Structural Equation Models: The General Case ${ }^{1}$ STA431 Spring 2023

[^0]
Features of Structural Equation Models

- Multiple equations.
- All the variables are random.
- An explanatory variable in one equation can be the response variable in another equation.
- Models are represented by path diagrams.
- Identifiability is always an issue.
- The statistical models are models of influence. They are causal models.

Modest changes in notation

$$
\begin{aligned}
Y_{i, 1} & =\alpha_{1}+\gamma_{1} X_{i, 1}+\gamma_{2} X_{i, 2}+\epsilon_{i, 1} \\
Y_{i, 2} & =\alpha_{2}+\beta Y_{i, 1}+\epsilon_{i, 2}
\end{aligned}
$$

- Regression coefficients (links between exogenous variables and endogenous variables) are now called gamma instead of beta.
- Betas are used for links between endogenous variables.
- Intercepts will soon disappear.

Example: A Path Model with Measurement Error

The General (original) Model: Independently for $i=1, \ldots, n$, let

$$
\begin{aligned}
\mathbf{y}_{i} & =\boldsymbol{\alpha}+\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\left(\frac{\mathbf{x}_{i}}{\mathbf{y}_{i}}\right) \\
\mathbf{d}_{i} & =\boldsymbol{\nu}+\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}, \text { where }
\end{aligned}
$$

- \mathbf{y}_{i} is a $q \times 1$ latent random vector.
- $\boldsymbol{\alpha}$ is a $q \times 1$ vector of constants.
- $\boldsymbol{\beta}$ is a $q \times q$ matrix of constants with zeros on the main diagonal.
- $\boldsymbol{\Gamma}$ is a $q \times p$ matrix of constants.
- \mathbf{x}_{i} is a $p \times 1$ latent random vector with expected value $\boldsymbol{\mu}_{x}$ and positive definite covariance matrix $\boldsymbol{\Phi}_{x}$.
- $\boldsymbol{\epsilon}_{i}$ is a $q \times 1$ latent random vector with expected value zero and positive definite covariance matrix Ψ.
- \mathbf{F}_{i} (F for Factor) is a partitioned vector with \mathbf{x}_{i} stacked on top of \mathbf{y}_{i}. It is a $(p+q) \times 1$ latent random vector whose expected value is denoted by $\boldsymbol{\mu}_{F}$, and whose variance-covariance matrix is denoted by $\boldsymbol{\Phi}$.
- \mathbf{d}_{i} is a $k \times 1$ observable random vector. The expected value of \mathbf{d}_{i} will be denoted by $\boldsymbol{\mu}$, and the covariance matrix of \mathbf{d}_{i} will be denoted by $\boldsymbol{\Sigma}$.
- $\boldsymbol{\nu}$ is a $k \times 1$ vector of constants.
- $\boldsymbol{\Lambda}$ is a $k \times(p+q)$ matrix of constants.
- \mathbf{e}_{i} is a $k \times 1$ latent random vector with expected value zero and covariance matrix $\boldsymbol{\Omega}$, which need not be positive definite.
- $\mathbf{x}_{i}, \boldsymbol{\epsilon}_{i}$ and \mathbf{e}_{i} are independent.

Surrogate Models

Truth \approx Original Model \rightarrow Surrogate Model $1 \rightarrow$ Surrogate Model $2 \ldots$

- We more or less accept the original model, but we can't identify the parameters.
- So we re-parameterize, obtaining a surrogate model. Repeat.
- We will carefully keep track of the meaning of the new parameters in terms of the parameters of the original model.

The Original Model

$$
\begin{aligned}
\mathbf{y}_{i} & =\boldsymbol{\alpha}+\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\left(\frac{\mathbf{x}_{i}}{\mathbf{y}_{i}}\right) \\
\mathbf{d}_{i} & =\boldsymbol{\nu}+\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

where ...

- Carefully count the parameters that appear only in $E\left(\mathbf{d}_{i}\right)=\boldsymbol{\mu}$ and not in $\operatorname{cov}\left(\mathbf{d}_{i}\right)$.
- There are more of these parameters than elements of $E\left(\mathbf{d}_{i}\right)$.
- Parameter count rule.

