More Linear Algebra ${ }^{1}$ STA 431: Fall 2023

[^0]
Overview

(1) Things you already know
(2) Trace
(3) Spectral decomposition

4 Positive definite
(5) Extras
(6) R

You already know about

- Matrices $\mathbf{A}=\left[a_{i j}\right]$
- Matrix addition and subtraction $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$
- Column vectors $\mathbf{v}=\left[v_{j}\right]$
- Scalar multiplication $a \mathbf{B}=\left[a b_{i j}\right]$
- Matrix multiplication $\mathbf{A B}=\left[\sum_{k} a_{i k} b_{k j}\right]$

In words: The i, j element of $\mathbf{A B}$ is the inner product of row i of \mathbf{A} with column j of \mathbf{B}.

- Inverse $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$
- Transpose $\mathbf{A}^{\top}=\left[a_{j i}\right]$
- Symmetric matrices $\mathbf{A}=\mathbf{A}^{\top}$
- Determinants
- Linear independence

Three mistakes that will get you a zero
 Numbers are 1×1 matrices, but larger matrices are not just numbers.

You will get a zero if you

- Write $\mathbf{A B}=\mathbf{B A}$. It's not true in general.
- Write \mathbf{A}^{-1} when \mathbf{A} is not a square matrix. The inverse is not even defined.
- Represent the inverse of a matrix (even if it exists) by writing it in the denominator, like $\mathbf{a}^{\top} \mathbf{B}^{-1} \mathbf{a}=\frac{\mathbf{a}^{\top} \mathbf{a}}{\mathbf{B}}$. Matrices are not just numbers.

If you commit one of these crimes, the mark for the question (or part of a question, like 3c) is zero, regardless of what else you write.

Half marks off, at least

You will lose at least half marks for writing a product like AB when the number of columns in \mathbf{A} does not equal the number of rows in \mathbf{B}.

Trace of a square matrix: Sum of the diagonal elements

$$
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i, i}
$$

- Obvious: $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$.
- Not obvious: $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$
- Even though $\mathbf{A B} \neq \mathbf{B A}$

Example

Let $\mathbf{A}=\left(\begin{array}{rrr}2 & 1 & 0 \\ 5 & -4 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}1 & 0 \\ 2 & 3 \\ -1 & 3\end{array}\right)$

$$
\begin{aligned}
\mathbf{A B} & =\left(\begin{array}{rr}
4 & 3 \\
-6 & -3
\end{array}\right) \\
\mathbf{B A} & =\left(\begin{array}{rrr}
2 & 1 & 0 \\
19 & -10 & 9 \\
13 & -13 & 9
\end{array}\right)
\end{aligned}
$$

And $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.

Eigenvalues and eigenvectors

Let $\mathbf{A}=\left[a_{i, j}\right]$ be a square matrix. \mathbf{A} is said to have an eigenvalue λ and eigenvector $\mathbf{x} \neq \mathbf{0}$ corresponding to λ if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

Recall

- Eigenvalues are the λ values that solve the determinantal equation $|\mathbf{A}-\lambda \mathbf{I}|=0$.
- The determinant is the product of the eigenvalues: $|\mathbf{A}|=\prod_{i=1}^{n} \lambda_{i}$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $\mathbf{A}=\left[a_{i, j}\right]$ may be written

$$
\mathbf{A}=\mathbf{C D C}^{\top},
$$

where the columns of \mathbf{C} (which may also be denoted $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$) are the eigenvectors of \mathbf{A}, and the diagonal matrix \mathbf{D} contains the corresponding eigenvalues.

$$
\mathbf{D}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

- If the elements of \mathbf{A} are real, the eigenvalues are real.
- The eigenvectors may be chosen to be orthonormal, so that \mathbf{C} is an orthogonal matrix. That is, $\mathbf{C C ^ { \top }}=\mathbf{C}^{\top} \mathbf{C}=\mathbf{I}$.

Inverse of a diagonal matrix

Suppose the eigenvalues are all non-zero. Let

$$
\mathbf{D}^{-1}=\left(\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\lambda_{n}}
\end{array}\right)
$$

It works because

$$
\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)\left(\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\lambda_{n}}
\end{array}\right)=\mathbf{I}
$$

Square root of a diagonal matrix

Suppose the eigenvalues are non-negative. Let

$$
\mathbf{D}^{1 / 2}=\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)
$$

It works because
$\begin{aligned} \mathbf{D}^{1 / 2} \mathbf{D}^{1 / 2} & =\left(\begin{array}{cccc}\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}}\end{array}\right)\left(\begin{array}{cccc}\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}}\end{array}\right) \\ & =\left(\begin{array}{ccccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)=\mathbf{D}\end{aligned}$

