Principal Components ${ }^{1}$ STA431 Spring 2023

[^0]
Principal Components Analysis is not Factor Analysis

- Factor analysis is the measurement model: $\mathbf{d}=\mathbf{\Lambda F}+\mathbf{e}$.

- Principal components are observable linear combinations: $\mathbf{y}=\mathbf{C}^{\top} \mathbf{d}$.

- Still, principal components and factor analysis have notable similarities and are frequently confused.

Data Reduction

- Suppose you have a large number of variables that are correlated with one another.
- Principal components analysis allows you to find a smaller set of linear combinations of the variables.
- There linear combinations may contain most of the variation in the original set.
- Use a few linear combinations in place of the entire data set.

Our Version

Standardized

- There are k observable variables, standardized: $z_{j}=\frac{x_{j}-\mu_{j}}{\sigma_{j}}$.
- $E(\mathbf{z})=\mathbf{0}$, and $\operatorname{cov}(\mathbf{z})=\mathbf{\Sigma}$, a correlation matrix.
- $\boldsymbol{\Sigma}=\mathbf{C D C}^{\top}$
- $\mathbf{y}=\mathbf{C}^{\top} \mathbf{z}$ are the principal components of \mathbf{z}.
- A set of k linear combinations.

Rotation

- Because $\mathbf{C C}^{\top}=\mathbf{I}, \mathbf{C}$ and \mathbf{C}^{\top} are orthogonal matrices.
- Geometrically, multiplying a point by an orthogoanal matrix gives the location of the point in a new co-ordinate axis system, where the original axes have been rotated.
- For the multivariate normal, contours of constant probability density are ellipsoids.
- In principal components, the axes of the new co-ordinate system line up with the principal axes of the ellipsoids.

Mean and Covariance Matrix
 Of principal components $\mathbf{y}=\mathbf{C}^{\top} \mathbf{z}$

$E(\mathbf{y})=\mathbf{0}$, and

$$
\begin{aligned}
\operatorname{cov}(\mathbf{y}) & =\operatorname{cov}\left(\mathbf{C}^{\top} \mathbf{z}\right) \\
& =\mathbf{C}^{\top} \operatorname{cov}(\mathbf{z}) \mathbf{C} \\
& =\mathbf{C}^{\top} \mathbf{\Sigma} \mathbf{C} \\
& =\mathbf{C}^{\top} \mathbf{C} \mathbf{D}^{\top} \mathbf{C} \\
& =\mathbf{D}
\end{aligned}
$$

So covariances of the principal components are all zero, and their variances are the eigenvalues.

$\mathrm{y}=\mathrm{C}^{\top} \mathrm{z} \Longleftrightarrow \mathrm{z}=\mathrm{Cy}$

In scalar form,

$$
\begin{array}{rcc}
z_{1} & = & c_{11} y_{1}+c_{12} y_{2}+\cdots+c_{1 k} y_{k} \\
z_{2} & = & c_{21} y_{1}+c_{22} y_{2}+\cdots+c_{2 k} y_{k} \\
\vdots & \vdots \\
z_{k} & = & c_{k 1} y_{1}+c_{k 2} y_{2}+\cdots+c_{k k} y_{k}
\end{array}
$$

So because the elements of \mathbf{y} are uncorrelated,

$$
\begin{aligned}
\operatorname{Var}\left(z_{j}\right) & =\operatorname{Var}\left(c_{j 1} y_{1}+c_{j 2} y_{2}+\cdots+c_{j k} y_{k}\right) \\
& =c_{j 1}^{2} \operatorname{Var}\left(y_{1}\right)+c_{j 2}^{2} \operatorname{Var}\left(y_{2}\right)+\cdots+c_{j k}^{2} \operatorname{Var}\left(y_{k}\right) \\
& =c_{j 1}^{2} \lambda_{1}+c_{j 2}^{2} \lambda_{2}+\cdots+c_{j k}^{2} \lambda_{k}=1 .
\end{aligned}
$$

Components of Variance

From

$$
\begin{aligned}
\operatorname{Var}\left(z_{j}\right) & =\operatorname{Var}\left(c_{j 1} y_{1}+c_{j 2} y_{2}+\cdots+c_{j k} y_{k}\right) \\
& =c_{j 1}^{2} \operatorname{Var}\left(y_{1}\right)+c_{j 2}^{2} \operatorname{Var}\left(y_{2}\right)+\cdots+c_{j k}^{2} \operatorname{Var}\left(y_{k}\right) \\
& =c_{j 1}^{2} \lambda_{1}+c_{j 2}^{2} \lambda_{2}+\cdots+c_{j k}^{2} \lambda_{k}=1 .
\end{aligned}
$$

we see

- The variance of z_{j} is decomposed into the part explained by y_{1}, the part explained by y_{2}, and so on.
- Specifically, y_{1} explains $c_{j 1}^{2} \lambda_{1}$ of the variance, y_{2} explains $c_{j 2}^{2} \lambda_{2}$ of the variance, etc..
- Because z_{j} is standardized, these are proportions of variance.