Center the model

- There are too many expected values and intercepts to identify.
- Center all the random variables in the model by adding and subtracting expected values.
- Obtain a centered surrogate model

$$
\left.\begin{array}{rl}
\stackrel{c}{\mathbf{y}}_{i} & =\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma}^{c} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\stackrel{c}{\mathbf{F}_{i}} & =\left(\frac{c}{c}\right. \\
\frac{\mathbf{x}_{i}}{c} \\
\mathbf{y}_{i}
\end{array}\right) .
$$

- Same $\boldsymbol{\beta}, \boldsymbol{\Gamma}$ and $\boldsymbol{\Lambda}$, same variances and covariances.

Change of variables

- Centering is a change of variables.
- Expected values and intercepts are gone, and the dimension of the parameter space is reduced.
- Drop the little c over the random vectors.

The General Centered Model

Independently for $i=1, \ldots, n$,

$$
\begin{aligned}
\mathbf{y}_{i} & =\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\left(\frac{\mathbf{x}_{i}}{\mathbf{y}_{i}}\right) \\
\mathbf{d}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

- \mathbf{d}_{i} (the data) are observable. All other variables are latent.
- $\mathbf{y}_{i}=\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}$ is called the Latent Variable Model.
- The latent vectors \mathbf{x}_{i} and \mathbf{y}_{i} are collected into a factor \mathbf{F}_{i}.
- $\mathbf{d}_{i}=\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}$ is called the Measurement Model.

$\mathrm{y}_{i}=\beta \mathrm{y}_{i}+\Gamma \mathrm{x}_{i}+\epsilon_{i} \quad \mathrm{~F}_{i}=\left(\frac{\mathrm{x}_{i}}{\mathrm{y}_{i}}\right)$ $\mathrm{d}_{i}=\Lambda \mathrm{F}_{i}+\mathrm{e}_{i}$

- \mathbf{y}_{i} is a $q \times 1$ latent random vector.
- $\boldsymbol{\beta}$ is a $q \times q$ matrix of constants with zeros on the main diagonal.
- \mathbf{x}_{i} is a $p \times 1$ latent random vector.
- $\boldsymbol{\Gamma}$ is a $q \times p$ matrix of constants.
- $\boldsymbol{\epsilon}_{i}$ is a $q \times 1$ vector of error terms.
- $\mathbf{F}_{i}\left(F\right.$ for Factor) is just \mathbf{x}_{i} stacked on top of \mathbf{y}_{i}. It is a $(p+q) \times 1$ latent random vector.
- \mathbf{d}_{i} is a $k \times 1$ observable random vector. Sometimes, $\mathbf{d}_{i}=\left(\frac{\mathbf{w}_{i}}{\mathbf{v}_{i}}\right)$.
- $\boldsymbol{\Lambda}$ is a $k \times(p+q)$ matrix of constants: "factor loadings."
- \mathbf{e}_{i} is a $k \times 1$ vector of error terms.
- $\mathbf{x}_{i}, \boldsymbol{\epsilon}_{i}$ and \mathbf{e}_{i} are independent.

Parameters

More notation

$$
\begin{aligned}
\mathbf{y}_{i} & =\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\left(\frac{\mathbf{x}_{i}}{\mathbf{y}_{i}}\right) \\
\mathbf{d}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

$$
\operatorname{cov}\left(\mathbf{x}_{i}\right)=\mathbf{\Phi}_{x}
$$

$$
\operatorname{cov}\left(\boldsymbol{\epsilon}_{i}\right)=\boldsymbol{\Psi}
$$

$$
\operatorname{cov}\left(\mathbf{F}_{i}\right)=\mathbf{\Phi}=\left(\begin{array}{cc}
\operatorname{cov}\left(\mathbf{x}_{i}\right) & \operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \\
\operatorname{cov}\left(\mathbf{y}_{i}, \mathbf{x}_{i}\right) & \operatorname{cov}\left(\mathbf{y}_{i}\right)
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{\Phi}_{11} & \mathbf{\Phi}_{12} \\
\mathbf{\Phi}_{12}^{\top} & \mathbf{\Phi}_{22}
\end{array}\right)
$$

