¥ where w,, appears, and also suppose that for £ =1,...,j, the
error variance wy, is not subject to any constraints, such as some of them being equal to
one another or to other model parameters. This is typical of most models used in practice,
and it leads to some useful conclusions.

Identifiability When solving covariance structure equations to prove identifiability, it
is natural to set the diagonal elements of 2 aside and solve for the other parameters
first. If it works, one can then obtain the error variances by subtraction. When the
observed variables are standardized, the whole process is the same except that the last
step is omitted. This implies that the identifiability status of a model is not changed if the
observed variables are standardized — given the “modest assumption” of the paragraph
above.

Equal diagonals Recall the meaning of 3(80). It’s just the covariance matrix of the
observable variables (that is, X), written as a function of the model parameters 6.

As mentioned back on page 171, maximum likelihood estimation often proceeds by
minimizing the objective function ¢(8) = tr(E%(0)!) — log|=%(8)~!| — k, which is
equivalent to minimizing the minus log likelihood. The function ¢(0) is a lot like a
distance between 3(8) and 4. Other things being equal, anything that brings 3(6)
closer to & will reduce the value of g(0). In particular, for any fixed values of the matrices
A and ® (and regardless of the the off-diagonal elements of Q), letting wy ey = 744 —Ag(I)A;—

for ¢ =1,..., k will make the main diagonals of 3(@) and )y coincide, resulting in a lower

value of ¢(@). This also holds when A = A and ® = ®. The conclusion is that for
~ ~~T

¢ =1,....k we have 5,y = Ay®A\, + Wye. The right-hand side is a diagonal element of

~ ~ A~

3:(0), so that dg(X(0)) = dg(X). Another way to express this is
W(0)=W. (3.31)

This equality will come in handy very shortly. Once again, it holds when the error
variances wy ¢ appear only in the diagonal of €, and are otherwise unconstrained®.

147t is non-negative, and it equals zero if and only if 3(0) = $. I'm not sure whether it obeys the
triangle inequality. This gap makes the argument less rigorous.

150f course the model implies some constraints on the wy ¢. Since they are variances, they are must be
non-negative. Also, if the covariance matrix € has any non-zero off-diagonal elements, the fact that it
must be non-negative definite places additional limitations on the possible values of wy . However, these
constraints are not automatically enforced in a numerical search for the MLE, unless the user explicitly

~

specifies inequality constraints. The result is that as the numerical optimization forces dg(3(0)) toward
dg(f]), an Wy ¢ or two can easily become negative for some models and some data sets. This is the dreaded
Heywood case (see p. 226). For a sufficiently large sample size, the consistency of maximum likelihood
estimation guarantees that it cannot happen if the model is correct and the true parameter vector is in

the interior of the parameter space. Negative variance estimates are a sign of poor model fit.
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Estimation Parameter estimates for a model in which the observed variables are stan-
dardized may be obtained without re-fitting the model. The key is Expression (3.28),
which is reproduced here for convenience. In most applications, A and €2 contain pa-
rameters from a surrogate model with standardized factors, so one could say they have
invisible double primes.

A — W—l/QA and COU( ///) Q" — W—1/29W71/2'

It is tempting to just put hats on everything and invoke invariance, but you need to watch
out. While W = dg(3X) and Y is an MLE, it’s an MLE based on a generic multivariate
normal model, not the same as the factor analysis model with A and €2. What we really

want is
~1I

—W(0) 2A and Q" =W(@) 2QW(@) 2 (3.32)

The distinction between W and W(b\) does not matter when (3.31) holds, which is most
of the time. Still, it’s nice to know that lavaan uses (3.32). It took me a fair amount of
work to verify this, because it’s not that easy to come up with a model where (3.31) fails
badly enough to have a noticeable effect.

To obtain standard errors and tests for a model with standardized observed variables,
it is necessary to re-fit the model. There are two natural ways to proceed. The most
obvious way is to literally standardize the observed variables; subtract off the sample
means and then divide by the sample standard deviations'®. The same results may be
obtained by analyzing the sample correlation matrix rather than the covariance matrix.
This will be illustrated in Section 3.8.

Testing goodness of fit When Expression (3.31) holds, standardizing the observed
variables has no effect on the likelihood ratio test for model fit. This is established in the
following theorem.

Theorem 3.1 For a centered confirmatory factor analysis model, let @ denote the pa-
rameter vector, and let 3 = 3(@) denote the k x k wvariance covariance matriz of the

observable variables. The unique MLE of 6 is 9 and the sample variance-covariance
matriz of the observable variables is . Let W = dg(2) and W(6) = dg(X(8)). If

W = W(B), then the test statistic of the likelihood ratio test for goodness of model fit is
unchanged when the observed variables are standardized.

Proof As given in (1. 18) the test statistic for a model with unstandardized observed
variables is G? = n(tr{EE( )71} — log |[EX(6) 7| — k). In the model With standardized
observed variables, Y is replaced by the sample correlation matrix W :SWs 2, and

16\ ake sure you have n rather than n — 1 in the denominators of the standard deviations. This way,
you are working with true MLEs.
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2(5) is replaced by W(b\)_% 2(5) W(/O\)_% The resulting test statistic is

~

Normal inference is unaffected by standardizing Theorem 3.1 depends on W (8)
being equal to W. As indicated in the discussion leading up to (3.31), this condition holds
when the error variances wy, appear only in the diagonal of £2 and are not functions of one
another or of other parameters in the model. Most confirmatory factor analysis models
employed in practice enjoy this property. Likelihood ratio tests are differences in G? fit
statistics between a restricted and an unrestricted model. Wald tests are asymptotically
equivalent to likelihood ratio tests under the null hypothesis. Confidence intervals can be
obtained by inverting tests. The result is that for most confirmatory factor analyses, infer-
ence based on the normal model is unaffected by standardizing the observable variables.
The choice to standardize or not is entirely a matter of convenience and interpretability.

3.8 The Holzinger and Swineford Data with lavaan

The Holzinger and Swineford (1939) data is a classic data set that is used in multiple
textbooks and journal articles. It is included in the lavaan package, and is used in a
confirmatory factor analysis example in the lavaan tutorial. The data were collected on
students in grades seven and eight from two different schools. As in the lavaan tutorial,
attention will be limited to nine tests of “mental ability” that are thought to reflect three
factors: visualization (tests 1, 2 and 3), verbal or text processing (test 4, 5 and 6) and
speed (tests 7, 8 and 9).

Visual Verbal Speed
x1 Visual Perception | y Paragraph Comprehension | 7 Addition
xy Cubes x5 Sentence Completion xg Counting Dots
r3 Lozenges rg Word Meaning x9 Straight-Curved Capitals
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The students actually took 24 tests; the full data set is available in the MBESS package.

Figure 3.15 shows a path diagram. It’s pretty straightforward; all the parameters
are identifiable at a glance by the three-variable rule. As in Joreskog’s 1969 article [36],
the analyses here will be limited to just the 145 children from the Grant-White school.
This will provide a valuable cross-check of the numbers we obtain. Figure 3.15 represents
Joreskog’s model (d).

Figure 3.15: Holzinger and Swineford Mental Test Data

As usual, the R code that follows is not just an example of how to do the job efficiently.
Instead, it explores the capabilities of the software, and seeks to make connections between
the computations and the ideas in the rest of the text. Students who imitate all these
operations to do an assignment are missing the point. The examples you are most likely
to want to follow tend to come near the end. The hope is by that point, you will know
what’s going on.

Acquiring the data

> rm(list=1s())
> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once
> library(lavaan)
This is lavaan 0.6-7
lavaan is BETA software! Please report any bugs.
> # help(HolzingerSwineford1939)
> hs = HolzingerSwineford1939
> hs = subset(hs,school=="Grant-White’); dim(hs) # 145 rows, 15 columns
[1] 145 15
> print(head(hs),digits=3)
id sex ageyr agemo school grade x1 x2 x3 x4 xb x6 x7 x8 x9
157 201 1 13 0 Grant-White 7 3.83 4.75 0.50 3.33 4.25 1.43 3.00 4.10 4.33
158 202 2 11 10 Grant-White 7 5.50 5.50 2.12 2.67 4.25 1.43 2.83 4.90 5.42
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159 203 1 12 6 Grant-White
160 204 1 11 11 Grant-White
161 205 1 12 5 Grant-White
162 206 2 12 6 Grant-White

.00 2.75 3.67 4.75 2.71 2.17 4.30 6.33
.75 1.12 3.00 4.75 1.57 4.96 5.15 4.00
.25 1.25 2.67 6.25 3.43 4.87 6.10 4.44
.25 2.50 3.33 5.75 2.57 4.09 5.65 5.58

O 01O

Standardized factors, complete model specification First, a model will be spec-
ified using the full lavaan syntax, giving names to all the parameters. This is the way it
was done in Chapters 0 and 1. It will be seen presently that there is an easier way to get

the job done.

