Introduction to Regression with Measurement Error ${ }^{1}$ STA431 Spring 2023

${ }^{1}$ See last slide for copyright information.

Overview

(1) Measurement Error

(2) Reliability
(3) Consequences of Ignoring Measurement Error

Measurement Error

- Snack food consumption
- Exercise
- Income
- Cause of death (classification error)
- Even amount of drug that reaches animals blood stream in an experimental study.
- Is there anything that is not measured with error?

Additive measurement error

A very simple model

$$
W=X+e
$$

Where $E(X)=\mu_{x}, E(e)=0, \operatorname{Var}(X)=\sigma_{x}^{2}, \operatorname{Var}(e)=\sigma_{e}^{2}$, and $\operatorname{Cov}(X, e)=0$.

Variance and Covariance

$W=X+e$

$$
\begin{aligned}
\operatorname{Var}(W) & =\operatorname{Var}(X)+\operatorname{Var}(e) \\
& =\sigma_{x}^{2}+\sigma_{e}^{2} \\
\operatorname{Cov}(X, W) & =\operatorname{Cov}(X, X+e) \\
& =\operatorname{Cov}(X, X)+\operatorname{Cov}(X, e) \\
& =\sigma_{x}^{2}
\end{aligned}
$$

Explained Variance

- Variance is an index of unit-to-unit variation in a measurement.
- Explaining unit-to-unit variation is an important goal of Science.
- How much of the variation in an observed variable comes from variation in the latent quantity of interest, and how much comes from random noise?

Definition of Reliability

Reliability is the squared correlation between the observed variable and the latent variable (true score).

Calculation of Reliability

$$
\begin{aligned}
\rho^{2} & =\left(\frac{\operatorname{Cov}(X, W)}{S D(X) S D(W)}\right)^{2} \\
& =\left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}}\right)^{2} \\
& =\frac{\sigma_{x}^{4}}{\sigma_{x}^{2}\left(\sigma_{x}^{2}+\sigma_{e}^{2}\right)} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}} .
\end{aligned}
$$

Reliability is the proportion of the variance in the observed variable that comes from the latent variable of interest, and not from random error.

How to estimate reliability from data

- Correlate usual measurement with "Gold Standard?"
- Not very realistic, except maybe for some bio-markers.
- One answer: Measure twice.

Measure twice

Called "equivalent measurements" because error variance is the same

$$
\begin{aligned}
& W_{1}=X+e_{1} \\
& W_{2}=X+e_{2}
\end{aligned}
$$

where $E(X)=\mu_{x}, \operatorname{Var}(X)=\sigma_{x}^{2}, E\left(e_{1}\right)=E\left(e_{2}\right)=0$, $\operatorname{Var}\left(e_{1}\right)=\operatorname{Var}\left(e_{2}\right)=\sigma_{e}^{2}$, and X, e_{1} and e_{2} are all independent.

Reliability equals the correlation between two equivalent measurements

This is a population correlation

$$
\begin{aligned}
\operatorname{Corr}\left(W_{1}, W_{2}\right) & =\frac{\operatorname{Cov}\left(W_{1}, W_{2}\right)}{\operatorname{SD(W_{1})SD(W_{2})}} \\
& =\frac{\operatorname{Cov}\left(X+e_{1}, X+e_{2}\right)}{\sigma_{x}^{2}+\sigma_{e}^{2}} \\
& =\frac{\operatorname{Cov}(X, X)+0+0+0}{\sigma_{x}^{2}+\sigma_{e}^{2}} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}},
\end{aligned}
$$

which is the reliability.

Estimate the reliability: Measure twice for a sample of

 size nWith a well-chosen time gap

Calculate $r=\frac{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)\left(W_{i 2}-\bar{W}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(W_{i 2}-\bar{W}_{2}\right)^{2}}}$.

- Test-retest reliability
- Alternate forms reliability
- Split-half reliability

Omitted variables can cause correlated measurement error

Leading to an over-estimate of reliability.

Measurement error in regression analysis

- Mostly we are interested in relationships between latent (true) variables.
- But all we have at best are the true variables measured with error.
- Models like $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{k} X_{i k}+\epsilon_{i}$ are mis-specified.
- The most common way of dealing with measurement error in regression is to ignore it.
- What effect does this have on estimation and inference?
- First consider ignoring measurement error just in the response variable.

