## Rotating the Principal Components ${ }^{1}$ STA431 Spring 2023

[^0]
## Summary

- Rotation is what makes exploratory factor analysis results understandable.
- R's stand-alone varimax function can also be used to rotate principal components.
- The result is a set of uncorrelated linear combinations of the variables that explain exactly the same amount of variance as the original components, but are easier to interpret.


## Setting

- Standardized data vector $\mathbf{z}$ is $k \times 1$
- $\operatorname{cov}(\mathbf{z})=\boldsymbol{\Sigma}$
- $\boldsymbol{\Sigma}=\mathbf{C D C}^{\top}$
- $\mathbf{y}=\mathbf{C}^{\top} \mathbf{z} \Longleftrightarrow \mathbf{z}=\mathbf{C y}$
- $\operatorname{cov}(\mathbf{y})=\mathbf{D}$


## Standardize and Select Principal Components

## Standardize first for convenience

- $\operatorname{cov}(\mathbf{y})=\mathbf{D}$
- Let $\mathbf{y}_{2}=\mathbf{D}^{-\frac{1}{2}} \mathbf{y}$
- $\operatorname{cov}\left(\mathbf{y}_{2}\right)=\mathbf{I}_{k}$

$$
\begin{aligned}
\operatorname{cor}(\mathbf{d}, \mathbf{y}) & =\operatorname{cov}\left(\mathbf{z}, \mathbf{y}_{2}\right) \\
& =\operatorname{cov}\left(\mathbf{z}, \mathbf{D}^{-\frac{1}{2}} \mathbf{y}\right) \\
& =\operatorname{cov}\left(\mathbf{z}, \mathbf{D}^{-\frac{1}{2}} \mathbf{C}^{\top} \mathbf{z}\right) \\
& =\operatorname{cov}(\mathbf{z}, \mathbf{z})\left(\mathbf{D}^{-\frac{1}{2}} \mathbf{C}^{\top}\right)^{\top} \\
& =\mathbf{\Sigma} \mathbf{C D}^{-\frac{1}{2}} \\
& =\mathbf{C D} \mathbf{C}^{\top} \mathbf{C D}^{-\frac{1}{2}} \\
& =\mathbf{C D}
\end{aligned}
$$

$\operatorname{cor}(\mathbf{z}, \mathbf{y})=\mathbf{C D}^{\frac{1}{2}}$ is a good matrix

- Square all the elements and get components of variance.
- Squared correlations add to one for each row.
- Squared correlations add to eigenvalues for each column.


## Squared correlations add to one for each row.

 $\operatorname{cor}(\mathbf{z}, \mathbf{y})=\mathbf{C D}^{\frac{1}{2}}$Look at diagonal elements of

$$
\begin{aligned}
\mathbf{C D}^{\frac{1}{2}}\left(\mathbf{C D}^{\frac{1}{2}}\right)^{\top} & =\mathbf{C D}^{\frac{1}{2}} \mathbf{D}^{\frac{1}{2}} \mathbf{C}^{\top} \\
& =\mathbf{C D C}^{\top} \\
& =\mathbf{\Sigma}=\operatorname{cov}(\mathbf{z})
\end{aligned}
$$

Diagaonal elements are all ones.

## Squared correlations add to eigenvalues for each column

 $\operatorname{cor}(\mathbf{z}, \mathbf{y})=\mathbf{C D}^{\frac{1}{2}}$Look at diagonal elements of

$$
\begin{aligned}
\left(\mathbf{C D}^{\frac{1}{2}}\right)^{\top} \mathbf{C D}^{\frac{1}{2}} & =\mathbf{D}^{\frac{1}{2}} \mathbf{C}^{\top} \mathbf{C D}^{\frac{1}{2}} \\
& =\mathbf{D}^{\frac{1}{2}} \mathbf{D}^{\frac{1}{2}} \\
& =\mathbf{D}
\end{aligned}
$$

Eigenvalues.