> swinel =’
# Measurement model
+ visual =" lambdal*xl + lambda2*x2 + lambda3*x3
+ verbal =" lambda4*x4 + lambdab*xb + lambda6*x6
+ speed =" lambda7*x7 + lambda8*x8 + lambda9*x9
+ # Variances of error terms
+ x1 77 omegal*xl; x2 77 omega2*x2; x3 "7 omega3*x3
+ x4 77 omegad*x4; x5 77 omegab*x5; x6 "7 omegab*xx6
+ X7 77 omega7*x7; x8 "7 omega8*x8; x9 "7 omega9*x9
+ # Variances of factors equal one
+ visual "7 1xvisual; verbal ~7 1xverbal ; speed "~ l*speed
+ # Covariances of factors
+ visual 7 phil2*verbal ; visual ~~ phil3*speed
+ verbal ~~ phi23*speed
+ )
> smodell = lavaan(swinel, data=hs); summary(smodell)
lavaan 0.6-7 ended normally after 19 iterations
Estimator ML
Optimization method NLMINB
Number of free parameters 21
Number of observations 145
Model Test User Model:
Test statistic 51.542
Degrees of freedom 24
P-value (Chi-square) 0.001
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
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Estimate Std.Err z-value P(>|zl)

visual =~
x1 (1mb1) 0.777 0.103 7.525 0.000
x2 (1mb2) 0.572 0.101 5.642 0.000
x3 (1mb3) 0.719 0.093 T.711 0.000

verbal =~
x4 (1mb4) 0.971 0.079 12.355 0.000
x5 (1mb5) 0.961 0.083 11.630 0.000
x6 (1mb6) 0.935 0.081 11.572 0.000

speed =~

x7 (1mb7) 0.679 0.087 7.819 0.000
x8 (1mb8) 0.833 0.087 9.568 0.000
x9 (1mb9) 0.719 0.086 8.357 0.000

Covariances:
Estimate Std.Err z-value P(Clzl)

visual 7

verbal (phl2) 0.541 0.085 6.355 0.000

speed (ph13) 0.523 0.094 5.562 0.000
verbal 7

speed (ph23) 0.336 0.091 3.674 0.000

Variances:

Estimate Std.Err =z-value P(>|zl)
.x1 (omg1) 0.715 0.126 5.675 0.000
.X2 (omg2) 0.899 0.123 7.339 0.000
.x3 (omg3) 0.557 0.103 5.409 0.000
.x4 (omg4) 0.315 0.065 4.870 0.000
.xb5 (omgb) 0.419 0.072 5.812 0.000
.x6 (omg6) 0.406 0.069 5.880 0.000
X7 (omg7) 0.600 0.091 6.584 0.000
.x8 (omg8) 0.401 0.094 4.248 0.000
.x9 (omg9) 0.535 0.089 6.010 0.000
visual 1.000
verbal 1.000
speed 1.000

The output is pretty much self-explanatory to a reader who is familiar with the lavaan
examples in Chapters 0 and 1. The estimated covariances (correlations) of the factors
match Joreskog’s (1969, p. 192) values for Model (d). The factor loadings do not match,
because Joreskog standardizes the observed variables; we have not done that yet. The
chi-squared test for model fit (x?(24) = 51.542, df = 21, p = 0.001) indicates that the
model is not fully compatible with the data!”. A model based on the reference variable

17 J6reskog’s value for the test of fit is 51.19. That’s close, but not quite equal to the lavaan value. The
reason is that in the formula for the likelihood ratio test test statistic (see Expression (1.18) on page 171)
Joreskog has a multiplier of n — 1 out in front, in place of n. This makes no difference asymptotically, of
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rule performs better; we will get to that later.

The cfa function The same job can be accomplished with less work, using lavaan’s cfa
(confirmatory factor analysis) function with the default settings. Only the measurement
part of the model needs to be given, and all the Greek letters are gone. There is a lot less
typing. There are also fewer opportunities to make mistakes.

> swine2 = ’visual =" x1 + x2 + x3

+ verbal =" x4 + x5 + x6

+ speed =" x7 + x8 + x9

+ )

> smodel2 = cfa(swine2, data=hs); summary(smodel?2)

lavaan 0.6-7 ended normally after 34 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 21
Number of observations 145

Model Test User Model:

Test statistic 51.542
Degrees of freedom 24
P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(Clzl)

visual =~
x1 1.000
x2 0.736 0.155 4.760 0.000
x3 0.925 0.166 5.584 0.000
verbal =~
x4 1.000
x5 0.990 0.087 11.418 0.000
x6 0.963 0.085 11.377 0.000

course. To obtain Joreskog’s value from the lavaan output, (n — 1)/n G? = 144/145 x 51.542 = 51.18654.

Joreskog’s likelihood approach is based on a Wishart distribution for a version of the sample covariance
matrix with n — 1 in the denominator. Some software, including SAS and Amos, follow Joreskog’s old
LISREL software in this matter. Both lavaan and mplus, like this book, assume a multivariate normal
likelihood for the original data, rather than starting with the covariance matrix.
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speed ="
X7 1.000
x8 1.226 0.187 6.569 0.000
x9 1.058 0.165 6.429 0.000
Covariances:
Estimate Std.Err z-value P(Clzl)
visual 7
verbal 0.408 0.098 4.153 0.000
speed 0.276 0.076 3.639 0.000
verbal =7
speed 0.222 0.073 3.022 0.003
Variances:
Estimate Std.Err =z-value P(>|zl)
.x1 0.715 0.126 5.675 0.000
.X2 0.899 0.123 7.339 0.000
.x3 0.557 0.103 5.409 0.000
.x4 0.315 0.065 4.870 0.000
.x5 0.419 0.072 5.812 0.000
.x6 0.406 0.069 5.880 0.000
X7 0.600 0.091 6.584 0.000
.x8 0.401 0.094 4.248 0.000
.x9 0.535 0.089 6.010 0.000
visual 0.604 0.160 3.762 0.000
verbal 0.942 0.152 6.177 0.000
speed 0.461 0.118 3.910 0.000

Let’s take a close look to see what we have. The number of free parameters equals 21, as
in the summary of smodell. The chi-squared statistics for model fit are the same. This
is promising.

Now compare the estimated factor loadings under Latent Variables in the sum-
maries of smodell and smodel2. The numbers are different, but don’t worry about that
yet. The abbreviations for the parameter names are missing for smodel?2; this is really
no great loss. The output is quite readable if you understand =~ as standing for “is
measured by.” Under Variances, note that when an observable variable is preceded by
a dot, it means this is the estimated variance not of the variable, but of its error term.
Comparison with the smodell summary, which has labels, helps to confirm this. Once
you get used to lavaan output, the parameter labels are really not necessary. If you wish,
you can compromise by supplying names for just some of the parameters. This can be a
convenient way to set two parameters equal; just give them the same name.

In the summary of smodel2, the estimated factor loadings for x1, x4 and z7; are all
equal to one, and there are no standard errors or tests. By default, lavaan is fitting a
surrogate model with a factor loading set to one for each factor; that’s the model described
as “Model One” in Section 3.3.1. The factor loadings of one could be mysterious for users
who don’t know about parameter identifiability, but lavaan is making a choice that’s
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designed to be helpful. It probably s helpful, most of the time.
Just to confirm the meaning of the parameter estimates, recall that under Model One,
the factor loading for xs is X; = Ao/A;. Under Model Two,

)\_/2/ )\2 \% ¢11
)‘/1/ )\1 \% ¢11
A2

= Z=\.
A 2

By invariance, this equality must also be true of the MLEs. This means that X’Q =0.736
(the factor loading for x5 in the smodel2 summary) can be recovered from the smodell

output, as follows. /):’2’ //):” =

> 0.572/0.777
0.7361647

We are on the right track. It is clear that the default model fit in smodel2 is the surrogate
model in which a factor loading has been set to one for each factor.

Equal diagonals As given in (3.31), the main diagonal of the reproduced covariance

~

matrix 3(6) is able to match the main diagonal of the sample covariance matrix.

# Checking that the diagonal of Sigma(thetahat) = diagonal of Sigmahat
x = hs[,7:15]; n = dim(x) [1]
Sigmahat = (n-1)/n * var(x)
SigO0fThetahat = fitted(smodel2)$cov
rbind(diag(Sigmahat) ,diag(SigOfThetahat))
x1 x2 x3 x4 x5 x6 x7 x8

V V V V V

x9

[1,] 1.318647 1.226379 1.073365 1.257212 1.341665 1.280142 1.0618 1.09438 1.051048
[2,] 1.318647 1.226379 1.073365 1.257212 1.341665 1.280142 1.0618 1.09438 1.051048

It worked perfectly, as it does in all but the most peculiar models. Even when they fit
badly overall, confirmatory factor analysis models almost always fit the diagonal of X
perfectly.

Standardized parameter estimates One often encounters this expression in write-
ups of confirmatory factor analysis and structural equation modelling. It’s a bit mis-
leading, because it’s not the parameter estimates that are standardized. The statistics in
question are parameter estimates for a model with the factors standardized — or both the
factors and the observed variables standardized. The easiest way to get these numbers
from lavaan is by adding the standardized=TRUE option to summary. Notice that the
model does not to be re-fit.

> summary(smodel2, standardized=TRUE)
lavaan 0.6-7 ended normally after 34 iterations
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Estimator ML
Optimization method NLMINB
Number of free parameters 21
Number of observations 145

Model Test User Model:

Test statistic 51.542
Degrees of freedom 24
P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(Clzl) Std.lv Std.all

visual =~
x1 1.000 0.777 0.677
x2 0.736 0.155 4.760 0.000 0.572 0.517
x3 0.925 0.166 5.584 0.000 0.719 0.694

verbal =~
x4 1.000 0.971 0.866
x5 0.990 0.087 11.418 0.000 0.961 0.829
x6 0.963 0.085 11.377 0.000 0.935 0.826

speed =~

x7 1.000 0.679 0.659
x8 1.226 0.187 6.569 0.000 0.833 0.796
x9 1.058 0.165 6.429 0.000 0.719 0.701

Covariances:
Estimate Std.Err =z-value P(>|zl) Std.lv Std.all

visual 7
verbal 0.408 0.098 4.153 0.000 0.541 0.541
speed 0.276 0.076 3.639 0.000 0.523 0.523

verbal 7
speed 0.222 0.073 3.022 0.003 0.336 0.336

Variances:

Estimate Std.Err z-value P(|zl) Std.1lv Std.all
.x1 0.715 0.126 5.675 0.000 0.715 0.542
.X2 0.899 0.123 7.339 0.000 0.899 0.733
.x3 0.557 0.103 5.409 0.000 0.557 0.519
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.x4 0.315 0.065 4.870 0.000 0.315 0.251
.x5 0.419 0.072 5.812 0.000 0.419 0.312
.x6 0.406 0.069 5.880 0.000 0.406 0.317
X7 0.600 0.091 6.584 0.000 0.600 0.566
.x8 0.401 0.094 4.248 0.000 0.401 0.367
.x9 0.535 0.089 6.010 0.000 0.535 0.509
visual 0.604 0.160 3.762 0.000 1.000 1.000
verbal 0.942 0.152 6.177 0.000 1.000 1.000
speed 0.461 0.118 3.910 0.000 1.000 1.000

The standardized=TRUE option has added two columns to the smodel2 summary output:
Std.1lv and Std.all. Naturally, Std.1lv means that the latent variables (factors) have
been standardized. These numbers perfectly match the Estimate column of the smodell
summary. The Std.all column gives estimates for a model where the observable variables
as well as the latent variables are standardized. This is sometimes called the “completely
standardized” model.