$$
\operatorname{cov}\left(\mathbf{e}_{i}\right)=\boldsymbol{\Omega}
$$

$$
\operatorname{cov}\left(\mathbf{d}_{i}\right)=\boldsymbol{\Sigma}
$$

- Collect the unique elements of $\boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Lambda}, \boldsymbol{\Phi}_{x}, \boldsymbol{\Psi}$ and $\boldsymbol{\Omega}$ into a parameter vector $\boldsymbol{\theta}$.
- $\boldsymbol{\theta}$ is a function of the original model parameters.

Matrix Form

$$
\begin{aligned}
& Y_{i, 1}=\gamma_{1} X_{i}+\epsilon_{i, 1} \\
& Y_{i, 2}=\beta Y_{i, 1}+\gamma_{2} X_{i}+\epsilon_{i, 2} \quad \mathbf{y}_{i}=\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
& W_{i}=\lambda_{1} X_{i}+e_{i, 1} \\
& \mathbf{F}_{i}=\left(\frac{\mathbf{x}_{i}}{\mathbf{y}_{i}}\right) \\
& V_{i, 1}=\lambda_{2} Y_{i, 1}+e_{i, 2} \\
& \mathbf{d}_{i}=\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i} \\
& \mathbf{y}_{i}=\boldsymbol{\beta} \quad \mathbf{y}_{i}+\boldsymbol{\Gamma} \quad \mathbf{x}_{i}+ \\
& \binom{Y_{i, 1}}{Y_{i, 2}}=\left(\begin{array}{cc}
0 & 0 \\
\beta & 0
\end{array}\right)\binom{Y_{i, 1}}{Y_{i, 2}}+\binom{\gamma_{1}}{\gamma_{2}} X_{i}+\binom{\epsilon_{i, 1}}{\epsilon_{i, 2}} \\
& \mathbf{d}_{i}= \\
& \Lambda \\
& \mathbf{F}_{i}+ \\
& \mathbf{e}_{i} \\
& \left(\begin{array}{c}
W_{i} \\
V_{i, 1} \\
V_{i, 2}
\end{array}\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)\left(\begin{array}{c}
X_{i} \\
Y_{i, 1} \\
Y_{i, 2}
\end{array}\right)+\left(\begin{array}{c}
e_{i, 1} \\
e_{i, 2} \\
e_{i, 3}
\end{array}\right)
\end{aligned}
$$

Observable variables in the "latent" variable model

 $\mathbf{y}_{i}=\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}$
Fairly common

- These present no problem.
- Let $P\left(e_{j}=0\right)=1$, so $\operatorname{Var}\left(e_{j}\right)=0$.
- And $\operatorname{Cov}\left(e_{i}, e_{j}\right)=0$
- Because if $P\left(e_{j}=0\right)=1$,

$$
\begin{aligned}
\operatorname{Cov}\left(e_{i}, e_{j}\right) & =E\left(e_{i} e_{j}\right)-E\left(e_{i}\right) E\left(e_{j}\right) \\
& =E\left(e_{i} \cdot 0\right)-E\left(e_{i}\right) \cdot 0 \\
& =0-0=0
\end{aligned}
$$

- In $\boldsymbol{\Omega}=\operatorname{cov}\left(\mathbf{e}_{i}\right)$, column j (and row j) are all zeros.
- $\boldsymbol{\Omega}$ singular, no problem.

What should you be able to do?

- Given a path diagram, write the model equations and say which exogenous variables are correlated with each other.
- Given the model equations and information about which exogenous variables are correlated with each other, draw the path diagram.
- Given either piece of information, write the model in matrix form and say what all the matrices are.
- Calculate model covariance matrices.
- Check identifiability.

