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Factor Analysis: The Measurement Model

di = ΛFi + ei
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Example with 2 factors and 8 observed variables

di = Λ Fi + ei

di,1
di,2
di,3
di,4
di,5
di,6
di,7
di,8


=



λ11 λ12
λ21 λ22
λ31 λ32
λ41 λ42
λ51 λ52
λ61 λ62
λ71 λ27
λ81 λ82


(
Fi,1

Fi,2

)
+



ei,1
ei,2
ei,3
ei,4
ei,5
ei,6
ei,7
ei,8


.
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Terminology

di,1 = λ11Fi,1 + λ12Fi,2 + ei,1

di,2 = λ21Fi,1 + λ22Fi,2 + ei,2 etc.

The lambda values are called factor loadings.

F1 and F2 are sometimes called common factors, because they
influence all the observed variables.

Error terms e1, . . . , e8 are sometimes called unique factors, because
each one influences only a single observed variable.

The factors are latent variables.

dij are observable variables.
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Two kinds of factor analysis

Exploratory: : The goal is to describe and summarize the data
by explaining a large number of observed variables in terms of a
smaller number of latent variables (factors). The factors are the
reason the observable variables have the correlations they do.
Arrows from all factors to all observable variables.

Confirmatory: Estimation and hypothesis testing as usual.
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Unconstrained Exploratory Factor Analysis
Arrows from all factors to all observed variables, factors correlated
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The Model: d = ΛF + e

cov(F) = Φ

cov(e) = Ω (usually diagonal)

F and e independent (multivariate normal)

cov(d) = Σ = ΛΦΛ> + Ω
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Identifiability

ΛΦΛ> + Ω = Λ Φ1/2IΦ1/2 Λ> + Ω

= (ΛΦ1/2)I(Φ1/2>Λ>) + Ω

= (ΛΦ1/2)I(ΛΦ1/2)> + Ω

= Λ2IΛ
>
2 + Ω

(Φ,Λ,Ω) and (I,Λ2,Ω) yield the same Σ.
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It’s worse than that

Let Q be an arbitrary positive definite covariance matrix for Fi.

Σ = Λ2IΛ
>
2 + Ω

= Λ2Q
−1

2QQ−
1
2Λ>2 + Ω

= (Λ2Q
−1

2)Q(Q−
1
2>Λ>2 ) + Ω

= (Λ2Q
−1

2)Q(Λ2Q
−1

2)> + Ω

= Λ3QΛ>3 + Ω

So by adjusting the factor loadings, the covariance matrix of the
factors could be anything.
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Parameters are not identifiable

The parameters of the general measurement model are not
identifiable without some restrictions on the possible values of the
parameter matrices.

Notice that the general unrestricted model could be very close to
the truth. But the parameters cannot be estimated successfully,
period.
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Solution: Restrict the model

ΛΦΛ> = Λ2IΛ
>
2

Fix Φ = I.

All the factors are standardized, as well as independent.

Justify this on the grounds of simplicity.

Say the factors are “orthogonal” (at right angles, uncorrelated).
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Standardize the observed variables too
This is one version

For j = 1, . . . , k and independently for i = 1, . . . , n,

zij =
dij − µj
σjj

Each observed variable has variance one as well as mean zero.

Σ is now a correlation matrix.

Base inference on the sample correlation matrix.

12 / 38



Standardized Exploratory Factor Analysis Model
Implicitly for i = 1, . . . , n

z = ΛF + e
where

z is a k × 1 observable random vector. Each element of z has
expected value zero and variance one.

Λ is a k × p matrix of constants.

F (F for factor) is a p× 1 latent random vector with expected
value zero and covariance matrix Ip.

The k × 1 vector of error terms e has expected value zero and
covariance matrix Ω, which is diagonal.

