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Omitted Variables

A Practical Data Analysis Problem

When more explanatory variables are added to a regression model and
these additional explanatory variables are correlated with explanatory
variables already in the model (as they usually are in an observational
study),

Statistical significance can appear when it was not present
originally.

Statistical significance that was originally present can disappear.

Even the signs of the β̂s can change, reversing the interpretation of
how their variables are related to the response variable.
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Omitted Variables

An extreme, artificial example
To make a point

Suppose that in a certain population, the correlation between age and
strength is r = −0.93.
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Omitted Variables

The fixed x regression model

Yi = β0 + β1xi,1 + · · ·+ βkxi,p−1 + εi

= x>i β + εi,

with ε1 . . . , εn
i.i.d.∼ N(0, σ2).

If viewed as conditional on Xi = xi, this model implies
independence of εi and Xi, because the conditional distribution of
εi given Xi = xi does not depend on xi.
What is εi? Everything else that affects Yi.
So the usual model says that if the explanatory varables are
random, they have zero covariance with all other variables that are
related to Yi, but are not included in the model.
For observational data (no random assignment), this assumption is
almost always violated.
Does it matter?
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Omitted Variables

Example: Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi
As usual, the explanatory variables are random.

Suppose that the variables X2 and X3 affect Y and are correlated with
X1, but they are not part of the data set.

X
1

Y

ε

β
3

β
2

β
1

X
2

X
3
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Omitted Variables

Statement of the model
The explanatory variables X2 and X3 influence Y and are correlated with X1, but
they are not part of the data set.

The values of the response variable are generated as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi,

independently for i = 1, . . . , n, where εi ∼ N(0, σ2). The explanatory
variables are random, with expected value and variance-covariance
matrix

E

 Xi,1

Xi,2

Xi,3

 =

 µ1
µ2
µ3

 and cov

 Xi,1

Xi,2

Xi,3

 =

 φ11 φ12 φ13
φ22 φ23

φ33

 ,

where εi is independent of Xi,1, Xi,2 and Xi,3. Values of the variables
Xi,2 and Xi,3 are latent, and are not included in the data set.
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Omitted Variables

Absorb X2 and X3

Since X2 and X3 are not observed, they are absorbed by the intercept
and error term.

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi

= (β0 + β2µ2 + β3µ3) + β1Xi,1 + (β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β′
0 + β1Xi,1 + ε′i.

And,

Cov(Xi,1, ε
′
i) = Cov(Xi,1, β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β2Cov(Xi,1, Xi,2) + β3Cov(Xi,1, Xi,3) + Cov(Xi,1, εi)

= β2φ12 + β3φ13 6= 0.
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Omitted Variables

The “True” Regression Model
Almost always closer to the truth than the usual model, for observational data

Yi = β0 + β1Xi + εi,

where E(Xi) = µx, V ar(Xi) = σ2x, E(εi) = 0, V ar(εi) = σ2ε , and
Cov(Xi, εi) = c.

Under this model,

σxy = Cov(Xi, Yi) = Cov(Xi, β0 + β1Xi + εi) = β1σ
2
x + c
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Omitted Variables

Estimate β1 as usual with least squares
Recall Cov(Xi, Yi) = σxy = β1σ

2
x + c

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=
1
n

∑n
i=1(Xi −X)(Yi − Y )
1
n

∑n
i=1(Xi −X)2

=
σ̂xy
σ̂2x

p→ σxy
σ2x

=
β1σ

2
x + c

σ2x

= β1 +
c

σ2x
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Omitted Variables

β̂1
p→ β1 + c

σ2
x

It converges to the wrong thing.

β̂1 is inconsistent.

For large samples it could be almost anything, depending on the
value of c, the covariance between Xi and εi.

Small sample estimates could be accurate, but only by chance.

The only time β̂1 behaves properly is when c = 0.

