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Principal Components

Principal Components Analysis is not Factor Analysis

Factor analysis is the measurement model: d = ΛF + e.

��
��

F d- e�

Principal components are observable linear combinations:
y = C>d.

d y-

Still, principal components and factor analysis have notable
similarities and are frequently confused.
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Principal Components

Data Reduction

Suppose you have a large number of variables that are correlated
with one another.

Principal components analysis allows you to find a smaller set of
linear combinations of the variables.

There linear combinations may contain most of the variation in
the original set.

Use a few linear combinations in place of the entire data set.
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Principal Components

Our Version
Standardized

There are k observable variables, standardized: zj =
xj−µj
σj

.

E(z) = 0, and cov(z) = Σ, a correlation matrix.

Σ = CDC>

y = C>z are the principal components of z.

A set of k linear combinations.
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Principal Components

Rotation

Because CC> = I, C and C> are orthogonal matrices.

Geometrically, multiplying a point by an orthogoanal matrix gives
the location of the point in a new co-ordinate axis system, where
the original axes have been rotated.

For the multivariate normal, contours of constant probability
density are ellipsoids.

In principal components, the axes of the new co-ordinate system
line up with the principal axes of the ellipsoids.
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Principal Components

Mean and Covariance Matrix
Of principal components y = C>z

E(y) = 0, and

cov(y) = cov(C>z)

= C>cov(z)C

= C>ΣC

= C>C D C>C

= D

So covariances of the principal components are all zero, and their
variances are the eigenvalues.
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Principal Components

y = C>z ⇐⇒ z = Cy

In scalar form,

z1 = c11y1 + c12y2 + · · ·+ c1kyk

z2 = c21y1 + c22y2 + · · ·+ c2kyk
...

...

zk = ck1y1 + ck2y2 + · · ·+ ckkyk.

So because the elements of y are uncorrelated,

V ar(zj) = V ar(cj1y1 + cj2y2 + · · ·+ cjkyk)

= c2j1V ar(y1) + c2j2V ar(y2) + · · ·+ c2jkV ar(yk)

= c2j1λ1 + c2j2λ2 + · · ·+ c2jkλk = 1.
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Principal Components

Components of Variance

From

V ar(zj) = V ar(cj1y1 + cj2y2 + · · ·+ cjkyk)

= c2j1V ar(y1) + c2j2V ar(y2) + · · ·+ c2jkV ar(yk)

= c2j1λ1 + c2j2λ2 + · · ·+ c2jkλk = 1.

we see

The variance of zj is decomposed into the part explained by y1,
the part explained by y2, and so on.

Specifically, y1 explains c2j1λ1 of the variance, y2 explains c2j2λ2 of
the variance, etc..

Because zj is standardized, these are proportions of variance.

8 / 16



Principal Components

Squared Correlations

Using the fact that cov(yi, yj) = 0 for i 6= j,

Cov(zi, yj) = Cov(ci1y1 + ci2y2 + · · ·+ cijyj + · · ·+ cjkyk, yj)

= cijCov(yj , yj)

= cijλj .

Then,

Corr(zi, yj) =
Cov(zi, yj)

SD(zi)SD(yj)

=
cijλj

1
√
λj

= cij
√
λj ,

and the squared correlation between zi and yj is c2ijλj .
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Principal Components

Squared correlation between zi and yj is c
2
ijλj

And using V ar(zj) = c2j1λ1 + c2j2λ2 + · · ·+ c2jkλk

V ar(z1) = c211λ1 + c212λ2 + · · ·+ c21kλk

V ar(z2) = c221λ1 + c222λ2 + · · ·+ c22kλk
...

...

V ar(zk) = c2k1λ1 + c2k2λ2 + · · ·+ c2kkλk.

The pieces of variance being added up are the squared correlations
between the original variables and the principal components.
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Principal Components

A Matrix of Squared Correlations
Components of Variance

Element i, j is Corr(zi, yj)
2

y1 y1 · · · yk

z1 c211λ1 c212λ2 · · · c21kλk
z2 c221λ1 c222λ2 · · · c22kλk
...

...
...

. . .
...

zk c2k1λ1 c2k2λ2 · · · c2kkλk

If you add the entries in any row, you get one.

Adding the entries in a column yields the total amount of variance in the
original variables that is explained by that principal component.

The sum of entries in column j is

k∑
i=1

c2ijλj = λj

k∑
i=1

c2ij

= λj · 1 = λj
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Principal Components

Meaning of the Eigenvalues of Σ

y1 y1 · · · yk

z1 c211λ1 c212λ2 · · · c21kλk

z2 c221λ1 c222λ2 · · · c22kλk
...

...
...

. . .
...

zk c2k1λ1 c2k2λ2 · · · c2kkλk

λ1 λ2 · · · λk

The eigenvalues are both the variances of the principal components and
the amounts of variance in the original variables that are explained by
the respective principal components.
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Principal Components

It gets better

A theorem says

y1 has the greatest possible variance of any linear combination
whose squared weights add up to one.

y2 is the linear combination that has the greatest variance subject
to the constraints that it’s orthogonal to y1 and its squared
weights add to one.

y3 is the linear combination that has the greatest variance subject
to the constraints that it’s orthogonal to y1 and y2, and its
squared weights add to one.

And so on.

It’s a kind of optimality.
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Principal Components

Data reduction

If the correlations among the original variables are substantial, the
first few eigenvalues will be relatively large.

The data reduction idea is to retain only the first several principal
components, the ones that contain most of the variation in the
original variables.

The expectation is that they will capture most of the meaningful
variation.

Conventional choice is to retain components with eigenvalues
greater than one.
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Sample Principal Components

Sample Principal Components

Of course we don’t know Σ, and we don’t know means and
standard deviations to standardize.

So use the sample versions.

Z is an n× k matrix of standardized variables.

Independent (almost independent) random vectors are row vectors.

Let Y = ZĈ. Rows are sample principal components.

All formulas apply to sample principal components, provided we
use n in the denominators and not n− 1.

Principal components regression.
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Sample Principal Components

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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