This time, the estimated factor loadings as well as the correlations between factors
match Joreskog’s (1969, p. 192) “(d) Restricted Oblique Solution” [36]. This confirms
that the Std.all values are what we think they are — estimates for a model in which both
the factors and the observed variables have been standardized.

Producing the numbers with matrix operations [t is instructive to see how the
Std.1lv and Std.all values could have been obtained!® from the smodel2 model fit. In
the notation of Section 3.3.1, we are calculating double and triple-prime matrices from
single-prime matrices.
First consider Std.1lv. An application of the invariance principle to (3.22), (3.23) and

(3.24) yields

Ay = dg(@)"

A, = Aydg(®)? (3.33)

" ~7 ~/

~/
— dg(®) 1?8 dg(@) .

How can one obtain those single-prime matrices? The parameter estimates in matrix form
are located in “slots” in the fitted lavaan model object. Slots are like properties of the
object, or something. There can be slots within slots. One can refer to a slot of an object
using the @ sign, as in object@slotname. In the object smodel?2, the slot called Model is
an object with 59 slots. One of these is named GLIST; it is a list containing the estimated
parameter matrices we want. In the following, single primes are represented by _p, and
double primes are represented by _pp. After some experimenting,

> Lambda_p = (smodel2@Model)@GLIST$lambda; Lambda_p
[,1] [,2] [,3]

18In the lavaan code, it may be done in a slightly different but equivalent way. I have not lookrd at
the source code.
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[1,] 1.0000000 0.0000000 0.000000
[2,] 0.7361563 0.0000000 0.000000
[3,] 0.9247953 0.0000000 0.000000
[4,] 0.0000000 1.0000000 0.000000
[5,] 0.0000000 0.9897921 0.000000
[6,]1 0.0000000 0.9633398 0.000000
[7,] 0.0000000 0.0000000 1.000000
[8,]1 0.0000000 0.0000000 1.225840
[9,] 0.0000000 0.0000000 1.057888

Comparing with the numbers in the smodel2 summary, this is definitely ./AX/. Of course, it

doesn’t have the observed variables in d; and dy separated. Extracting K; and then the
other estimated parameter matrices,

> Lambda2_p = Lambda_p[-c(1,4,7),]; Lambda2_p

[,1] [,2] [,3]
[1,] 0.7361563 0.0000000 0.000000
[2,] 0.9247953 0.0000000 0.000000
[3,] 0.0000000 0.9897921 0.000000
[4,] 0.0000000 0.9633398 0.000000
[5,] 0.0000000 0.0000000 1.225840

[6,]1 0.0000000 0.0000000 1.057888
> Omega = (smodel2@Model)@GLIST$theta; Omega

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0.7148977 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.000000
[2,] 0.0000000 0.8991918 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.000000
[3,] 0.0000000 0.0000000 0.5570105 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.000000
[4,] 0.0000000 0.0000000 0.0000000 0.3153055 0.0000000 0.00000 0.0000000 0.0000000 0.000000
[5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.4188895 0.00000 0.0000000 0.0000000 0.000000
[6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.40603 0.0000000 0.0000000 0.000000
(7,1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.6004945 0.0000000 0.000000
[8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.4011844 0.000000
[9,]1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.534789

> Phi_p = (smodel2@Model)@GLIST$psi; Phi_p
[,1] [,2] [,3]

[1,] 0.6037495 0.4077212 0.2761904

[2,] 0.4077212 0.9419068 0.2215664

[3,] 0.2761904 0.2215664 0.4613051

Notice that except for A, lavaan is using a different Greek letter notation for the parameter
matrices. Nobody cares.
~1

The matrix dg(® )'/? appears four times in (3.33). To carry out the calculations, it is
convenient to give it a simple name. Call it M.

> M = sqrt(diag(diag(Phi_p))); M # = Lambdal_pp, the factor loadings of the leading reference
[,1] [,2] [,3]
[1,] 0.7770132 0.0000000 0.0000000
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[2,] 0.0000000 0.9705188 0.0000000
[3,]1 0.0000000 0.0000000 0.6791945
> Lambda2_pp = Lambda2_p %*% M; Lambda2_pp # the other factor loadings

[,1] [,2] [,3]
[1,] 0.5720032 0.0000000 0.0000000
[2,] 0.7185782 0.0000000 0.0000000
[3,] 0.0000000 0.9606119 0.0000000
[4,] 0.0000000 0.9349394 0.0000000
[5,] 0.0000000 0.0000000 0.8325836
[6,] 0.0000000 0.0000000 0.7185117

> # Putting the full factor matrix Lambda_pp together,
> Lambda_pp = rbind(M[1,],Lambda2_pp[1:2,], M[2,],Lambda2_pp[3:4,], M[3,],Lambda2_pp[5:6,])

> Lambda_pp

[,1] [,2] [,3]
[1,] 0.7770132 0.0000000 0.0000000
[2,] 0.5720032 0.0000000 0.0000000
[3,] 0.7185782 0.0000000 0.0000000
[4,] 0.0000000 0.9705188 0.0000000
[5,1 0.0000000 0.9606119 0.0000000
[6,] 0.0000000 0.9349394 0.0000000
[7,] 0.0000000 0.0000000 0.6791945
[8,] 0.0000000 0.0000000 0.8325836
[9,] 0.0000000 0.0000000 0.7185117

These numbers match the estimated factor loadings in the Std.1v column of the smodel?2
model summary. For example, the loading of xg on the speed factor is 0.833 in the Std.1v
column, and it is 0.8325836 in the matrix Lambda_pp above.

> Phi_pp = solve(M) %*J, Phi_p %x*J), solve(M); Phi_pp
[,1] [,2] [,3]

[1,] 1.0000000 0.5406683 0.5233425

[2,] 0.5406683 1.0000000 0.3361288

[3,] 0.5233425 0.3361288 1.0000000

These estimated correlations match the contents of the Std.1v column under Covariances.

For the “completely standardized” estimates in the Std.all column — that is, for the
estimates from a model with both the factors and the observed variables standardized,
Expression (3.28) implies

-~ -~

= WA
W2QW 2,

1

Calculating,

> # Standardized observed variables
>n = dim(hs) [1]; n
[1] 145
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> Sigma = var(hs[,7:15]) * (n-1)/n # Actually Sigma-hat of course

> W = diag(diag(SigmaHat))

> Lambda_ppp = solve(sqrt(W)) %#*% Lambda_pp; Lambda_ppp

[,1] [,2] [,3]
[1,] 0.6766500 0.0000000 0.0000000
[2,] 0.5165187 0.0000000 0.0000000
[3,] 0.6935860 0.0000000 0.0000000
[4,] 0.0000000 0.8655649 0.0000000
[5,]1 0.0000000 0.8293273 0.0000000
[6,]1 0.0000000 0.8263318 0.0000000
[7,] 0.0000000 0.0000000 0.6591327
[8,1 0.0000000 0.0000000 0.7958731
[9,]1 0.0000000 0.0000000 0.7008460

> Omega_ppp = solve(sqrt(W)) %*% Omega %*J% solve(sqrt(W)); Omega_ppp

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.5421448 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.0000000 0.7332085 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.5189386 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[4,] 0.0000000 0.0000000 0.0000000 0.2507973 0.0000000 0.0000000 0.0000000 0.0000000
[5,1 0.0000000 0.0000000 0.0000000 0.0000000 0.3122162 0.0000000 0.0000000 0.0000000
[6,]1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.3171758 0.0000000 0.0000000
[7,]1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5655441 0.0000000
[8,1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.3665861
[9,]1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

The numbers in these matrices match the Std.all output. For example, the estimated
factor loading of 2z, on visual is 0.517 in the Std.all column, and it is 0.5165187 in
Lambda_ppp above. The estimated variance of e is 0.317 in the Std.all column, and
0.3171758 in Omega_ppp — so, the x5 variable is estimated to be around 32% noise.

It goes without saying (and yet I find myself saying it anyway) that in a practical data
analysis job, these matrix calculations would almost never be necessary. It’s much easier
to just use standardized=TRUE, and let lavaan do the work. The purpose of doing the
matrix calculations here was to show where those Std.1lv and Std.all numbers come
from, and to provide a bridge between the theory and what the software is producing.
It’s also nice to know how to get at those estimated parameter matrices. I didn’t know
about slots before I did this.

Fitting a model with standardized factors the easy way The main disadvantage
of the standardized=TRUE option is that one gets estimates, but not standard errors. In
the summary output for smodel2, the standard errors in the output still apply to the
surrogate model in which some loadings were set to one. So for example, if you wanted a
confidence interval for a correlation between factors, you would still have a bit of work to
do. It is possible to choose a model with standardized factors at the model fitting stage,
by using the std.1lv (standardized latent variables) option, as follows.

> smodel3 = cfa(swine2, data=hs, std.lv=TRUE); summary(smodel3, standardized=TRUE)

O O O O O O O o o

[,9]

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.508815
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lavaan 0.6-7 ended normally after 19 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 21
Number of observations 145

Model Test User Model:

Test statistic 51.542
Degrees of freedom 24
P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(Clzl) Std.lv Std.all

visual =~
x1 0.777 0.103 7.525 0.000 0.777 0.677
x2 0.572 0.101 5.642 0.000 0.572 0.517
x3 0.719 0.093 7.711 0.000 0.719 0.694
verbal =~
x4 0.971 0.079 12.355 0.000 0.971 0.866
x5 0.961 0.083 11.630 0.000 0.961 0.829
x6 0.935 0.081 11.572 0.000 0.935 0.826
speed =~
X7 0.679 0.087 7.819 0.000 0.679 0.659
x8 0.833 0.087 9.568 0.000 0.833 0.796
x9 0.719 0.086 8.357 0.000 0.719 0.701
Covariances:
Estimate Std.Err z-value P(>|zl) Std.lv Std.all
visual 7
verbal 0.541 0.085 6.355 0.000 0.541 0.541
speed 0.523 0.094 5.562 0.000 0.523 0.523
verbal 7
speed 0.336 0.091 3.674 0.000 0.336 0.336
Variances:

Estimate Std.Err z-value P(Clzl|) Std.lv Std.all
.x1 0.715 0.126 5.675 0.000 0.715 0.542



344 CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

.x2 0.899 0.123 7.339 0.000 0.899 0.733
.x3 0.557 0.103 5.409 0.000 0.557 0.519
.x4 0.315 0.065 4.870 0.000 0.315 0.251
.x5 0.419 0.072 5.812 0.000 0.419 0.312
.x6 0.406 0.069 5.880 0.000 0.406 0.317
X7 0.600 0.091 6.584 0.000 0.600 0.566
.x8 0.401 0.094 4.248 0.000 0.401 0.367
.x9 0.535 0.089 6.010 0.000 0.535 0.509
visual 1.000 1.000 1.000
verbal 1.000 1.000 1.000
speed 1.000 1.000 1.000

The Estimate column now matches the Std.1v column; std.1v=TRUE had its intended
effect. All is well.