Test H0 : β1 = 0: Probability of making a Type I error goes to one
as n→∞.
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Omitted Variables

All this applies to multiple regression
Of course

When a regression model fails to include all the explanatory variables
that contribute to the response variable, and those omitted explanatory
variables have non-zero covariance with variables that are in the model,
the regression coefficients are inconsistent.

Estimation and inference are almost guaranteed to be misleading,
especially for large samples.
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Omitted Variables

Correlation-Causation

The problem of omitted variables is a technical aspect of the
correlation-causation issue.

The omitted variables are “confounding” variables.

With random assignment and good procedure, x and ε have zero
covariance.

But random assignment is not always possible.

Most applications of regression to observational data provide very
poor information about the regression coefficients.

Is bad information better than no information at all?
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Omitted Variables

How about another estimation method?
Other than ordinary least squares

Can any other method be successful?

This is a very practical question, because almost all regressions
with observational data have the disease.
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Omitted Variables

For simplicity, assume normality
Yi = β0 + β1Xi + εi

Assume (Xi, εi) are bivariate normal.

This makes (Xi, Yi) bivariate normal.

(X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ N2(µ,Σ), where

µ =

(
µ1
µ2

)
=

(
µx

β0 + β1µx

)
and

Σ =

(
σ11 σ12

σ22

)
=

(
σ2x β1σ

2
x + c

β21σ
2
x + 2β1c+ σ2ε

)
.

All you can ever learn from the data are the approximate values of
µ and Σ.

Even if you knew µ and Σ exactly, could you know β1?
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Omitted Variables

Five equations in six unknowns

The parameter is θ = (µx, σ
2
x, σ

2
ε , c, β0, β1). The distribution of the data

is determined by

(
µ1

µ2

)
=

(
µx

β0 + β1µx

)
and

(
σ11 σ12

σ22

)
=

(
σ2
x β1σ

2
x + c

β2
1σ

2
x + 2β1c+ σ2

ε

)

µx = µ1 and σ2x = σ11.

The remaining 3 equations in 4 unknowns have infinitely many
solutions.

So infinitely many sets of parameter values yield the same
distribution of the sample data.

This is serious trouble – lack of parameter identifiability.

Definition: If a parameter is a function of the distribution of the
observable data, it is said to be identifiable.
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Omitted Variables

Showing identifiability

Definition: If a parameter is a function of the distribution of the
observable data, it is said to be identifiable.

How could a parameter be a function of a distribution?

d ∼ Fθ and θ = g(Fθ)

Usually g is defined in terms of moments.

Example: Fθ(x) = 1− e−θx and fθ(x) = θe−θx for x > 0.

fθ(x) =
d

dx
Fθ(x)

E(X) =

∫ ∞
0

xfθ(x) dx =
1

θ

θ =
1

E(X)

Sometimes people use moment-generating functions or characteristic
functions instead of just moments.
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Omitted Variables

Showing identifiability is like Method of Moments
Estimation

The distribution of the data is always a function of the parameters.

The moments are always a function of the distribution of the data.

If the parameters can be expressed as a function of the moments,

Put hats on to obtain MOM estimates,
Or observe that the parameter is a function of the distribution, and
so is identifiable.
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Omitted Variables

Back to the five equations in six unknowns
Yi = β0 + β1Xi + εi

di =

(
Xi

Yi

)
∼ N2(µ,Σ), where

µ =

(
µ1
µ2

)
=

(
µx

β0 + β1µx

)

Σ =

(
σ11 σ12
· σ22

)
=

(
σ2x β1σ

2
x + c

· β21σ
2
x + 2β1c+ σ2ε

)

We have expressed the moments in terms of the parameters, but we
can’t solve for θ = (µx, σ

2
x, σ

2
ε , c, β0, β1).
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Omitted Variables

Skipping the High School algebra
θ = (µx, σ

2
x, σ

2
ε , c, β0, β1)

For any given µ and Σ, all the points in a one-dimensional subset
of the 6-dimensional parameter space yield µ and Σ, and hence
the same distribution of the sample data.