Recall the notation

$$
\begin{aligned}
\mathbf{y}_{i} & =\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\left(\frac{\mathbf{x}_{i}}{\mathbf{y}_{i}}\right) \\
\mathbf{d}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{x}_{i}\right) & =\mathbf{\Phi}_{x} \\
\operatorname{cov}\left(\boldsymbol{\epsilon}_{i}\right) & =\mathbf{\Psi} \\
\operatorname{cov}\left(\mathbf{F}_{i}\right) & =\mathbf{\Phi}=\left(\begin{array}{cc}
\operatorname{cov}\left(\mathbf{x}_{i}\right) & \operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \\
\operatorname{cov}\left(\mathbf{y}_{i}, \mathbf{x}_{i}\right) & \operatorname{cov}\left(\mathbf{y}_{i}\right)
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{\Phi}_{11} & \mathbf{\Phi}_{12} \\
\mathbf{\Phi}_{12}^{\top} & \mathbf{\Phi}_{22}
\end{array}\right) \\
\operatorname{cov}\left(\mathbf{e}_{i}\right) & =\boldsymbol{\Omega} \\
\operatorname{cov}\left(\mathbf{D}_{i}\right) & =\mathbf{\Sigma}
\end{aligned}
$$

Calculate a general expression for $\boldsymbol{\Sigma}(\boldsymbol{\theta})$.

For the latent variable model, calculate $\boldsymbol{\Phi}=\operatorname{cov}\left(\mathbf{F}_{i}\right)$

 Have $\operatorname{cov}\left(\mathbf{x}_{i}\right)=\mathbf{\Phi}_{x}$, need $\operatorname{cov}\left(\mathbf{y}_{i}\right)$ and $\operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$$$
\begin{aligned}
& \mathbf{y}_{i}=\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & \mathbf{y}_{i}-\boldsymbol{\beta} \mathbf{y}_{i}=\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & \mathbf{I}_{i}-\boldsymbol{\beta} \mathbf{y}_{i}=\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & (\mathbf{I}-\boldsymbol{\beta}) \mathbf{y}_{i}=\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & (\mathbf{I}-\boldsymbol{\beta})^{-1}(\mathbf{I}-\boldsymbol{\beta}) \mathbf{y}_{i}=(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}\right) \\
\Rightarrow & \mathbf{y}_{i}=(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{y}_{i}\right) & =(\mathbf{I}-\boldsymbol{\beta})^{-1} \operatorname{cov}\left(\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}\right)(\mathbf{I}-\boldsymbol{\beta})^{-1 \top} \\
& =(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\operatorname{cov}\left(\boldsymbol{\Gamma} \mathbf{x}_{i}\right)+\operatorname{cov}\left(\boldsymbol{\epsilon}_{i}\right)\right)\left(\mathbf{I}-\boldsymbol{\beta}^{\top}\right)^{-1} \\
& =(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{\Phi}_{x} \boldsymbol{\Gamma}^{\top}+\mathbf{\Psi}\right)\left(\mathbf{I}-\boldsymbol{\beta}^{\top}\right)^{-1}
\end{aligned}
$$

Theorem: If the original model holds, $(\mathbf{I}-\boldsymbol{\beta})^{-1}$ exists.

$\mathbf{y}_{i}=\boldsymbol{\alpha}+\boldsymbol{\beta} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}$ yields $(\mathbf{I}-\boldsymbol{\beta}) \mathbf{y}_{i}=\boldsymbol{\alpha}+\boldsymbol{\Gamma} \mathbf{x}_{i}+\boldsymbol{\epsilon}_{i}$. Suppose $(\mathbf{I}-\boldsymbol{\beta})^{-1}$ does not exist.