Analyzing the correlation matrix There is also a std.ov option for the cfa func-
tion, and one would think the observed variables could be standardized by specifying
std.ov=TRUE. However, as of this writing!® it does not quite work as expected. When
the observed variables are standardized, they are divided by a sample standard deviation
with n — 1 in the denominator, rather than n. This makes no difference asymptotically,
so the estimates, tests and confidence intervals are just as good either way. However,
if std.1lv and std.ov are both TRUE, the numbers in the Estimate column don’t quite
don’t quite match the Std.all column. It’s a bit unsettling.

One option is to standardize the observed variables yourself, making sure you divide
by n to get the true MLEs. This works, but it’s awkward. It’s easier to use the sample
correlation matrix as input.

The lavaan software allows a sample covariance matrix and a sample size as input,
in place of the raw data?. When you give lavaan a correlation matrix, it treats it as a
sample covariance matrix. There are two consequences, both a bit subtle. The first is that
lavaan assumes the sample variances just happen to be all equal to one (an event of zero
probability, by the way), and it treats the error variances (the w’;) as free parameters to
be estimated, rather than using the fact that they are functions of the other parameters.
This actually works out very well. The standard errors are correct, and it’s a lot easier to
obtain confidence intervals for uniquenesses and commonalities than it would be otherwise.

The second consequence of treating the correlation matrix as a covariance matrix is
the issue of whether the sample variances and covariances have n in the denominator,
or n — 1. Actually, this question should not apply to sample correlations. Thinking of
a sample correlation as a sample covariance divided by a product of sample standard
deviations, the denominators, whether they are n or n — 1, are already cancelled. To
lavaan, though, it’s just a sample covariance matrix. Many sample covariance matrices
(for example, the ones produced by R’s var function) have n — 1 in the denominators,

9Geptember 2021, lavaan version 0.6-7.
20This is really handy for re-analyzing published data, because books and journal articles often display
covariance matrices or correlation matrices even when they do not provide access to the raw data.
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so that the estimates are unbiased, but not quite true MLEs. The cfa function has
an option to deal with this. By default, sample.cov.rescale is set to TRUE, meaning
please correct the input sample covariance matrix, multiplying all entries by (n—1)/n. If
the input matrix is a sample correlation matrix, you want sample.cov.rescale=FALSE.
Here’s how it goes with the Holzinger-Swineford data. I think factor analysis is nicer
with standardized observed variables, so to me, this is a good example of how to do a
confirmatory factor analysis with lavaan?’.

> # Analyze the correlation matrix
> x = hs[,7:15] # Columns 7 through 15 of the data frame: Just the x variables.
> xcorr = cor(x); round(xcorr,3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1.000 0.326 0.449 0.342 0.309 0.317 0.104 0.308 0.487
x2 0.326 1.000 0.417 0.228 0.159 0.195 0.066 0.168 0.248
x3 0.449 0.417 1.000 0.328 0.287 0.347 0.075 0.239 0.373
x4 0.342 0.228 0.328 1.000 0.719 0.714 0.209 0.104 0.314
x5 0.309 0.159 0.287 0.719 1.000 0.685 0.254 0.198 0.356
x6 0.317 0.195 0.347 0.714 0.685 1.000 0.179 0.121 0.272
x7 0.104 0.066 0.075 0.209 0.254 0.179 1.000 0.587 0.418
x8 0.308 0.168 0.239 0.104 0.198 0.121 0.587 1.000 0.528
x9 0.487 0.248 0.373 0.314 0.356 0.272 0.418 0.528 1.000

> smodeld4 = cfa(swine2, sample.cov=xcorr, sample.nobs=145,
+ std.1lv=TRUE, sample.cov.rescale=FALSE)

> summary(smodeld, standardized=TRUE)

lavaan 0.6-7 ended normally after 20 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 21
Number of observations 145

Model Test User Model:

Test statistic 51.542
Degrees of freedom 24
P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:

21The reader may be thinking “Well, it’s about time!”



346 CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

Estimate Std.Err z-value P(Clzl|) Std.lv Std.all

visual =~
x1 0.677 0.090 7.525 0.000 0.677 0.677
x2 0.517 0.092 5.642 0.000 0.517 0.517
x3 0.694 0.090 T.711 0.000 0.694 0.694

verbal =~
x4 0.866 0.070 12.355 0.000 0.866 0.866
x5 0.829 0.071 11.630 0.000 0.829 0.829
x6 0.826 0.071 11.572 0.000 0.826 0.826

speed =~

x7 0.659 0.084 7.819 0.000 0.659 0.659
x8 0.796 0.083 9.568 0.000 0.796 0.796
x9 0.701 0.084 8.357 0.000 0.701 0.701

Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual 7
verbal 0.541 0.085 6.355 0.000 0.541 0.541
speed 0.523 0.094 5.562 0.000 0.523 0.523

verbal 7
speed 0.336 0.091 3.674 0.000 0.336 0.336

Variances:

Estimate Std.Err =z-value P(>|zl) Std.lv Std.all
.x1 0.542 0.096 5.675 0.000 0.542 0.542
.X2 0.733 0.100 7.339 0.000 0.733 0.733
.x3 0.519 0.096 5.409 0.000 0.519 0.519
.x4 0.251 0.051 4.870 0.000 0.251 0.251
.xb5 0.312 0.054 5.812 0.000 0.312 0.312
.x6 0.317 0.054 5.880 0.000 0.317 0.317
X7 0.566 0.086 6.584 0.000 0.566 0.566
.x8 0.367 0.086 4.248 0.000 0.367 0.367
.x9 0.509 0.085 6.010 0.000 0.509 0.509
visual 1.000 1.000 1.000
verbal 1.000 1.000 1.000
speed 1.000 1.000 1.000

# That’s it!

There we go. The Estimate and Std.1lv both match Std.all. These numbers are very
interpretable. For example, the estimate of 0.733 for woy (triple prime deleted) means
we estimate that zs is around 73.3% noise. Because maximum likelihood estimates are
asymptotically normal, an approximate 95% confidence interval to go with this estimate
is just the estimate plus or minus 1.96 times the standard error.

> c(0.733-1.96%0.1, 0.733+1.96%0.1)
[1] 0.537 0.929

This confidence interval is produced automatically by parameterEstimates(smodel4).
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Also, notice that in obedience to Theorem 3.1, the chi-squared statistic for lack of
model fit is still 51.542. It is unaffected by standardizing the observed variables.

A confidence interval for uniqueness, the hard way Suppose you do not stan-
dardize the observed variables, and you want a point estimate and confidence interval
for the uniqueness of xy — under the original model. Assume the lavaan model swinel
on page 333, the very explicit model with standardized factors. Under this model (with
double primes, as in Section 3.3.1),

Var(z) = Var(AyF] + e3)
Ny2Var(F)') + w;
- AgQ ,1/,1 + Wa.

Bearing in mind that A\j = )\2¢i/12 and ¢7; = 1, the proportion of unexplained variance
under the surrogate model is

Wa %)
N2 4 12
Ay "1+ wa ()\2¢12,1> X1 + wsy
%)
= —-—. 3.34
)\%le,l + Wo ( )

For the centered original model, Var(zy) = A3¢11 + ws, so that the proportion of unex-
plained variance is exactly Expression (3.34). Remarkably, this identifiable function of
the original model parameters is the same under the surrogate model with standardized
factors. It’s not the kind of thing you can depend on in general.

In any case, we want a point estimate and confidence interval for . The point

w2
estimate can be easily obtained from numbers in the output of summary(smodell). On
a test or quiz, you could do it with a calculator.

> 0.899/(0.572°2 + 0.899)
[1] 0.7331689

That’s exactly the Wy of 0.733 from the model with both factors and observed variables
standardized. We also want a confidence interval, something that cannot be calculated
from the summary(smodell) output.

As a nice smooth function of asymptotically normal MLEs, 22

’ /):/2/2-&-@2
normal. All we need is a standard error — an estimated standard deviation. We can get
it easily using lavaan’s := syntax for estimating non-linear functions of model parameters.

Include this line at the end of the swinel model string:

is asymptotically

x2uniqueness := omega2 / (lambda2~2 + omega?2)

The lovely := feature is only available if you explicitly provide names (labels) for the
parameters. It is incompatible with the shorthand syntax of model smodel2.
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One is tempted to just copy-paste the entire swinel string, and add the line at the
end and call the result swinelb or something. This is not ideal, because it’s not a good
idea to have more than one slightly different version of the same code floating around.
What if you found an error in swinel, or decided to change it for some other reason?
Would you remember to make the same change(s) in swinelb? Here’s a better option.

> swinelb = paste(swinel, "x2uniqueness := omega2 / (lambda2°2 + omega2)")
Take a look at the result.

> cat(swinelb)
# Measurement model

visual =" lambdal*xl + lambda2*x2 + lambda3*x3

verbal =" lambda4*x4 + lambdab*x5 + lambda6*x6

speed =" lambda7*x7 + lambda8*x8 + lambda9*x9

# Variances of error terms

x1 77 omegal*xl; x2 77 omega2*x2; x3 "7 omega3*x3

x4 77 omegad*x4; x5 77 omegab*x5; x6 "7 omegabxx6

X7 77 omega7*x7; x8 77 omega8*x8; x9 "7 omega9*x9

# Variances of factors equal one

visual 7 1xvisual; verbal "7 1xverbal; speed "~ 1lxspeed

# Covariances of factors

visual 7 phil2xverbal; visual ~~ phil3*speed
verbal 7 phi23*speed

x2uniqueness := omega2 / (lambda2"2 + omega2)

The non-linear function is added neatly to the end. If swinel changes, swinelb will also
be changed when the code is re-run. Now fit the new model and look at the results.