In that subset, values of β1 range from −∞ to −∞, so µ and Σ
could have been produced by any value of β1.

There is no way to distinguish between the possible values of β1
based on sample data.

The problem is fatal, if all you can observe is X and Y .
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Instrumental Variables

Instrumental Variables (Wright, 1928)
A partial solution

An instrumental variable is a variable that is correlated with an explanatory
variable, but is not correlated with any error terms and has no direct
connection to the response variable.

x

yε

β c ε
1

z

β

An instrumental variable is often not the main focus of attention; it’s just a
tool.

The usual definition is that conditionally on the x variables, the instrumental
variables are independent of all the other variables in the model.

In Econometrics, the instrumental variable usually influences the explanatory
variable.
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Instrumental Variables

Model One: A Simple Example

What is the contribution of income to credit card debt?

Yi = β0 + β1Xi + εi,

where E(Xi) = µx, V ar(Xi) = σ2x, E(εi) = 0, V ar(εi) = σ2ε , and
Cov(Xi, εi) = c.
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Instrumental Variables

A path diagram of Model One

Yi = α+ βXi + εi, where E(Xi) = µ, V ar(Xi) = σ2x, E(εi) = 0,
V ar(εi) = σ2ε , and Cov(Xi, εi) = c.

X

Yε

βc

The least squares estimate of β is inconsistent, and so is every other
possible estimate. (This is strictly true if the data are normal.)
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Instrumental Variables

Model Two: Add an instrumental variable

An instrumental variable for an explanatory variable is another
random variable that has non-zero covariance with the explanatory
variable, and no direct connection with any other variable in the model.

Focus the study on real estate agents in many cities. Include median
price of resale home.

X is income.

Y is credit card debt.

Z is median price of resale home.

Xi = α1 + β1Zi + εi1

Yi = α2 + β2Xi + εi2
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Instrumental Variables

Picture of Model Two
Zi is median price of resale home, Xi is income, Yi is credit card debt.

Xi = α1 + β1Zi + εi1

Yi = α2 + β2Xi + εi2

X

Yε
2

β

c

ε
1

β
1 Z

β
2

Main interest is in β2.
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Instrumental Variables

Statement of Model Two
Zi is median price of resale home, Xi is income, Yi is credit card debt.

Xi = α1 + β1Zi + εi1

Yi = α2 + β2Xi + εi2,

where

E(Zi) = µz, V ar(Zi) = σ2z .

E(εi1) = 0, V ar(εi1) = σ21.

E(εi2) = 0, V ar(εi2) = σ22.

Cov(εi1, εi2) = c.

Zi is independent of εi1 and εi2.
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Instrumental Variables

Calculate the covariance matrix of the observable data
for Model Two. Call it Σ = [σij]

From Xi = α1 + β1Zi + εi1 and Yi = α2 + β2Xi + εi2, get the symmetric
matrix

Σ =

X Y Z

X β21σ
2
z + σ21 β2(β

2
1σ

2
z + σ21) + c β1σ

2
z

Y · β21β
2
2σ

2
z + β22σ

2
1 + 2β2c+ σ22 β1β2σ

2
z

Z · · σ2z

β2 =
σ23
σ13
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Instrumental Variables

Parameter Estimation for Model Two
Xi = α1 + β1Zi + εi1 and Yi = α2 + β2Xi + εi2

Σ =

Z X Y

Z σ2
w β1σ

2
w β1β2σ

2
w

X · β2
1σ

2
w + σ2

1 β2(β2
1σ

2
w + σ2

1) + c

Y · · β2
1β

2
2σ

2
w + β2

2σ
2
1 + 2β2c+ σ2

2

β̂2 = σ̂23
σ̂13

All the other parameters are identifiable too.

The instrumental variable saved us.

There are 9 model parameters, and 9 moments in µ and Σ.

The invariance principle yields explicit formulas for the MLEs.