F and e are independent

13 / 38



Factor Loadings are Correlations

corr(z,F) = cov(z,F)

= cov(ΛF + e,F)

= Λcov(F,F) + cov(e,F)

= Λcov(F) + 0

= ΛI

= Λ

The correlation between observed variable i and factor j is λij .

The square of λij is the reliability of observed variable i as a
measure of factor j.
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z = ΛF + e

z1 = λ11F1 + λ12F2 + · · ·+ λ1pFp + e1

z2 = λ21F1 + λ22F2 + · · ·+ λ2pFp + e2
...

...

zk = λk1F1 + λk2F2 + · · ·+ λkpFp + ek

V ar(z1) = λ211 + λ212 + · · ·+ λ21p + ω1

V ar(z2) = λ221 + λ222 + · · ·+ λ22p + ω2

...
...

V ar(zk) = λ2k1 + λ2k2 + · · ·+ λ2kp + ωk

V ar(zj) = 1, so ωj = 1− λ2j1 − λ2j2 − · · · − λ2jp
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Communality and Uniqueness
V ar(zj) = λ2

j1 + λ2
j2 + · · ·+ λ2

jp + ωj = 1

The explained variance in zj is λ2j1 + λ2j2 + · · ·+ λ2jp. It is called
the communality.

To get the communality, add the squared factor loadings in row j
of Λ.

ωj = 1− λ2j1 − λ2j2 − · · · − λ2jp is called the uniqueness. It’s the
proportion of variance that is not explained by the factors.
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If we could estimate the factor loadings

We could estimate the correlation of each observable variable with
each factor.

We could easily estimate reliabilities.

We could assess how much of the variance in each observable
variable comes from each factor.

This could reveal what the underlying factors are, and what they
mean.

Unfortunately, we still can’t estimate the factor loadings.
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Rotation Matrices

Have a co-ordinate system in terms of ~i, ~j orthonormal vectors

Rotate the axes through an angle θ.

i

j

i′j′

θ
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Equations of Rotation

i

j

i′j′

θ

If a point on the plane is
denoted in terms of ~i and ~j
by (x, y), its position in
terms of the rotated basis
vectors is

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ.
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In Matrix Form

The equations of rotation

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ.

May be written(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
= R

(
x
y

)
.

Using the identities cos(−θ) = cos θ and sin(−θ) = − sin θ, rotate back
through an angle of −θ.(

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x′

y′

)
= R>

(
x′

y′

)
.

20 / 38



Verifying that R> = R−1

RR> =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ

− sin θ cos θ + cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
= I.

In higher dimension as well, pre-multiplication by an orthogonal matrix
corresponds to a rotation or possibly a reflection.
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Another source of non-identifiability
Returning to the standardized factor model

cov(z) = Σ

= ΛΛ> + Ω

= ΛR>RΛ> + Ω

= (ΛR>)(ΛR>)> + Ω

= Λ2Λ
>
2 + Ω

Infinitely many rotation matrices produce the same Σ, even though the
factor loadings in Λ2 = ΛR> can be very different for different R
matrices.
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Rotating the Factors
Recall Σ = ΛΛ> + Ω = ΛR>RΛ> + Ω

Post-multiplication of Λ by R> is often called “rotation of the factors.”

z = ΛF + e

= (ΛR>)(RF) + e

= Λ2F
′ + e.

F′ = RF is a set of rotated factors.

All rotations of the factors produce the same covariance matrix of
the observable data.
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Same Explained Variance
When factors are rotated

Communality of variable i is
∑p

j=1 λ
2
ij .

Add up the squares of the factor loadings in row i of Λ.

This equals the ith diagonal of element of ΛΛ>.

Λ2Λ
>
2 = (ΛR>)(ΛR>)>

= ΛR>RΛ>

= ΛΛ>.

Ouch.
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Strategy

1 Place some restrictions on the factor loadings, so that the only
rotation matrix that preserves the restrictions is the identity
matrix. For example, λij = 0 for j > i.