Measurement error in the response variable

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i}
\end{aligned}
$$

Naive model: $V_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

Is $\widehat{\beta}_{1}$ consistent?

Ignoring measurement error in Y

First calculate $\operatorname{Cov}\left(X_{i}, V_{i}\right)$. Under the true model

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i},
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, V_{i}\right) & =\operatorname{Cov}\left(X, \beta_{1} X_{i}+\epsilon_{i}\right) \\
& =\beta_{1} \sigma_{x}^{2}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(V_{i}-\bar{V}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x, v}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow{p} \frac{\operatorname{Cov}\left(X_{i}, V_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}} \\
& =\beta_{1}
\end{aligned}
$$

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i}+\epsilon_{i}^{\prime}
\end{aligned}
$$

- This is a re-parameterization.
- Most definitely not one-to-one.
- $\left(\nu, \beta_{0}\right)$ is absorbed into β_{0}^{\prime}.
- $\left(\epsilon_{i}, e_{i}\right)$ is absorbed into ϵ_{i}^{\prime}.
- Can't know everything, but all we care about is β_{1} anyway.

Don't Worry

- If a response variable appears to have no measurement error, assume it does have measurement error but the problem has been re-parameterized.
- Measurement error in Y is part of ϵ.

Measurement error in a single explanatory variable

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
W_{i} & =X_{i}+e_{i},
\end{aligned}
$$

Naive model: $Y_{i}=\beta_{0}+\beta_{1} W_{i}+\epsilon_{i}$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$

Have $\operatorname{Cov}\left(W_{i}, Y_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(W_{i}\right)=\sigma_{x}^{2}+\sigma_{e}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{w, y}}{\widehat{\sigma}_{w}^{2}} \\
& \xrightarrow{p} \frac{\operatorname{Cov}\left(W_{i}, Y_{i}\right)}{\operatorname{Var}\left(W_{i}\right)} \\
& =\beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right)
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.
- The worse the measurement of X_{i}, the more the asymptotic bias.
- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."
- When $H_{0}: \beta_{1}=0$ is true, it's not a serious problem.
- False sense of security?

Measurement error in two explanatory variables

Want to assess the relationship of X_{2} to Y, controlling for X_{1} by testing $H_{0}: \beta_{2}=0$.

Statement of the model

Independently for $i=1, \ldots, n$

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

where

$$
\begin{aligned}
& E\left(X_{i, 1}\right)=\mu_{1}, E\left(X_{i, 2}\right)=\mu_{2}, E\left(\epsilon_{i}\right)=E\left(e_{i, 1}\right)=E\left(e_{i, 2}\right)=0 \\
& \operatorname{Var}\left(\epsilon_{i}\right)=\psi, \operatorname{Var}\left(e_{i, 1}\right)=\omega_{1}, \operatorname{Var}\left(e_{i, 2}\right)=\omega_{2}
\end{aligned}
$$

The errors $\epsilon_{i}, e_{i, 1}$ and $e_{i, 2}$ are all independent, $X_{i, 1}$ and $X_{i, 2}$ are independent of $\epsilon_{i}, e_{i, 1}$ and $e_{i, 2}$, and

$$
\operatorname{cov}\binom{X_{i, 1}}{X_{i, 1}}=\left(\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{12} & \phi_{22}
\end{array}\right)
$$

Note

- Reliability of W_{1} is $\frac{\phi_{11}}{\phi_{11}+\omega_{1}}$.
- Reliability of W_{2} is $\frac{\phi_{22}}{\phi_{22}+\omega_{2}}$.

True Model versus Naive Model

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

Naive model: $Y_{i}=\beta_{0}+\beta_{1} W_{i, 1}+\beta_{2} W_{i, 2}+\epsilon_{i}$

- Fit the naive model.
- See what happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$ when the true model holds.
- Start by calculating $\operatorname{cov}\left(\mathbf{d}_{i}\right)=\operatorname{cov}\left(\begin{array}{c}W_{i, 1} \\ W_{i, 2} \\ Y_{i}\end{array}\right)$.

Covariance matrix of the observable data

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\operatorname{cov}\left(\begin{array}{c}
W_{i, 1} \\
W_{i, 2} \\
Y_{i}
\end{array}\right) \\
& =\left(\begin{array}{rrr}
\omega_{1}+\phi_{11} & \phi_{12} & \beta_{1} \phi_{11}+\beta_{2} \phi_{12} \\
\phi_{12} & \omega_{2}+\phi_{22} & \beta_{1}^{2} \phi_{11}+2 \beta_{1} \beta_{2} \phi_{12}+\beta_{2}^{2}+\beta_{22} \phi_{22}+\psi
\end{array}\right)
\end{aligned}
$$

What happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$?