If the data are normal, MLEs equal the Method of Moments
estimates because they are both 1-1 with the moments.
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Instrumental Variables

Model Three: Matrix Version of Instrumental Variables
The usual rule is at least one instrumental variable for each explanatory variable.

x

yε

β c ε
1

z

β

Κ

C

Ç
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Instrumental Variables

Model Three is a Multivariate Regression Model
yi = β0 + β1xi + εi

With these additional stipulations

cov(xi, εi) = ÇÇÇ, a p× q matrix of covariances.
There are at least p instrumental variables. Put the best p in the
random vector zi.
cov(xi, zi) = κ, p× p matrix of covariances. Assume κ has an
inverse.
cov(zi) = Φz.

x

yε

β c ε
1

z

β

Κ

C

Ç
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Instrumental Variables

Moments for Model Three
yi = β0 + β1xi + εi, cov(xi, εi) = ÇÇÇ, cov(xi, zi) = κ, cov(zi) = Φz

µ = E

 xi

yi

zi

 =

 µx

β0 + β1µx

µz



Σ = cov


xi

yi

zi

 =


Φx Φxβ

>
1 + ÇÇÇ κ

β1Φx + ÇÇÇ> β1Φxβ
>
1 + β1ÇÇÇ + ÇÇÇ>β>

1 + Ψ β1κ

κ> κ>β>
1 Φz
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Instrumental Variables

Solve for the parameters from the moments
For Model Three

Proving identifiability, so consistent estimation is possible.

Obtain method of moments estimators.
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Instrumental Variables

Start with the covariance matrix Σ
Parameters in the covariance matrix are Φx, β1, κ, ÇÇÇ, Ψ, Φz


Σ11 Σ12 Σ13

· Σ21 Σ22

· · Σ33

 =


Φx Φxβ

>
1 + ÇÇÇ κ

· β1Φxβ
>
1 + β1ÇÇÇ + ÇÇÇ>β>1 + Ψ β1κ

· · Φz



Six matrix equations in six unknowns.
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Instrumental Variables

Solutions

Equations
Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 =


Φx Φxβ

>
1 + ÇÇÇ κ

β1Φx + ÇÇÇ> β1Φxβ
>
1 + β1ÇÇÇ + ÇÇÇ>β>

1 + Ψ β1κ

κ> κ>β>
1 Φz


Solutions

Φx = Σ11

κ = Σ13

Φz = Σ33

β1 = Σ23Σ
−1
13

ÇÇÇ = Σ12 −Σ11Σ
−1
31 Σ32

Ψ = Σ22 −Σ23Σ
−1
13 Σ12 −Σ21Σ

−1
31 Σ32 + Σ23Σ

−1
13 Σ11Σ

−1
31 Σ32
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Instrumental Variables

Solve for intercepts and expected values

Using

E

 xi
yi
zi

 =

 µ1

µ2

µ3

 =

 µx
β0 + β1µx

µz



µx = µ1

µz = µ3

β0 = µ2 −Σ23Σ
−1
13 µ1
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Instrumental Variables

Full Solution for Model Three
For the record

Φx = Σ11

κ = Σ13

Φz = Σ33

β1 = Σ23Σ
−1
13

ÇÇÇ = Σ12 −Σ11Σ
−1
31 Σ32

Ψ = Σ22 −Σ23Σ
−1
13 Σ12 −Σ21Σ

−1
31 Σ32 + Σ23Σ

−1
13 Σ11Σ

−1
31 Σ32

µx = µ1

µz = µ3

β0 = µ2 −Σ23Σ
−1
13 µ1
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Instrumental Variables

Method of Moments Estimators for Model Three
Just put hats on, and estimate population means with sample means

Φ̂x = Σ̂11

κ̂ = Σ̂13

Φ̂z = Σ̂33

β̂1 = Σ̂23Σ̂
−1
13

Ç̂ÇÇ = Σ̂12 − Σ̂11Σ̂
−1
31 Σ̂32

Ψ̂ = Σ̂22 − Σ̂23Σ̂
−1
13 Σ̂12 − Σ̂21Σ̂

−1
31 Σ̂32 + Σ̂23Σ̂

−1
13 Σ̂11Σ̂

−1
31 Σ̂32

µ̂x = x

µ̂z = z

β̂0 = y − Σ̂23Σ̂
−1
13 x

37 / 44



Instrumental Variables

Count the Parameters in Model Three
θ = (µx, µz, β0, β1,Φx,Ψ,Φz, ÇÇÇ,κ)

µx is a p× 1 vector of expected values. That’s p parameters.