## Select First $p$ principal Components

Probably those with eigenvalues greater than one

$$
\begin{aligned}
\mathbf{z} & =\mathbf{C y} \\
& =\mathbf{C D}^{\frac{1}{2}} \mathbf{D}^{-\frac{1}{2}} \mathbf{y} \\
& =\underbrace{\mathbf{C D}^{\frac{1}{2}}}_{k \times k} \underbrace{\mathbf{y}_{2}}_{k \times 1} \\
& =(\underbrace{\mathbf{L}}_{k \times p} \mid \underbrace{\mathbf{M}}_{k \times(k-p)})\left(\frac{\mathbf{f}}{\mathbf{g}}\right) \leftarrow\left(\begin{array}{l}
\leftarrow \times 1 \\
\leftarrow(k-p) \times 1 \\
\\
\end{array}\right)=\mathbf{L} \mathbf{f}+\mathbf{M g} \\
& =\mathbf{L} \mathbf{f}+\mathbf{e}
\end{aligned}
$$

## $\mathrm{z}=\mathbf{L f}+\mathbf{e}$

- It looks like a factor analysis model.
- f contains the first $p$ principal components, standardized.
- $\operatorname{cov}(\mathbf{f})=\mathbf{I}_{p}$.
- $\mathbf{L}$ contains the first $p$ columns of $\operatorname{cor}(\mathbf{d}, \mathbf{y})=\mathbf{C D}^{\frac{1}{2}}$.
- Recalling

$$
\begin{aligned}
\mathbf{z} & =(\mathbf{L} \mid \mathbf{M})\left(\frac{\mathbf{f}}{\mathbf{g}}\right) \\
& =\mathbf{L f}+\mathbf{M g} \\
& =\mathbf{L f}+\mathbf{e}
\end{aligned}
$$

have $\operatorname{cov}(\mathbf{f}, \mathbf{e})=\mathbf{O}$.

- Results for factor analysis apply:
- Components of variance explained by $\mathbf{f}$ are squared correlations.
- Communalities (explained variance of each variable) are not affected by rotation.


## Rotate

$$
\begin{aligned}
\mathbf{z} & =\mathbf{L} \mathbf{f}+\mathbf{e} \\
& =\mathbf{L} \mathbf{R}^{\top} \mathbf{R} \mathbf{f}+\mathbf{e} \\
& =\left(\mathbf{L R}^{\top}\right)(\mathbf{R} \mathbf{f})+\mathbf{e} \\
& =\mathbf{L}_{2} \mathbf{f}^{\prime}+\mathbf{e},
\end{aligned}
$$

where $\mathbf{L}_{2}$ is the "rotated factor matrix," and $\mathbf{f}^{\prime}$ are the rotated principal components.

## $\mathbf{z}=\mathbf{L}_{2} \mathbf{f}^{\prime}+\mathbf{e}$

- $\operatorname{cov}\left(\mathbf{f}^{\prime}\right)=\mathbf{I}_{p}$, so the rotated components are still uncorrelated.
- $\operatorname{cov}\left(\mathbf{z}, \mathbf{f}^{\prime}\right)=\mathbf{L}_{2}$ is a matrix of correlations.
- You can examine $\widehat{\mathbf{L}}_{2}$ to determine what the rotated factors mean in terms of the original variables.
- Rotation affects how much variance each component explains, but not the total amount of variance explained.
- Rotation does not affect the amount of explained variance for each variable.


## In Practice it's Very Simple

- Extract sample principal components. and decide how many to keep.
- Put the ones you decide to keep in $\mathbf{Y}_{n \times p}$.
- Apply a varimax rotation to estimated $\operatorname{cor}(\mathbf{D}, \mathbf{Y})$. This is $\widehat{L}_{2}$.
- If you like the result,
- Standardize the principal components in $\mathbf{Y}$, using $n$ in the denominator. Call the result $\mathbf{W}$. The rows of $\mathbf{W}$ are approximately $\mathbf{f}_{1}, \ldots \mathbf{f}_{n}$.
- Compute $\mathbf{W R}^{\top}$, where $\mathbf{R}^{\top}$ is the rotation matrix located by varimax.
- The rows are the rotated sample principal components.


## Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23


[^0]:    ${ }^{1}$ See last slide for copyright information.

