Parameter Identifiability for the Latent Model¹ STA431 Spring 2023

¹See last slide for copyright information.

The two-stage model: $cov(\mathbf{d}_i) = \boldsymbol{\Sigma}$ All variables are centered

$$egin{array}{rcl} \mathbf{y}_i &=& oldsymbol{eta} \mathbf{y}_i + \mathbf{\Gamma} \mathbf{x}_i + oldsymbol{\epsilon}_i \ \mathbf{F}_i &=& egin{pmatrix} \mathbf{x}_i \ \mathbf{y}_i \end{pmatrix} \ \mathbf{d}_i &=& oldsymbol{\Lambda} \mathbf{F}_i + \mathbf{e}_i \end{array}$$

•
$$\mathbf{x}_i \text{ is } p \times 1$$
, $\mathbf{y}_i \text{ is } q \times 1$, $\mathbf{d}_i \text{ is } k \times 1$.
• $cov(\mathbf{x}_i) = \mathbf{\Phi}_x$, $cov(\mathbf{\epsilon}_i) = \mathbf{\Psi}$
• $cov(\mathbf{F}_i) = cov\begin{pmatrix} \mathbf{x}_i \\ \mathbf{y}_i \end{pmatrix} = \mathbf{\Phi} = \begin{pmatrix} \mathbf{\Phi}_{11} & \mathbf{\Phi}_{12} \\ \mathbf{\Phi}_{12}^\top & \mathbf{\Phi}_{22} \end{pmatrix}$
• $cov(\mathbf{e}_i) = \mathbf{\Omega}$

Identify parameter matrices in two steps It does not really matter which one you do first.

• $\mathbf{y}_i = \beta \mathbf{y}_i + \Gamma \mathbf{x}_i + \epsilon_i$ $cov(\mathbf{x}_i) = \Phi_x, cov(\epsilon_i) = \Psi$ • $\mathbf{d}_i = \mathbf{A}\mathbf{F}_i + \mathbf{e}_i$ $cov(\mathbf{F}_i) = \Phi, cov(\mathbf{e}_i) = \Omega$

• Latent model: Show β , Γ , Φ_x and Ψ can be recovered from $\Phi = cov \begin{pmatrix} \mathbf{x}_i \\ \mathbf{y}_i \end{pmatrix}$.

2 Measurement model: Show Φ , Λ and Ω can be recovered from $\Sigma = cov(\mathbf{d}_i)$.

This means all the parameters can be recovered from Σ .

- $\mathbf{y}_i = \beta \mathbf{y}_i + \Gamma \mathbf{x}_i + \boldsymbol{\epsilon}_i$
- Here, identifiability means that the parameters β , Γ , Φ_x and Ψ are functions of $cov(\mathbf{F}_i) = \Phi$.

Regression Rule Someimes called the Null Beta Rule

Suppose

- No endogenous variables influence other endogenous variables.
- $\mathbf{y}_i = \mathbf{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i$
- Of course $cov(\mathbf{x}_i, \boldsymbol{\epsilon}_i) = \mathbf{0}$, always.
- $\Psi = cov(\epsilon_i)$ need not be diagonal.

Then Γ and Ψ are identifiable.

With no restriction, the parameters are *just identifiable*. The model is *saturated*.

Parameters of the Latent Variable Model are identifiable if the model is acyclic (no feedback loops through straight arrows) and the following conditions hold.

- Organize the variables that are not error terms into sets. Set 0 consists of all the exogenous variables.
- For j = 1, ..., m, each endogenous variable in set j is influenced by at least one variable in set j - 1, and also possibly by variables in earlier sets.
- Error terms may be correlated within sets, but not between sets.

Proof: Repeated application of the Regression Rule.

An Acyclic model

Brand awareness model

Acyclic Rule Does Not Apply Here

Shows that the acyclic rule is sufficient but not necessary.

Parameters of this model are just identifiable

Example from Ch. 5 of Duncan's Introduction to Structural Equation Models

Again, the acyclic rule is sufficient but not necessary.

The Pinwheel Model

Parameters are identifiable

Covariance matrix for the pinwheel model

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website:

http://www.utstat.toronto.edu/brunner/oldclass/431s23