> smodellb = lavaan(swinelb, data=hs); summary(smodellb)

The estimate and standard error for x2uniqueness appears at the end of the summary
output. everything else is the same as the output of summary(smodell). Showing just
the last part,

Defined Parameters:
Estimate Std.Err z-value P(>|zl)
x2uniqueness 0.733 0.081 9.078 0.000

The estimated uniqueness (73% noise) is exactly the same as the @)’ obtained from

smodel4, the model with both factors and observed variables standardized. The stan-
dard errors are a bit different, 0.081 for x2uniqueness, versus 0.10 for @)’ in smodel4.
The reason is that by default, lavaan uses the multivariate delta method (See Appendix A,
page 564) to estimate the standard deviations of non-linear functions of the parameter
estimates. These numbers are close to the ones that come from re-parameterization, in
the sense that the difference goes to zero in probability as the sample size tends to infinity.

They need not be the same for finite sample sizes, but they are equally valid.
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Another option is to use the se = "bootstrap" option in the cfa or lavaan function.
This yields standard errors based on the bootstrap, which is distribution-free. Because
the bootstrap is a randomization technique, the standard errors will be slightly different
every time you run your code, unless you set the seed of the random number generator
with the set.seed function.

A model that fits Let’s not get too carried away here. We got the lavaan software to

do what we want, but the model still does not fit (x? = 51.542, df = 24, 0 = 0.001). This

means that the estimates, and especially the tests and confidence intervals, are open to

question. Joreskog’s analysis in [36] includes several models that fit the data, including

model (c), described as the “Reference variables solution.” This is exactly the model of

the reference variable rule, except that it’s a special case with the errors independent??.
Starting over for completeness,

> rm(1list=1s())

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once
> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> hs = subset(HolzingerSwineford1939,school==’Grant-White’)

> x = hs[,7:15]; xcorr = cor(x)

Now specify the reference variable model. The reference variables (1, 24 and z7) are out
front, while the other observed variables, which are influenced by all factors, are grouped
together, identically in each line of the model string.

> swine3 =’
+ visual =" x1 + x2+x3+x5+x6+x8+x9
+ verbal =" x4 + x2+x3+x5+x6+x8+x9
+ speed =" x7 + x2+x3+x5+x6+x8+x9
+ )

Now fit the model, analyzing the correlation matrix because it is the easiest way to
standardize the observed variables.

> smodelb = cfa(swine3, sample.cov=xcorr, sample.nobs=145,
+ std.1v=TRUE, sample.cov.rescale=FALSE)

> summary(smodelb) # standardized=TRUE is not necessary.
lavaan 0.6-7 ended normally after 32 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 33

22 Actually, 1 discovered the reference variable rule by attempting to generalize Joreskog’s model (c).
Others may have known about this rule, but I did not.
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Number of observations
Model Test User Model:

Test statistic

Degrees of freedom

P-value (Chi-square)

Parameter Estimates:

Standard errors
Information

CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

Information saturated (hl) model

Latent Variables:

Estim
visual =~
x1 0.
x2 0
x3 0
x5 -0
x6 0
x8 0
x9 0
verbal =~
x4 0.
x2 -0.
x3 0.
x5 0.
x6 0.
x8 -0.
x9 -0.
speed ="
x7 0.
x2 -0.
x3 -0.
x5 0.
x6 -0.
x8 0.
x9 0.
Covariances:
Estim
visual 7

verbal 0.

ate

708

.538
.674
.033
.013
.415
.557

871
031
042
808
819
298
061

782
075
086
128
007
731
413

ate

543

Std.

O O OO O O o O O OO O O o

O O O O O O o

Std.

Err

.087
.123
.125
.093
.092
.115
.113

.070
.118
.119
.090
.090
.111
.110

.096
.107
.108
.074
.075
.109
.096

Err

.112

145

9.846
12
0.629

Standard
Expected
Structured

z-value P(C|zl)

8.144 0.000
4.362 0.000
5.392 0.000
-0.350 0.726
0.137 0.891
3.612 0.000
4.916 0.000
12.434 0.000
-0.265 0.791
0.354 0.724
8.939 0.000
9.055 0.000
-2.673 0.008
-0.552 0.581
8.161 0.000
-0.700 0.484
-0.790 0.429
1.729 0.084
-0.093 0.926
6.690 0.000
4.321 0.000

z-value P(Olzl)

4.850 0.000
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speed 0.240 0.148 1.626 0.104
verbal 7
speed 0.284 0.116 2.439 0.015
Variances:

Estimate Std.Err z-value P(>|zl)
.x1 0.499 0.091 5.498 0.000
.x2 0.740 0.102 7.245 0.000
.x3 0.535 0.095 5.661 0.000
.x5 0.302 0.054 5.589 0.000
.x6 0.322 0.054 5.924 0.000
.x8 0.317 0.095 3.323 0.001
.x9 0.456 0.071 6.421 0.000
.xX4 0.241 0.052 4.626 0.000
X7 0.388 0.113 3.428 0.001
visual 1.000
verbal 1.000
speed 1.000

This model fits (x* = 9.846, df = 12, p = 0.629). The estimated factor loadings (and the
associated tests) suggest that the model of Figure 3.15 did not fit because xg (Counting
Dots) and zg¢ (Straight-curved Capitals) are positively influenced by the speed factor.
There is also evidence that xg may be negatively influenced by the verbal factor Fs.

It is interesting that under the model of Figure 3.15, the estimated correlation between
the visual and speed factors is substantial (¢1,3 = 0.523) and undeniably significant (z =
5.562, p =~ 0). See for example the output of summary(smodeld, standardized=TRUE).
This is an important conclusion, because it might reflect something fundamental about
cognition and the human nervous system. However, for the model that fits the data,
there is not enough evidence to conclude a non-zero correlation (¢, 3 = 0.24, z = 1.626,
p = 0.104): see the output of summary(smodel5) starting on page 349. When a model
does not fit the data, conclusions from the significance tests are highly suspect. This issue
is discussed in Chapter 7.

A second-order model It is fairly reasonable to hypothesize that there is a general
factor underlying the visual, verbal and speed factors; it might be called mental ability.
Figure 3.16 shows the path diagram. The top part is Joreskog’s [36] Reference Variables
model ¢ (also smodel4), identified by the reference variable rule. In the lower part,
the curved arrows representing correlations between factors have been replaced by the
hypothesized second-order ability factor, with arrows pointing from the ability factor to
the first-order visual, verbal and speed factors. There are also arrows that seem to come
from nowhere, pointing at the first-order factors. These represent error terms. One might
think that their variances would introduce three additional parameters, but because the
factors are standardized (including ability), the variances are functions of the second-order
factor loadings.
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Figure 3.16: A second-order model for the Holzinger and Swineford Data

There are three of these second-order factor loadings. They replace the three cor-
relations between first-order factors. Expression (3.13) on page 293 in the proof of the
three-variable rule shows that there is a one-to-one connection between the second-order
factor loadings and the correlations between first-order factors, provided that the sign of
at least second-order loadings is known. Here, there is no problem; theoretically, they are
all positive.

To incorporate the second-order ability factor into the model, it’s enough to add a line
that says ability if measured by visual, verbal and speed.

> swined4 = paste(swine3, "ability =~ visual + verbal + speed"); cat(swine4)
visual =7 x1 + x2+x3+x5+x6+x8+x9
verbal =" x4 + x2+x3+x5+x6+x8+x9
speed =" x7 + x2+x3+x5+x6+x8+x9
ability =" visual + verbal + speed

For the sake of interpretability, I wanted to stay with a “completely standardized” model,
in which both the observed and latent variables are standardized.

> smodel6 = cfa(swine4, sample.cov=xcorr, sample.nobs=145,
+ std.1v=TRUE, sample.cov.rescale=FALSE)

Before looking at any output, let’s consider what to expect. First, since the parameters of
smodel5 and smodel6 are one-to-one, the fit should be the same and and we should get
the same chi-squared value of 9.846 with 12 degrees of freedom. Second, all the estimated
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first-order factor loadings (and consequently, the error variances) should be the same in
the two fitted models. Third, the invariance principle of maximum likelihood estimation®?
dictates a very specific connection between the estimated second-order factor loadings and
the estimated correlations between first-order factors. To make this explicit, denote the
ability factor by Fy, and write the second-order model equations as follows.

Fi = mlv+ea
FQ = ’)/QFO + €2 (335)
F3 = mfy+es

Then, basically transcribing material from 3.12 on page 292, we must have
P12 =N1V2 $13 =173 P23 = 23, (3.36)

where the gg” are from the Covariances part of the output from summary (smodel5); the
output begins on page 349.
Now we know what to expect from summary (smodel6).

> summary(smodel6, standardized=TRUE)
lavaan 0.6-7 ended normally after 43 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 33
Number of observations 145

Model Test User Model:

Test statistic 9.846
Degrees of freedom 12
P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err =z-value P(C|zl) Std.1lv Std.all

visual ="
x1 0.520 0.170 3.063 0.002 0.708 0.708
x2 0.396 0.127 3.116 0.002 0.538 0.538

23Roughly, the MLE of a function is that function of the MLE.