Squared Correlations

Using the fact that $\operatorname{cov}\left(y_{i}, y_{j}\right)=0$ for $i \neq j$,

$$
\begin{aligned}
\operatorname{Cov}\left(z_{i}, y_{j}\right) & =\operatorname{Cov}\left(c_{i 1} y_{1}+c_{i 2} y_{2}+\cdots+c_{i j} y_{j}+\cdots+c_{j k} y_{k}, y_{j}\right) \\
& =c_{i j} \operatorname{Cov}\left(y_{j}, y_{j}\right) \\
& =c_{i j} \lambda_{j}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{Corr}\left(z_{i}, y_{j}\right) & =\frac{\operatorname{Cov}\left(z_{i}, y_{j}\right)}{S D\left(z_{i}\right) S D\left(y_{j}\right)} \\
& =\frac{c_{i j} \lambda_{j}}{1 \sqrt{\lambda_{j}}}=c_{i j} \sqrt{\lambda_{j}}
\end{aligned}
$$

and the squared correlation between z_{i} and y_{j} is $c_{i j}^{2} \lambda_{j}$.

Squared correlation between z_{i} and y_{j} is $c_{i j}^{2} \lambda_{j}$

 And using $\operatorname{Var}\left(z_{j}\right)=c_{j 1}^{2} \lambda_{1}+c_{j 2}^{2} \lambda_{2}+\cdots+c_{j k}^{2} \lambda_{k}$$$
\begin{aligned}
\operatorname{Var}\left(z_{1}\right) & =c_{11}^{2} \lambda_{1}+c_{12}^{2} \lambda_{2}+\cdots+c_{1 k}^{2} \lambda_{k} \\
\operatorname{Var}\left(z_{2}\right)= & c_{21}^{2} \lambda_{1}+c_{22}^{2} \lambda_{2}+\cdots+c_{2 k}^{2} \lambda_{k} \\
\vdots & \vdots \\
\operatorname{Var}\left(z_{k}\right)= & c_{k 1}^{2} \lambda_{1}+c_{k 2}^{2} \lambda_{2}+\cdots+c_{k k}^{2} \lambda_{k} .
\end{aligned}
$$

The pieces of variance being added up are the squared correlations between the original variables and the principal components.

A Matrix of Squared Correlations

Components of Variance

Element i, j is $\operatorname{Corr}\left(z_{i}, y_{j}\right)^{2}$

	y_{1}	y_{1}	\cdots	y_{k}
z_{1}	$c_{11}^{2} \lambda_{1}$	$c_{12}^{2} \lambda_{2}$	\cdots	$c_{1 k}^{2} \lambda_{k}$
z_{2}	$c_{21}^{2} \lambda_{1}$	$c_{22}^{2} \lambda_{2}$	\cdots	$c_{2 k}^{2} \lambda_{k}$
\vdots	\vdots	\vdots	\ddots	\vdots
z_{k}	$c_{k 1}^{2} \lambda_{1}$	$c_{k 2}^{2} \lambda_{2}$	\cdots	$c_{k k}^{2} \lambda_{k}$

- If you add the entries in any row, you get one.
- Adding the entries in a column yields the total amount of variance in the original variables that is explained by that principal component.
- The sum of entries in column j is

$$
\begin{aligned}
\sum_{i=1}^{k} c_{i j}^{2} \lambda_{j} & =\lambda_{j} \sum_{i=1}^{k} c_{i j}^{2} \\
& =\lambda_{j} \cdot 1=\lambda_{j}
\end{aligned}
$$

Meaning of the Eigenvalues of $\boldsymbol{\Sigma}$

	y_{1}	y_{1}	\cdots	y_{k}			
z_{1}	$c_{11}^{2} \lambda_{1}$	$c_{12}^{2} \lambda_{2}$	\cdots	$c_{1 k}^{2} \lambda_{k}$			
z_{2}	$c_{21}^{2} \lambda_{1}$	$c_{22}^{2} \lambda_{2}$	\cdots	$c_{2 k}^{2} \lambda_{k}$			
\vdots	\vdots	\vdots	\ddots	\vdots			
z_{k}	$c_{k 1}^{2} \lambda_{1}$	$c_{k 2}^{2} \lambda_{2}$	\cdots	$c_{k k}^{2} \lambda_{k}$			
λ_{1}							
λ_{2}						\cdots	λ_{k}

The eigenvalues are both the variances of the principal components and the amounts of variance in the original variables that are explained by the respective principal components.

It gets better

A theorem says

- y_{1} has the greatest possible variance of any linear combination whose squared weights add up to one.
- y_{2} is the linear combination that has the greatest variance subject to the constraints that it's orthogonal to y_{1} and its squared weights add to one.
- y_{3} is the linear combination that has the greatest variance subject to the constraints that it's orthogonal to y_{1} and y_{2}, and its squared weights add to one.
- And so on.
- It's a kind of optimality.

Data reduction

- If the correlations among the original variables are substantial, the first few eigenvalues will be relatively large.
- The data reduction idea is to retain only the first several principal components, the ones that contain most of the variation in the original variables.
- The expectation is that they will capture most of the meaningful variation.
- Conventional choice is to retain components with eigenvalues greater than one.

Sample Principal Components

- Of course we don't know $\boldsymbol{\Sigma}$, and we don't know means and standard deviations to standardize.
- So use the sample versions.
- \mathbf{Z} is an $n \times k$ matrix of standardized variables.
- Independent (almost independent) random vectors are row vectors.
- Let $\mathbf{Y}=\mathbf{Z} \widehat{\mathbf{C}}$. Rows are sample principal components.
- All formulas apply to sample principal components, provided we use n in the denominators and not $n-1$.
- Principal components regression.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/431s23

[^0]: ${ }^{1}$ See last slide for copyright information.