Then the rows of $\mathbf{I}-\boldsymbol{\beta}$ are linearly dependent, and there is a $q \times 1$ non-zero vector of constants a with $\mathbf{a}^{\top}(\mathbf{I}-\boldsymbol{\beta})=0$. So,

$$
\begin{aligned}
\mathbf{a}^{\top}(\mathbf{I}-\boldsymbol{\beta}) \mathbf{y}_{i} & =0=\mathbf{a}^{\top} \boldsymbol{\alpha}+\mathbf{a}^{\top} \boldsymbol{\Gamma} \mathbf{x}_{i}+\mathbf{a}^{\top} \boldsymbol{\epsilon}_{i} \\
\Rightarrow \operatorname{Var}(0) & =\operatorname{Var}\left(\mathbf{a}^{\top} \boldsymbol{\Gamma} \mathbf{x}_{i}\right)+\operatorname{Var}\left(\mathbf{a}^{\top} \boldsymbol{\epsilon}_{i}\right) \\
\Rightarrow 0 & =\mathbf{a}^{\top} \boldsymbol{\Gamma} \mathbf{\Phi}_{x} \boldsymbol{\Gamma}^{\top} \mathbf{a}+\mathbf{a}^{\top} \mathbf{\Psi} \mathbf{a}>0 .
\end{aligned}
$$

Contradicts I - $\boldsymbol{\beta}$ singular.

A hole in the parameter space

$|\mathbf{I}-\boldsymbol{\beta}| \neq 0$ can create a hole in the parameter space.

More calculations

- Have $\operatorname{cov}\left(\mathbf{y}_{i}\right)=(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{\Phi}_{x} \boldsymbol{\Gamma}^{\top}+\boldsymbol{\Psi}\right)\left(\mathbf{I}-\boldsymbol{\beta}^{\top}\right)^{-1}$.
- Know $\operatorname{cov}\left(\mathbf{x}_{i}\right)=\boldsymbol{\Phi}_{x}$
- Easy to get $\operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$.

For the measurement model, calculate $\boldsymbol{\Sigma}=\operatorname{cov}\left(\mathbf{d}_{i}\right)$

$$
\begin{aligned}
\mathbf{d}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i} \\
\Rightarrow \operatorname{cov}\left(\mathbf{d}_{i}\right) & =\operatorname{cov}\left(\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}\right) \\
& =\operatorname{cov}\left(\boldsymbol{\Lambda} \mathbf{F}_{i}\right)+\operatorname{cov}\left(\mathbf{e}_{i}\right) \\
& =\boldsymbol{\Lambda} \operatorname{cov}\left(\mathbf{F}_{i}\right) \boldsymbol{\Lambda}^{\top}+\operatorname{cov}\left(\mathbf{e}_{i}\right) \\
& =\boldsymbol{\Lambda} \mathbf{\Phi} \boldsymbol{\Lambda}^{\top}+\boldsymbol{\Omega} \\
& =\boldsymbol{\Sigma}
\end{aligned}
$$

Two-stage Proofs of Identifiability

- Show the parameters of the latent variable model $\left(\boldsymbol{\beta}, \boldsymbol{\Gamma}, \mathbf{\Phi}_{x}, \mathbf{\Psi}\right)$ can be recovered from $\boldsymbol{\Phi}=\operatorname{cov}\left(\mathbf{F}_{i}\right)$.
- Solve $\left(\begin{array}{cc}\operatorname{cov}\left(\mathbf{x}_{i}\right) & \operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \\ \operatorname{cov}\left(\mathbf{y}_{i}, \mathbf{x}_{i}\right) & \operatorname{cov}\left(\mathbf{y}_{i}\right)\end{array}\right)=\boldsymbol{\Phi}=\left(\begin{array}{cc}\boldsymbol{\Phi}_{11} & \boldsymbol{\Phi}_{12} \\ \boldsymbol{\Phi}_{12}^{\top} & \boldsymbol{\Phi}_{22}\end{array}\right)$ for $\left(\boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Phi}_{x}, \boldsymbol{\Psi}\right)$?
- Show the parameters of the measurement model $(\boldsymbol{\Lambda}, \boldsymbol{\Phi}, \boldsymbol{\Omega})$ can be recovered from $\boldsymbol{\Sigma}=\operatorname{cov}\left(\mathbf{d}_{i}\right)$.
- This means all the parameters can be recovered from $\boldsymbol{\Sigma}$.
- Break a big problem into two smaller ones.
- Develop rules for checking identifiability at each stage.
- Just look at the path diagram.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23

[^0]: ${ }^{1}$ See last slide for copyright information.

