Name \qquad
Student Number

STA 431 Quiz 2

1. (3 points) Let \mathbf{A} be a real, symmetric, positive definite matrix. Show that the eigenvalues of \mathbf{A} are all strictly positive. Start with the definition $\mathbf{A x}=\lambda \mathbf{x}$.
2. (3 points) Although eigenvectors are always non-zero, it is possible for an eigenvalue to equal zero. Let A be a square matrix, not necessarily symmetric, and let (λ, \mathbf{x}) be an (eigenvalue, eigenvector) pair with $\lambda=0$. Show that \mathbf{A} does not have an inverse.
3. (4 points) Let the $p \times 1$ random vector \mathbf{x} have expected value $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, and let \mathbf{A} be an $m \times p$ matrix of constants. Using the definition of a variance-covariance matrix on the formula sheet and familiar properties of expected value, derive the variance-covariance matrix of $\mathbf{A x}$.