Interested in $H_{0}: \beta_{2}=0$

$$
\begin{aligned}
\widehat{\beta}_{2} & =\frac{\widehat{\sigma}_{11} \widehat{\sigma}_{23}-\widehat{\sigma}_{12} \widehat{\sigma}_{13}}{\widehat{\sigma}_{11} \widehat{\sigma}_{22}-\widehat{\sigma}_{12}^{2}} \\
& \xrightarrow{p} \frac{\sigma_{11} \sigma_{23}-\sigma_{12} \sigma_{13}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} \\
& =\frac{\beta_{1} \omega_{1} \phi_{12}+\beta_{2}\left(\omega_{1} \phi_{22}+\phi_{11} \phi_{22}-\phi_{12}^{2}\right)}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}} \\
& \neq \beta_{2}
\end{aligned}
$$

Inconsistent.

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{p} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless

- There is no relationship between X_{1} and Y, or
- There is no measurement error in W_{1}, or
- There is no correlation between X_{1} and X_{2}.

Also, the t statistic for $H_{0}: \beta_{2}=0$ goes to plus or minus ∞ and the p-value $\xrightarrow{p} 0$. Remember, H_{0} is true.

How bad is it for finite sample sizes?

A big simulation study (Brunner and Austin, 2009) with six factors

- Sample size: $n=50,100,250,500,1000$
- $\operatorname{Corr}\left(X_{1}, X_{2}\right): \phi_{12}=0.00,0.25,0.75,0.80,0.90$
- Proportion of variance in Y explained by $X_{1}: 0.25,0.50,0.75$
- Reliability of $W_{1}: 0.50,0.75,0.80,0.90,0.95$
- Reliability of $W_{2}: 0.50,0.75,0.80,0.90,0.95$
- Distribution of latent variables and error terms: Normal, Uniform, t, Pareto.

There were $5 \times 5 \times 3 \times 5 \times 5 \times 4=7,500$ treatment combinations.

Simulation study procedure

Within each of the $5 \times 5 \times 3 \times 5 \times 5 \times 4=7,500$ treatment combinations,

- 10,000 random data sets were generated
- For a total of 75 million data sets
- All generated according to the true model, with $\beta_{2}=0$.
- Fit naive model, test $H_{0}: \beta_{2}=0$ at $\alpha=0.05$.
- Proportion of times H_{0} is rejected is a Monte Carlo estimate of the Type I Error Probability.
- It should be around 0.05 .

Look at a small part of the results

- Both reliabilities $=0.90$
- Everything is normally distributed
- $\beta_{0}=1, \beta_{1}=1$ and of course $\beta_{2}=0$.

Table 1 of Brunner and Austin (2009, p.39)

Canadian Journal of Statistics, Vol. 37, Pages 33-46, Used without permission

Table 1: Estimated Type I error rates when independent variables and measurement errors are all normal, and reliability of W_{1} and W_{2} both equal 0.90 .

					Correlation between X_{1} and X_{2}
N	0.0	0.2	0.4	0.6	0.8
25% of variance in Y is explained by X_{1}					
50	0.0476^{\dagger}	0.0505^{\dagger}	0.0636	0.0715	0.0913
100	0.0504^{\dagger}	0.0521^{\dagger}	0.0834	0.0940	0.1294
250	0.0467^{\dagger}	0.0533^{\dagger}	0.1402	0.1624	0.2544
500	0.0468^{\dagger}	0.0595^{\dagger}	0.2300	0.2892	0.4649
1,000	0.0505^{\dagger}	0.0734	0.4094	0.5057	0.7431
50% of variance in Y is explained by X_{1}					
50	0.0460^{\dagger}	0.0520^{\dagger}	0.0963	0.1106	0.1633
100	0.0535^{\dagger}	0.0569^{\dagger}	0.1461	0.1857	0.2837
250	0.0483^{\dagger}	0.0625	0.3068	0.3731	0.5864
500	0.0515^{\dagger}	0.0780	0.5323	0.6488	0.8837
1,000	0.0481^{\dagger}	0.1185	0.8273	0.9088	0.9907
75% of variance in Y is explained by X_{1}					
50	0.0485^{\dagger}	0.0579^{\dagger}	0.1727	0.2089	0.3442
100	0.0541^{\dagger}	0.0679	0.3101	0.3785	0.6031
250	0.0479^{\dagger}	0.0856	0.6450	0.7523	0.9434
500	0.0445^{\dagger}	0.1323	0.9109	0.9635	0.9992
1,000	0.0522^{\dagger}	0.2179	0.9959	0.9998	1.00000

${ }^{\dagger}$ Not significantly different from 0.05, Bonferroni corrected for 7,500 tests.