µz is a p× 1 vector of expected values. That’s p more parameters.

β0 is a q × 1 vector of intercepts. That’s q parameters.

β1 is a p× q matrix of regression coefficients. That’s pq parameters.

cov(xi) = Φx is a p× p covariance matrix, with p(p+ 1)/2 unique
elements.

cov(εi) = Ψ is a q× q covariance matrix, with q(q+ 1)/2 unique elements.

cov(zi) = Φz is a p× p covariance matrix, with p(p+ 1)/2 unique
elements.

cov(xi, εi) = ÇÇÇ is a p× q matrix of covariances. That’s pq more
parameters.

cov(xi, zi) = κ is p× p matrix of covariances. That’s p2 more
parameters.
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Instrumental Variables

Counting

Parameters

2p+ q + pq +
p(p+ 1)

2
+
q(q + 1)

2
+
p(p+ 1)

2
+ pq + p2

= 3p+ q + 2p2 + 2pq +
q2

2
+
q

2

Moments

There are 2p+ q expected values in µ = (µ1|µ2|µ3)>.
Σ has 2p+ q rows and 2p+ q columns, for (2p+ q)(2p+ q + 1)/2
unique elements.

Total number of moments is 3p+ q + 2p2 + 2pq + q2

2 + q
2 .
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Instrumental Variables

Invariance
The MLE of a 1-1 function is that function of the MLE

Pretend the data di are multivariate normal.

Unrestricted multivariate normal MLE of (µ,Σ) is (d, Σ̂).

The moments (µ,Σ) are a function of the model parameters in θ.

By solving equations, we have shown that the models parameters
are also a function of the moments and there are the same number
of moments and model parameters.

The function is one-to-one (injective).

By invariance, (µ̂, Σ̂)↔ θ̂.

And the MOM estimates are also the MLEs.
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Instrumental Variables

Explicit formulas for the Maximum Likelihood
Estimators: Model Three

β̂0 = y − Σ̂23Σ̂
−1
13 x

β̂1 = Σ̂23Σ̂
−1
13

Ψ̂ = Σ̂22 − Σ̂23Σ̂
−1
13 Σ̂12 − Σ̂21Σ̂

−1
31 Σ̂32 + Σ̂23Σ̂

−1
13 Σ̂11Σ̂

−1
31 Σ̂32

Ç̂ÇÇ = Σ̂12 − Σ̂11Σ̂
−1
31 Σ̂32

Φ̂x = Σ̂11

κ̂ = Σ̂13

Φ̂z = Σ̂33

µ̂x = x

µ̂z = z
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Instrumental Variables

Multivariate Normal Likelihood
d1, . . . ,dn

iid∼ N(µ,Σ)

L(µ,Σ) =

n∏
i=1

1

|Σ|
1
2 (2π)

p
2

exp

{
−1

2
(di − µ)>Σ−1(di − µ)

}
= |Σ|−

n
2 (2π)−

np
2 ×

exp−n
2

{
tr(Σ̂Σ

−1
) + (d− µ)>Σ−1(d− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(di − d)(di − d)>
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Instrumental Variables

Comments

Instrumental variables are a great technical solution to the
problem of omitted variables

But good instrumental variables are not easy to find.

They will not just happen to be in the data set, except by a
miracle.

They really have to come from another universe, but still have a
strong and clear connection to the explanatory variable.

Data collection has to be planned.

Wright’s original example was tax policy for cooking oil.
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Instrumental Variables

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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