354 CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

x3 0.496 0.141 3.508 0.000 0.674 0.674
x5 -0.024 0.068 -0.355 0.723 -0.033 -0.033
x6 0.009 0.068 0.137 0.891 0.013 0.013
x8 0.305 0.127 2.397 0.017 0.415 0.415
x9 0.409 0.139 2.937 0.003 0.557 0.557
verbal =~
x4 0.522 0.286 1.827 0.068 0.871 0.871
x2 -0.019 0.071 -0.264 0.792 -0.031 -0.031
x3 0.025 0.073 0.343 0.731 0.042 0.042
x5 0.484 0.264 1.832 0.067 0.808 0.808
x6 0.491 0.265 1.851 0.064 0.819 0.819
x8 -0.178 0.097 -1.847 0.065 -0.298 -0.298
x9 -0.036 0.064 -0.568 0.570 -0.061 -0.061
speed ="
x7 0.731 0.105 6.971 0.000 0.782 0.782
x2 -0.070 0.099 -0.707 0.480 -0.075 -0.075
x3 -0.080 0.100 -0.803 0.422 -0.086 -0.086
x5 0.119 0.070 1.706 0.088 0.128 0.128
x6 -0.007 0.070 -0.093 0.926 -0.007 -0.007
x8 0.683 0.105 6.495 0.000 0.731 0.731
x9 0.386 0.096 4.031 0.000 0.413 0.413
ability =~
visual 0.923 0.575 1.605 0.108 0.678 0.678
verbal 1.336 1.133 1.179 0.238 0.801 0.801
speed 0.379 0.182 2.085 0.037 0.355 0.355
Variances:
Estimate Std.Err z-value P(>|zl) Std.lv Std.all
.x1 0.499 0.091 5.498 0.000 0.499 0.499
.x2 0.740 0.102 7.245 0.000 0.740 0.740
.x3 0.535 0.095 5.661 0.000 0.535 0.535
.xb 0.302 0.054 5.589 0.000 0.302 0.302
.x6 0.322 0.054 5.924 0.000 0.322 0.322
.x8 0.317 0.095 3.323 0.001 0.317 0.317
.x9 0.456 0.071 6.421 0.000 0.456 0.456
.x4 0.241 0.052 4.626 0.000 0.241 0.241
X7 0.388 0.113 3.428 0.001 0.388 0.388
.visual 1.000 0.540 0.540
.verbal 1.000 0.359 0.359
.speed 1.000 0.874 0.874
ability 1.000 1.000 1.000

Comparing this to the smodel5 output that begins on page 349, we do get the same
chi-squared fit test value of 9.846 with 12 degrees of freedom, so that is okay. However,
the estimated first-order factor loadings are quite different. For example, the estimated
loading that links the visual factor to z; is 0.520 for smodel6, compared to 0.708 for
smodel5. It’s way off.
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After a while, I finally saw a hint pointing to the source of the problem. At the end of
the smodel6 output directly above, there are dots in front of visual, verbal and speed.
This indicates that we are not looking at estimated variances of variables, but at estimated
variances of error terms. It would appear that the variances of the first-order factors were
not set to one after all. Instead, the variances of the error terms (that is, €;, €2 and €3 in
Expression 3.35) were set to one. I verified this by doing some calculations on numbers
from the output. The result is a surrogate model that, while it’s technically correct and
has identifiable parameters, is just strange and does not correspond to anything we want.

On the other hand, the Std.1v and Std.all columns do contain the desired estimates.
Unlike the std.1lv=TRUE option in the cfa function, the standardized=TRUE option in
summary is working as expected. The estimated factor loadings match summary (smodel5)
perfectly. R R R

To check (3.36), we first obtain ¢15 = 0.543, ¢15 = 0.240 and ¢o3 = 0.284 from
the Covariances part of summary(smodel5). Then, obtaining 7; = 0.678 (not 0.923),
o = 0.801 and 73 = 0.355 from summary (smodel6),

> 0.678%0.801 # Should equal phihatl2 = 0.543
[1] 0.543078

> 0.678%0.355 # Should equal phihatl3 = 0.240
[1] 0.24069

> 0.801%0.355 # Should equal phihatl3 = 0.284

[1] 0.284355

So, the Std.all column clearly has the estimates from a model with both the observed
variables and the latent variables (not the error terms of the latent variables) standardized.
It means, for example, that the estimated correlation between the ability factor and the
visual factor equals 0.678 — the same as the factor loading. This is also the estimated
correlation for the original model.

There is a slightly easier way to get these numbers, and that is to use the default
surrogate model with a factor loading set to one for each factor, including second-order
factors. The model string swine4 is fine as it is.

> cat(swine4)

visual =7 x1 + x2+x3+x5+x6+x8+x9
verbal =" x4 + x2+x3+xb5+x6+x8+x9
speed =" x7 + x2+x3+x5+x6+x8+x9
ability =" visual + verbal + speed

The cfa function call is simpler.

> smodel7 = cfa(swine4, data=hs)
> summary(smodel7, standardized=TRUE)
lavaan 0.6-7 ended normally after 48 iterations

Estimator ML
Optimization method NLMINB
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Number of free parameters 33
Number of observations 145

Model Test User Model:

Test statistic 9.846
Degrees of freedom 12
P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(lzl) Std.lv Std.all

visual =~
x1 1.000 0.813 0.708
x2 0.733 0.191 3.841 0.000 0.596 0.538
x3 0.859 0.196 4.378 0.000 0.699 0.674
x5 -0.046 0.133 -0.350 0.727 -0.038 -0.033
x6 0.018 0.128 0.137 0.891 0.014 0.013
x8 0.534 0.162 3.302 0.001 0.434 0.415
x9 0.702 0.167 4.197 0.000 0.571 0.557
verbal =~
x4 1.000 0.977 0.871
x2 -0.035 0.134 -0.265 0.791 -0.035 -0.031
x3 0.045 0.126 0.354 0.724 0.044 0.042
x5 0.958 0.112 8.534 0.000 0.936 0.808
x6 0.948 0.109 8.684 0.000 0.926 0.819
x8 -0.319 0.120 -2.666 0.008 -0.312 -0.298
x9 -0.064 0.115 -0.552 0.581 -0.062 -0.061
speed =~
X7 1.000 0.806 0.782
x2 -0.103 0.147 -0.698 0.485 -0.083 -0.075
x3 -0.110 0.140 -0.786 0.432 -0.089 -0.086
x5 0.184 0.108 1.696 0.090 0.148 0.128
x6 -0.010 0.105 -0.093 0.926 -0.008 -0.007
x8 0.949 0.200 4.747 0.000 0.765 0.731
x9 0.525 0.135 3.882 0.000 0.423 0.413
ability =~
visual 1.000 0.678 0.678
verbal 1.418 0.862 1.644 0.100 0.801 0.801

speed 0.518 0.238 2.173 0.030 0.355 0.355
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Variances:

Estimate Std.Err z-value P(lzl) Std.lv Std.all
.x1 0.657 0.120 5.498 0.000 0.657 0.499
.X2 0.907 0.125 7.245 0.000 0.907 0.740
.x3 0.575 0.101 5.661 0.000 0.575 0.535
.x5 0.405 0.073 5.589 0.000 0.405 0.302
.x6 0.412 0.069 5.924 0.000 0.412 0.322
.x8 0.347 0.104 3.323 0.001 0.347 0.317
.x9 0.480 0.075 6.421 0.000 0.480 0.456
.x4 0.303 0.065 4.626 0.000 0.303 0.241
X7 0.412 0.120 3.428 0.001 0.412 0.388
.visual 0.357 0.233 1.532 0.126 0.540 0.540
.verbal 0.343 0.375 0.914 0.361 0.359 0.359
.speed 0.568 0.163 3.486 0.000 0.874 0.874
ability 0.304 0.208 1.460 0.144 1.000 1.000

Notice how all the leading factor loadings are set to one, including for the second-order
factor. The Std.all column has the same numbers obtained from smodel6. If we want
the estimates for a completely standardized model and don’t care about standard errors,
this is all we need. If necessary, one could define custom non-linear functions of the
parameters using the := notation, as on page 348, and get standard errors based on the
delta method.

Constraining the error variances It is possible (but not very convenient) to actually
fit a model with the variances of the first-order factors set to one. This is accomplished by
constraining the variances of the error terms that feed into the first-order factors in Fig-
ure 3.16. The model equations for the latent variable part are given in Expression (3.35);
they are repeated below for convenience.

Fi = mk+ea
Fy = mFy+e
Fy = ~yFy+e3
Denote Var(e;) by ¢;. With the variance of Fy (ability) equal to one, we have Var(F;) =

'y? + 1;, so that Var(F};) will equal one provided ¢; =1 — 'yjz for j = 1,2,3. Here is the
lavaan model string. It will be considered one piece at a time.

> swineb =

+ # Measurement model

+ visual =7 NA*x1 + x2+x3+x5+x6+x8+x9

+ verbal =" NA*x4 + x2+x3+x5+x6+x8+x9

+ speed =" NA*x7 + x2+x3+x5+x6+x8+x9

+ ability =" NA*visual + gammal*visual +
+ gamma2*verbal + gamma3*speed
+ # Variances
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ability 77 1*ability

visual "7 psil*visual; verbal "7 psi2xverbal; speed "7 psi3*speed
# Constraints to make variances of 1st order factors =1

psil == 1 - gammal~2

psi2 == 1 - gamma2”2

psi3 == 1 - gamma3~2

)

+ + 4+ + + + o+

The first minor hurdle to overcome is that the std.1lv=TRUE option would standardize
the €; rather than the Fj, which is not what we want. However, if std.1v=TRUE is not
specified, then the cfa function will set the leading factor loadings to one for each factor,
whether or not parameter names are provided. It would be possible to specify the model
more completely and use the lavaan function as in the swinel model string on page 333,
but that’s a lot of typing. Here’s a better way. Look at the first three lines of the
measurement model.

visual =" NA*xx1 + x2+x3+x5+x6+x8+x9
verbal =" NA*x4 + x2+x3+x5+x6+x8+x9
speed =" NA*xX7 + x2+x3+x5+x6+x8+x9

Pre-multiplying the reference variables by NA has the effect of freeing the factor loading —
making it a free parameter to be estimated. The next statement shows that this facility
can co-exist with providing a name for the factor loading, by naming the variable twice.
This is similar to how starting values are specified — see page 80. It’s not enough to
name the parameter, when you are using cfa.

ability =" NA*visual + gammal*visual +
gamma2*verbal + gamma3*speed

After fixing the variance of ability equal to one, we give names to the variances of €, €
and e3. The rule is that if you want to use a parameter in a constraint, you must name
it.

ability ~~ 1xability

visual "7 psil*visual; verbal 7 psi2*verbal; speed ~7 psi3*speed

Last come the constraints, set with double equals signs.

psil == 1 - gammal~2
psi2 == 1 - gamma2”2
psi3 == 1 - gamma3~2

Analyzing the correlation matrix in order to obtain standardized observed variables while

avoiding the std.ov option?*,

24You are forgiven if you forgot that std.ov divides by a sample standard deviation with n — 1 in the
denominator.
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> smodel8 = cfa(swineb, sample.cov=xcorr, sample.nobs=145, sample.cov.rescale=FALSE)
> summary(smodel8, standardized=TRUE)
lavaan 0.6-7 ended normally after 190 iteratiomns