2 Generally, the restrictions may not make sense in terms of the
data. Don’t worry about it.

3 Estimate the loadings, perhaps by maximum likelihood.

4 All (orthogonal) rotations result in the same maximum value of
the likelihood function. That is, the maximum is not unique.
Again, don’t worry about it.

5 Pick a rotation that results in a simple pattern in the factor
loadings, one that is easy to interpret.
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Simple Structure
Something like this would be nice

Λ =



0.87 0.00

−0.95 0.03

0.79 0.00

0.00 0.88

0.01 0.75

0.02 −0.94
0.00 −0.82
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Rotation to Simple Structure
Rotation means post-multiply Λ by a rotation matrix

Used to be subjective, and done by hand!

Now it’s objective and done by computer.

There are various criteria. They are all iterative, taking a number
of steps to approach some criterion.

The most popular rotation method is varimax rotation.
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Varimax Rotation

The original idea was to maximize the variability of the squared
loadings in each column.

Λ =



0.87 0.00
−0.95 0.03

0.79 0.00
0.00 0.88
0.01 0.75
0.02 −0.94
0.00 −0.82


The results weren’t great, so they fixed it up, expressing each
squared factor loading as a proportion of the communality.
Note that the criterion depends on the factor loadings only
through the λ2ij .
In practice, varimax rotation tends to maximize the squared
loading of each observable variable with just one underlying factor.
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Everybody Loves Varimax

Estimate the factor loadings with some crazy restrictions.

Apply a varimax rotation.

Interpret the results.

Note that rotation does not affect communalities (explained variance).
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The Missing Ingredient: Number of Common Factors

Number of common factors is generally not known in advance.
This is exploratory factor analysis.

There are lots of ideas and suggestions.

At least three variables per factor.
At least five variables per factor.
. . .
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Wisdom
From Kaiser (Mr. Varimax)

There are probably hundreds of common factors.

Including them all in the model is out of the question.

The objective should be to come up with a model that includes the
most important ones, and captures the essence of what is going on.

Simplicity is important. Other things being more or less equal, the
fewer factors the better.
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Estimating Number of Factors
The three most popular ideas?

Number of eigenvalues (of the sample correlation matrix) greater
than one.

Scree plots.

Testing.
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Scree Plots

In geology, “scree” is the pile of rock and debris often found at the
foot of a mountain cliff or volcano.

Scree slopes tend to be concave up, steepest near the cliff and then
tailing off.

In factor analysis, a scree plot shows the eigenvalues of the
correlation matrix, sorted in order of magnitude.
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Scree Plot of the Body-Mind Data
See textbook
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Scree Plot for the Mind-Body Data

It is very common for the
graph to decrease rapidly at
first, and then straighten out
with a small negative slope for
the rest of the way.

The point at which the linear
trend begins is the estimated
number of factors.
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Testing

If the model is fit by maximum likelihood, carry out the likelihood
ratio test for goodness of fit.

If we really insist that the error terms are independent of the
factors and have a diagonal covariance matrix, the only way that
the model can be incorrect is that it does not have enough factors.

Thus, any test for goodness of fit is also a test for number of
factors.

So if a model fails the goodness of fit test, increase the number of
factors and try again.

However . . .
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Can you ever have too much statistical power?

In reality, there are probably hundreds of factors.

The power of the likelihood ratio test increases with the sample
size

For large samples, significant lack of fit may be expected for any
model with a modest number of factors.

Even if it’s a good model.

So while formal testing for lack of fit may be useful, one should
not rely on it exclusively.
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Consulting Advice

When a non-statistician claims to have done a “factor analysis,”
ask what kind.

Usually it was a principal components analysis.

Principal components are linear combinations of the observed
variables. They come from the observed variables by direct
calculation.

In true factor analysis, its the observed variables that arise from
the factors.

So principal components analysis is kind of like backwards factor
analysis, though the spirit is similar
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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