Weak Relationship between X_{1} and $Y: \operatorname{Var}=25 \%$

	Correlation BetweenX_{1} and N X_{2}					
	0.00	0.25	0.75	0.80	0.90	
50	0.04760	0.05050	0.06360	0.07150	0.09130	
100	0.05040	0.05210	0.08340	0.09400	0.12940	
250	0.04670	0.05330	0.14020	0.16240	0.25440	
500	0.04680	0.05950	0.23000	0.28920	0.46490	
1000	0.05050	0.07340	0.40940	0.50570	0.74310	

Moderate Relationship between X_{1} and Y : Var $=50 \%$

	Correlation Between						X_{1} and X_{2}
N	0.00	0.25	0.75	0.80	0.90		
50	0.04600	0.05200	0.09630	0.11060	0.16330		
100	0.05350	0.05690	0.14610	0.18570	0.28370		
250	0.04830	0.06250	0.30680	0.37310	0.58640		
500	0.05150	0.07800	0.53230	0.64880	0.88370		
1000	0.04810	0.11850	0.82730	0.90880	0.99070		

Strong Relationship between X_{1} and Y : Var $=75 \%$

	Correlation BetweenX_{1} and X_{2} N$\quad 0.00$						0.25	0.75	0.80	0.90
50	0.04850	0.05790	0.17270	0.20890	0.34420					
100	0.05410	0.06790	0.31010	0.37850	0.60310					
250	0.04790	0.08560	0.64500	0.75230	0.94340					
500	0.04450	0.13230	0.91090	0.96350	0.99920					
1000	0.05220	0.21790	0.99590	0.99980	1.00000					

Marginal Mean Type I Error Probabilities

Base Distribution				
0.38692448	0.36903077	0.38312245	0.38752571	
Explained Variance				
0.25	0.50	0.75		
0.27330660	0.38473364	0.48691232		
Correlation between Latent Independent Variables				
0.00	0.25	0.75	0.80	0.90
0.05004853	0.16604247	0.51544093	0.55050700	0.62621533
Sample Size n				
50	100	250	500	1000
0.19081740	0.27437227	0.39457933	0.48335707	0.56512820
Reliability of W_{1}				
0.50	0.75	0.80	0.90	0.95
0.60637233	0.46983147	0.42065313	0.26685820	0.14453913
Reliability of W_{2}				
0.50	0.75	0.80	0.90	0.95
0.30807933	0.37506733	0.38752793	0.41254800	0.42503167

Summary

- Ignoring measurement error in the explanatory variables can seriously inflate Type I error probabilities.
- The poison combination is measurement error in the variable for which you are "controlling," and correlation between latent explanatory variables.
- If either is zero, there is no problem.

$$
\widehat{\beta}_{2} \stackrel{p}{\rightarrow} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

- Factors affecting severity of the problem are (next slide)

Factors affecting severity of the problem

Problem of inflated Type I error probability

- As the correlation between X_{1} and X_{2} increases, the problem gets worse.
- As the correlation between X_{1} and Y increases, the problem gets worse.
- As the amount of measurement error in X_{1} increases, the problem gets worse.
- As the amount of measurement error in X_{2} increases, the problem gets less severe.
- As the sample size increases, the problem gets worse.
- Distribution of the variables does not matter much.

As the sample size increases, the problem gets worse

For a large enough sample size, no amount of measurement error in the explanatory variables is safe, assuming that the latent explanatory variables are correlated.

Other kinds of regression, other kinds of measurement error

- Logistic regression
- Proportional hazards regression in survival analysis
- Log-linear models: Test of conditional independence in the presence of classification error
- Median splits
- Even converting X_{1} to ranks inflates Type I Error probability.

Moral of the story

Use models that allow for measurement error in the explanatory variables.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23