Using $\mathbf{A}=\mathbf{C D C}^{\top}$

Where \mathbf{A} is a symmetric matrix

$$
\begin{aligned}
\mathbf{A}^{-1} & =\mathbf{C D}^{-1} \mathbf{C}^{\top} \\
\mathbf{A}^{1 / 2} & =\mathbf{C D}^{1 / 2} \mathbf{C}^{\top} \\
\mathbf{A}^{-1 / 2} & =\mathbf{C D}^{-1 / 2} \mathbf{C}^{\top}
\end{aligned}
$$

Positive definite matrices

The $n \times n$ matrix \mathbf{A} is said to be positive definite if

$$
\mathbf{y}^{\top} \mathbf{A} \mathbf{y}>0
$$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$.
It is called non-negative definite (or sometimes positive semi-definite) if $\mathbf{y}^{\top} \mathbf{A y} \geq 0$.

Some properties of symmetric positive definite matrices

 Variance-covariance matrices are often assumed positive definite.For a symmetric matrix,

Positive definite
\Downarrow
All eigenvalues positive
\Downarrow
Inverse exists \Leftrightarrow Columns (rows) linearly independent.

If a real symmetric matrix is also non-negative definite (as a variance-covariance matrix must be) Linear independence \Rightarrow Positive definite.

Extras

You may not know about these, and we may use them occasionally

- Rank
- Partitioned matrices

Rank

- Row rank is the number of linearly independent rows.
- Column rank is the number of linearly independent columns.
- Rank of a matrix is the minimum of row rank and column rank.
- $\operatorname{rank}(\mathbf{A B})=\min (\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$.

Partitioned matrix

- A matrix of matrices

$$
\left[\begin{array}{c|c}
\mathrm{A} & \mathrm{~B} \\
\hline \mathrm{C} & \mathrm{D}
\end{array}\right]
$$

- Row by column (matrix) multiplication works, provided the matrices are the right sizes.

Matrix calculation with R

```
> is.matrix(3) # Is the number 3 a 1x1 matrix?
[1] FALSE
```

> treecorr $=$ cor (trees) ; treecorr

	Girth	Height	Volume
Girth	1.0000000	0.5192801	0.9671194
Height	0.5192801	1.0000000	0.5982497
Volume	0.9671194	0.5982497	1.0000000

> is.matrix(treecorr)
[1] TRUE

Creating matrices

Bind rows into a matrix
> \# Bind rows of a matrix together
$>A=r b i n d(c(3,2,6,8)$,
$+\quad c(2,10,-7,4)$,
$+\quad \mathrm{c}(6,6,9,1) \quad$; A

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	3	2	6	8
$[2]$,	2	10	-7	4
$[3]$,	6	6	9	1

> \# Transpose
$>\mathrm{t}$ (A)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	3	2	6
$[2]$,	2	10	6
$[3]$,	6	-7	9
$[4]$,	8	4	1

Matrix multiplication

Remember, \mathbf{A} is 3×4
$>\# U=A A^{\prime}(3 \times 3), V=A^{\prime} A(4 \times 4)$
$>\mathrm{U}=\mathrm{A} \% * \% \mathrm{t}(\mathrm{A})$
$>\mathrm{V}=\mathrm{t}(\mathrm{A}) \% * \% \mathrm{~A} ; \mathrm{V}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

Determinants

A is 3×4
$>$ \# U = A A' (3x3), V = A' A (4×4)
> \# So rank(V) cannot exceed 3 and $\operatorname{det}(V)=0$
$>\operatorname{det}(U) ; \operatorname{det}(V)$
[1] 1490273
[1] $-3.622862 \mathrm{e}-09$

Inverse of \mathbf{U} exists, but inverse of \mathbf{V} does not.

Inverses

- The solve function is for solving systems of linear equations like $\mathbf{M x}=\mathbf{b}$.
- Just typing solve(M) gives \mathbf{M}^{-1}.
> \# Recall U = A A' (3x3), V = A' A (4x4)
> solve(U)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0.0173505123	$-8.508508 \mathrm{e}-04$	$-1.029342 \mathrm{e}-02$
$[2]$,	-0.0008508508	$5.997559 \mathrm{e}-03$	$2.013054 \mathrm{e}-06$
$[3]$,	-0.0102934160	$2.013054 \mathrm{e}-06$	$1.264265 \mathrm{e}-02$

> solve(V)

Error in solve.default(V) :
system is computationally singular: reciprocal condition
number $=6.64193 \mathrm{e}-18$