Estimator ML
Optimization method NLMINB
Number of free parameters 36
Number of observations 145

Model Test User Model:

Test statistic 9.846
Degrees of freedom 12
P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err =z-value P(|zl) Std.lv Std.all

visual =~
x1 0.708 0.087 8.144 0.000 0.708 0.708
x2 0.538 0.123 4.362 0.000 0.538 0.538
x3 0.674 0.125 5.392 0.000 0.674 0.674
x5 -0.033 0.093 -0.350 0.726 -0.033 -0.033
x6 0.013 0.092 0.137 0.891 0.013 0.013
x8 0.415 0.115 3.612 0.000 0.415 0.415
x9 0.557 0.113 4.916 0.000 0.557 0.557

verbal ="
x4 0.871 0.070 12.434 0.000 0.871 0.871
x2 -0.031 0.118 -0.264 0.791 -0.031 -0.031
x3 0.042 0.119 0.354 0.724 0.042 0.042
x5 0.808 0.090 8.939 0.000 0.808 0.808
x6 0.819 0.090 9.055 0.000 0.819 0.819
x8 -0.298 0.111 -2.673 0.008 -0.298 -0.298
x9 -0.061 0.110 -0.552 0.581 -0.061 -0.061

speed =~
x7 0.782 0.096 8.161 0.000 0.782 0.782
x2 -0.075 0.107 -0.700 0.484 -0.075 -0.075
x3 -0.086 0.108 -0.790 0.429 -0.086 -0.086
x5 0.128 0.074 1.729 0.084 0.128 0.128
x6 -0.007 0.075 -0.093 0.926 -0.007 -0.007
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x8 0.731 0.109 6.690 0.000 0.731 0.731
x9 0.413 0.096 4.321 0.000 0.413 0.413
ability ="

visual (gmml) 0.678 0.228 2.971 0.003 0.678 0.678
verbal (gmm2) 0.801 .244 3.284 0.001 0.801 .801
speed (gmm3) 0.355 0.149 2.385 0.017 0.355 0.355

o
o

Variances:
Estimate Std.Err z-value P(Clzl) Std.lv Std.all

ability 1.000 1.000 1.000
.visual (psil) 0.540 0.309 1.746 0.081 0.540 0.540
.verbal (psi2) 0.359 0.390 0.920 0.358 0.359 0.359
.speed (psi3) 0.874 0.105 8.295 0.000 0.874 0.874
.x1 0.499 0.091 5.498 0.000 0.499 0.499
.x2 0.740 0.102 7.245 0.000 0.740 0.740
.x3 0.535 0.095 5.661 0.000 0.535 0.535
.x5 0.302 0.054 5.589 0.000 0.302 0.302
.x6 0.322 0.054 5.924 0.000 0.322 0.322
.x8 0.317 0.095 3.323 0.001 0.317 0.317
.x9 0.456 0.071 6.421 0.000 0.456 0.456
.x4 0.241 0.052 4.626 0.000 0.241 0.241
X7 0.388 0.113 3.428 0.001 0.388 0.388
Constraints:

|Slackl|
psil - (1-gammal~2) 0.000
psi2 - (1-gamma2~2) 0.000
psi3 - (1-gamma3~2) 0.000

The Estimate column is identical to the Std.all column, so it worked. This example
shows that explicitly constraining error variances is an effective way to standardize en-
dogenous latent variables. However, it can be tedious for large, multistage models. By
using parameterEstimates(smodel8), one could automatically obtain 95% confidence
intervals for all the parameters, including the ones (¢, 12 and 13) that have been made
functionally dependent on other parameters.

Testing equal factor loadings Constraints are a handy way to specify null hypotheses
for likelihood ratio tests. They may be placed in the model string, but it’s preferable to
give them in the cfa or lavaan statement. That way, the same model string can be used
to specify the full model and the restricted model.

Suppose we wish to test equality of the second order factor loadings; the null hypothesis
is Hy : 71 = 72 = 73. The model under this null hypothesis is expressed as
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> smodel8HO = cfa(swineb, sample.cov=xcorr,

+ sample.nobs=145, sample.cov.rescale=FALSE,
+ constraints = ’gammal == gamma?2
+ gamma2 == gamma3’)

It’s often advisable to look at a summary of the restricted model, just to be sure that
nothing obvious has gone wrong. That step is not shown here. Then, the anova function
generates a likelihood ratio test. If p < 0.5, the null hypothesis given in the restricted
model is rejected at the 0.05 significance level.

> anova(smodel8HO,smodel8)
Chi-Squared Difference Test

Df  AIC  BIC Chisq Chisq diff Df diff Pr(>Chisq)
smodel8 12 3273.5 3371.7 9.8461
smodel18HO 14 3273.5 3365.8 13.8616 4.0155 2 0.1343

So, there’s insufficient evidence to conclude that the second-order factor loadings are
different. Or, one could say that the results are consistent with equal second-order factor
loadings®®.

To do this test with smodel7 (in which leading factor loadings equal one), realize
that under smodel8, the «; are exactly the correlations of Fy with Fj. They are also the
correlations of Fj with Fj, under the original model, and under the model of smodel?.
So for the model of smodel7, we seek to test the null hypothesis of equal correlations.
This implies some constraints on the parameters that are not at all intuitive. The result
is either a good homework problem or a place where I need to show my work?®.

For smodel7, the equations of the latent part of the model are

F1 = F() + €
Fy = mFy+e
F3 = ~3Fp+ €3,

with Var(Fy) = ¢, Var(ej) = ¢; for j = 1,2,3, and of course Fy independent of the ;.
The variances of the first-order factors are

Var(Fy) =¢+¢1,  Var(lh) =%o+v¢s,  Var(Fs) =256+ ¥y,
and
Cov(Fy, F1) = Cov(Fo,Fo+¢€) = ¢
Cov(Fy, Fy) = Cou(Fo, 72Fp +€) = 10
Cov(Fo, F3) = Cov(Fo,v3Fo+e€) = 139,

25As usual in applied statistics, we are not actively accepting the null hypothesis. For example, if we
say that the results are consistent with equal second-order factor loadings, what we really mean is that
they are not inconsistent with equal factor loadings. That is, the null hypothesis was not rejected.

26Maybe it’s both. Some students are surprised when they discover that the answers to many homework
problems are directly in the textbook. It’s a sneaky way to encourage students to read the text.
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so that Vo
_ o - 2
Corr(Fy, F1) = o(otvr)  Vorh
_ # — ’72\/5
Corr(Fy, I3) d(v30+12) VAot

p(V3d+ips) NETT

Since Corr(Fy, F1) > 0, the null hypothesis of equal correlations implies v, > 0 and
v3 > 0. Using this,

\/Q_b 72\/5
C Fy, F))=C Fy. F. —
orr(Fy, F1) orr(Fy, Fy) <~ Nz \/7§¢ -
— 1 _ V2
Vo + \/7%¢+ (2
— 72\/¢+7/11=\/722¢+¢2
= Yo+ 1) =150+ b
= P+ =50+ U
= Py =5 (3.37)
Similarly,
\/5 73\/5
Corr(Fy, F) = Corr(Fy, F -
orr(Fy, F1) orr(Fy, F3) <= NZE=D \/7§¢ —
— L s
Vo + \/’Y§¢+ )3
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— 7§(¢+¢1):7§¢+¢3
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= 3 =730 (3.38)
Finally,
C F ,F =C F ,F ’72\/6 _ 73\/5
orr(Fy, Fy) orr(Fy, F3) <= —722¢ = ES—
— 2 _ V3
VB0 + 12 130+ s
= 0\ + s =3/ 150 + e
= BB+ vs) =105+ o)
= B+ Vs = 13130 + V5
= s =5 (3.39)
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Only two of these constraints are necessary; any two imply the remaining one. One thing
that’s clear from all this so far is that even though the calculations are elementary, this
is a lot of work to set up just one null hypothesis. When the interest is in correlations, a
model with standardized variables is preferable. Since most of the work has been done,
let’s proceed.

In order to impose constraints on parameters in lavaan, the parameters involved must
be named in the model string. It’s convenient to assemble a new model string by adding
to swine3.

> cat(swine3)
visual =" x1 + x2+x3+xb+x6+x8+x9
verbal =" x4 + x2+x3+x5+x6+x8+x9
speed =" x7 + x2+x3+x5+x6+x8+x9
> part2 = ’# Second order measurement model
+ ability =" visual + gamma2*verbal + gamma3*speed
+ # Variances of error terms (epsilons)
+ visual 7 psil*visual; verbal 7 psi2*verbal; speed "7 psi3*speed ’
> swine6 = paste(swine3,part2)
> cat(swine6)
visual =" x1 + x2+x3+x5+x6+x8+x9
verbal =" x4 + x2+x3+x5+x6+x8+x9
speed =" x7 + x2+x3+x5+x6+x8+x9

# Second order measurement model

ability =" visual + gamma2*verbal + gamma3*speed

# Variances of error terms (epsilons)

visual 7 psil*visual; verbal 7 psi2*verbal; speed " psi3*speed

To test this code, I verified that it produced the same fit and parameter estimates as
smodel7 (starting on page 355), except with a few extra labels. Then I tried to fit the
model with the constraints (3.37) and (3.38).

> # Constraints are equivalent to equal correlations of FO with F_j. This is HO.
> smodel7HO = cfa(swine6, data = hs, constraints = ’psi2 == gamma2~2 * psil
+ psi3 == gamma2~3 * psil ’ )

It took a long time to run, which is almost always a bad sign. Then,
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Warning messages:
1: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable,
lavaan WARNING: the optimizer warns that a solution has NOT been found!
2: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats,
lavaan WARNING:
The variance-covariance matrix of the estimated parameters (vcov)
does not appear to be positive definite! The smallest eigenvalue
(= -2.656966e-21) is smaller than zero. This may be a symptom that
the model is not identified.
3: In lav_object_post_check(object)
lavaan WARNING: some estimated 1lv variances are negative

The parameters are identifiable in most of the parameter space, and the regions where they
are not identifiable do not correspond to the constraints. So, we can discount suggestion
that possibly “the model is not identified”— though typos can accidentally specify a model
that is not what one intends, and whose parameters are not identifiable. The warning
about negative variance estimates is helpful. Let’s look at a summary.

> summary (smodel7HO, standardized=TRUE)
lavaan 0.6-7 ended normally after 1336 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 33
Number of observations 145

Model Test User Model:

Test statistic 671.784
Degrees of freedom 14
P-value (Chi-square) 0.000

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:

Estimate Std.Err z-value PC>lzl) Std.lv Std.all

visual ="
x1 1.000 NA NA
x2 -0.002 0.001 -3.092 0.002 NA NA
x3 -0.004 0.000 -9.062 0.000 NA NA
x5 -0.005 0.000 -10.974 0.000 NA NA

x6 -0.001 0.001 -2.249 0.025 NA NA
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x8 -0.001 0.000 -1.795 0.073 NA NA
x9 -0.004 0.000 -10.413 0.000 NA NA
verbal =~
x4 1.000 NA NA
x2 2.116 0.000 32578611.185 0.000 NA NA
x3 3.977 0.000 39039739.233 0.000 NA NA
x5 8.504 0.000 15717415.576 0.000 NA NA
x6 5.219 0.000 94329059.781 0.000 NA NA
x8 -0.891 0.000 -5466418.974 0.000 NA NA
x9 1.521 0.000 14915452.630 0.000 NA NA
speed =~
x7 1.000 3.528 0.815
x2 0.116 0.000 18821.703 0.000 0.410 0.335
x3 0.217 0.000 34832.277 0.000 0.765 0.620
x5 0.394 0.000 11697 .369 0.000 1.390 0.934
x6 0.317 0.000 63860.916 0.000 1.117 0.747
x8 0.101 0.000 7754 .555 0.000 0.357 0.337
x9 0.218 0.000 19810.814 0.000 0.768 0.649
ability =~
visual 1.000 NA NA
verbal (gmm?2) 0.004 0.000 190959.565 0.000 NA NA
speed  (gmm3) -14577.264 -1.000 -1.000
Variances:
Estimate Std.Err =z-value P(>lz|) Std.lv Std.all
.visual (psil) -129.680 0.000 -20649480.153 0.000 NA NA
.verbal (psi2) -0.002 0.001 -1.772 0.076 NA NA
.speed (psi3) -0.000 -0.000 -0.000
.x1 131.055 0.000 20972882.910 0.000 131.055 95.304
.xX2 1.334 0.000 4375786.419 0.000 1.334 0.894
.x3 0.973 0.000 847631.935 0.000 0.973 0.640
.x5 0.441 0.000 33863.868 0.000 0.441 0.199
.x6 1.047 0.000 893652.826 0.000 1.047 0.468
.x8 0.992 0.000 929543.299 0.000 0.992 0.888
.x9 0.820 0.000 498369.776 0.000 0.820 0.584
.x4 1.533 0.000 13735738.550 0.000 1.533 1.001
X7 6.310 0.000 5932823.378 0.000 6.310 0.336
ability 0.000 1.000 1.000
Constraints:
|Slack]|
psi2 - (gamma2~2%psil) 0.000
psi3 - (gamma2~3#*psil) 0.000

# parTable(smodel7HO) # Start obeyed the constraints.

It can be beneficial too look at something this ugly. There are several indications that
the numerical search for the MLE went off the rails. The number of iterations was 1336,
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which is too many; smodel7 took 48 iterations, and smodel8 took 190. Also, many of
the supposed parameter estimates are really huge. Then there’s the 13 of -20649480.153.
This is an estimated wvariance. The output shows all the signs of a numerical search
that accidentally left the parameter space, found a direction that was slightly less bad
than where it landed, and then wandered off into nowhere until lavaan (or actually, the
underlying nlminb function) pulled the plug because of too many iterations.

The standard cure for this disease is better starting values. As we saw in the BMI
Health Study (Section 0.10.4, starting on page 89), providing a large number of starting
values can be a lot of work. There is an alternative that is promising in this case, but
which I have not tried. It’s to use the imposeStart function from the semTools package.
Using imposeStart, you are able to start a numerical search where another similar model
successfully finished. Just provide names for the parameters involved. Here, I would start
with the most of the estimates from smodel7; it would be necessary to provide labels for
the parameters whose estimates were to be used as starting values.

I did not do this, because it turned out that I did not need to. Hoping for the best,
I imposed the constraints (3.37) and (3.39) in place of (3.37) and (3.38). Even though
these two ways of expressing the null hypothesis are mathematically equivalent, numerical
software does not do all the math. I was guessing that the numerical details of imposing
the constraints would be sufficiently different so that the search would not get lost at the
same point as before. Presumably because I have been a good person my entire life, it
worked.

> # Try again, with different expression of the same constraints

> smodel7HO = cfa(swine6, data = hs,

+ constraints = ’psi2 == gamma2~2 * psil

+ gamma2~2 * psi3 == gamma3~2 * psi2 ’)
>

> # summary(smodel7HO) # Commented out

> anova(smodel7HO,smodel7)

Chi-Squared Difference Test

Df  AIC  BIC Chisq Chisq diff Df diff Pr(>Chisq)
smodel7 12 3494.1 3592.3 9.8461
smodel7HO 14 3494.1 3586.4 13.8616 4.0155 2 0.1343

The results are exactly the same as for anova(smodel8HO, smodel8) on page 361.

Two lessons may be learned from this last excursion. The first lesson is that it’s too
much work. If you are interested in an identifiable function of the original model parame-
ters, try to use a surrogate model in which that identifiable function is a model parameter.
Expressions (3.17) and (3.19) may be helpful, as may the discussion in Section 3.7. If
there is no such surrogate model, okay. But don’t make things more complicated than
they need to be.

The second lesson is narrow and technical, but unexpected. Suppose a restricted
model is being tested against an unrestricted model, and that the unrestricted model fits,
while the restricted model does not. Re-expressing the constraints in a mathematically
equivalent (and not necessarily simpler) way may be helpful.
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3.9 The Importance of Planning and Design

In the typical factor analytic study, the investigator hands out a bunch of questionnaires®’,
or invites people to complete the questionnaires online. Either way, the observable vari-
ables in the study are derived from the responses of the participants. Values of the
variables are all generated at more or less the same time and under more or less the same
circumstances. This unleashes a flood of very predictable common influences. The re-
spondents’ mood, recent experiences, view of the investigator, self-presentation strategies,
and guesses about the real purpose of the study — all of these latent variables and many
more may be assumed to affect the observable variables.

Chances are very good that such variables are not the focus of the study, and are
not among the hypothesized factors. That means they are incorporated into the error
terms, and because the same extraneous variables will impact more than one observable
variable, the result is non-zero covariances between error terms. These common influences
are numerous and we don’t know exactly what they are, so the most reasonable model
will include all possible covariances between error terms.

Such a model may be reasonable, but it is not useable. There are k observable vari-
ables, and an error term for each one. The covariance matrix of the observable variables,
3, is k X k, and the covariance matrix of the errors, €2, is also £ x k. There are already
as many unknown parameters as covariance structure equations, so the presence of even
a single common factor will violate the parameter count rule. Parameter identifiability
is out of reach, and so is consistent estimation. Trying to fit the model by maximum
likelihood is guaranteed to fail.

Of course, model with all possible covariances between the errors is not what the factor
analyst will try to fit. Instead, it is very common to assume a model in which all the
error terms are independent. The parameters of such a model may be identifiable, but the
model is mis-specified. That is, it’s not correct. Correlations between observable variables
will be taken as evidence for the operation of common factors, when in reality they are
due to correlations between errors.

How bad will it be? It’s really impossible to say. Certainly, parameter estimates will
be at least a little off, even for very large sample sizes. Maybe, the effects of the extraneous
unmeasured variables will be small compared to the effects of the common factors, and the
picture that emerges will be a fair reflection of reality in all essential respects. Or maybe,
the correlations between observed variables will be largely determined by the correlations
between error terms, making any conclusions from the analysis scientifically worthless.
It is impossible to tell, precisely because, apart from the background noise of sampling
error, what identifiable means is knowable.

When the model with independent errors is applied to data, it may fit and it may not.
If it does not fit, it could be that the correlations between errors have created a sample
covariance matrix that is inconsistent with the common factor part of the model. At least
there is a clue that something is wrong. If the model does fit, it may be that everything
is fairly close to being okay, but not necessarily. This is the case with the Holzinger and
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Swineford data of Section 3.8.

In any observational study, there will inevitably be omitted variables that can distort
the results. See Section 0.4 in Chapter 0 for a discussion of how this can affect ordinary
regression. However, the focus here is on a set of processes that specifically corrupt the
measurement process, and can be controlled.

First, the problem is worst when human subjects are involved, and are aware that
their behaviour is being assessed. In contrast, imagine a physical anthropology study in
which 14 measurements are to be conducted on a sample of 273 fossilized bones and bone
fragments. Measurement error is certainly going to occur, but it’s easy enough to minimize
correlations among the errors. Just randomize the order in which the measurements are
taken, over both bones and features. So for example, the person collecting the data will
first measure characteristic 6 on bone 47, then characteristic 11 on bone 122, and so
on. It’s a bit of extra work, but it would make a model with independent errors quite
reasonable.

Research design The key to the last example was collecting the data a bit differently.
This is an aspect of research design. That’s true in more difficult cases as well. This
chapter has introduced a good number of rules for establishing parameter identifiability,
but there are two big ones — the double measurement rule and the reference variable
rule®®. In both cases, the rules allow for subsets of variables whose error terms might
be correlated, but require zero correlation of the error terms for different subsets. For
examples, see the BMI health study of Section 0.10.4 and the Brand Awareness study
of Section 1.6. Section 3.4 on the reference variable rule also has examples, as well as
extended discussion of correlated measurement error and how the design allows for it.

The point here is that there are good alternatives to just handing out a bunch of
questionnaires and hoping for the best, but they require advance planning. In other
applications of statistics, especially in experiments with random assignment, it is com-
monplace to think of the research question, the statistical analysis and the details of data
collection all at the same time. Factor analysis should be no different. Of course, this
principle also holds when a factor analysis model is part of a larger structural equation
model.

28Why are these two the “big ones?” Because they grant entry to the system, establishing the param-
eters of a model or sub-model as identifiable. Then other rules may be used to expand the model or put
sub-models together.
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