Eigenvalues and eigenvectors

```
> # Recall U = A A' (3x3), V = A' A (4x4)
> eigen(U)
$values
[1] 234.01162 162.89294 39.09544
```

\$vectors

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	-0.6025375	0.1592598	0.78203893
$[2]$,	-0.2964610	-0.9544379	-0.03404605
$[3]$,	-0.7409854	0.2523581	-0.62229894

V should have at least one zero eigenvalue

Because \mathbf{A} is $3 \times 4, \mathbf{V}=\mathbf{A}^{\top} \mathbf{A}$, and the rank of a product is the minimum rank of the matrices.

```
> eigen(V)
```

\$values

$$
\text { [1] } 2.340116 \mathrm{e}+02 \quad 1.628929 \mathrm{e}+02 \quad 3.909544 \mathrm{e}+01 \quad-1.012719 \mathrm{e}-14
$$

\$vectors

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	-0.4475551	0.006507269	-0.2328249	0.863391352
$[2]$,	-0.5632053	-0.604226296	-0.4014589	-0.395652773
$[3]$,	-0.5366171	0.776297432	-0.1071763	-0.312917928
$[4]$,	-0.4410627	-0.179528649	0.8792818	0.009829883

Spectral decomposition $\mathbf{V}=\mathrm{CDC}^{\top}$

> eigenV = eigen(V)
> C = eigenV\$vectors; $D=$ diag(eigenV\$values); D

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	234.0116	0.0000	0.00000	$0.000000 \mathrm{e}+00$
$[2]$,	0.0000	162.8929	0.00000	$0.000000 \mathrm{e}+00$
$[3]$,	0.0000	0.0000	39.09544	$0.000000 \mathrm{e}+00$
$[4]$,	0.0000	0.0000	0.00000	$-1.012719 \mathrm{e}-14$

> \# C is an orthoganal matrix
> $\mathrm{C} \%$ \% t (C)

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4]
$$

[1,] $1.000000 \mathrm{e}+005.551115 \mathrm{e}-170.000000 \mathrm{e}+00-3.989864 \mathrm{e}-17$
[2,] $5.551115 \mathrm{e}-17 \quad 1.000000 \mathrm{e}+002.636780 \mathrm{e}-16 \quad 3.556183 \mathrm{e}-17$
[3,] $0.000000 \mathrm{e}+002.636780 \mathrm{e}-161.000000 \mathrm{e}+00 \quad 2.558717 \mathrm{e}-16$
[4,] -3.989864e-17 $3.556183 \mathrm{e}-17 \quad 2.558717 \mathrm{e}-16 \quad 1.000000 \mathrm{e}+00$

Verify $\mathbf{V}=\mathbf{C D C}^{\top}$

> V; C $\% * \%$ D \% $\%$ \% (C)
[,1] [,2] [,3] [,4]
$[1] \quad 49 \quad 62 \quad 58 \quad$,
$[2] \quad 62 \quad 140 \quad-,4 \quad 62$
$[3] \quad 58 \quad-,4 \quad 166 \quad 29$

$[4]$,	38	62	29	81

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

Square root matrix $\mathrm{V}^{1 / 2}=\mathrm{CD}^{1 / 2} \mathrm{C}^{\top}$

```
> sqrtV = C %*% sqrt(D) %*% t(C)
```

Warning message:
In sqrt(D) : NaNs produced
> \# Multiply to get V
> sqrtV \%*\% sqrtV; V

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	NaN	NaN	NaN	NaN
$[2]$,	NaN	NaN	NaN	NaN
$[3]$,	NaN	NaN	NaN	NaN
$[4]$,	NaN	NaN	NaN	NaN
$, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

What happened?

> D; sqrt(D)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	234.0116	0.0000	0.00000	$0.000000 \mathrm{e}+00$
$[2]$,	0.0000	162.8929	0.00000	$0.000000 \mathrm{e}+00$
$[3]$,	0.0000	0.0000	39.09544	$0.000000 \mathrm{e}+00$
$[4]$,	0.0000	0.0000	0.00000	$-1.012719 \mathrm{e}-14$

$$
[, 1] \quad[, 2] \quad[, 3][, 4]
$$

$[1]$,
[2,] $0.0000012 .762950 .000000 \quad 0$
[3,] $0.00000 \quad 0.000006 .252635 \quad 0$
[4,] $0.00000 \quad 0.000000 .000000 \mathrm{NaN}$

Warning message:
In sqrt(D) : NaNs produced

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23

[^0]: ${ }^{1}$ See Appendix A for more detail. This slide show is an open-source document. See last slide for copyright information.

