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A Small Example

Seeking identifiability

The parameters of this model are not identifiable.

Yi = β0 + β1Xi + εi

Wi = ν +Xi + ei,

For example, X might be number of acres planted and Y might be
crop yield.

Plan the statistical analysis in advance.

Take 2 independent measurements of the explanatory variable.

Say, farmer’s report and satellite photograph.
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A Small Example

Double measurement
Of the explanatory variable
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A Small Example

Model
Could have written this down based on the path diagram

Independently for i = 1, . . . , n, let

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

where

Xi is normally distributed with mean µx and variance φ > 0

εi is normally distributed with mean zero and variance ψ > 0

ei,1 is normally distributed with mean zero and variance ω1 > 0

ei,2 is normally distributed with mean zero and variance ω2 > 0

Xi, ei,1, ei,2 and εi are all independent.
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A Small Example

Parameter Count Rule

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

θ = (ν1, ν2, β0, µx, β1, φ, ψ, ω1, ω2): 9 parameters.

Three expected values, three variances and three covariances: 9
moments.

Identifiability is possible, but not guaranteed.
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A Small Example

Distribution of the sample data

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

The model implies that the triples di = (Wi,1,Wi,2, Yi)
> are

independent multivarate normal with

E(di) = E

 Wi,1

Wi,1

Yi

 =

 µ1
µ2
µ3

 =

 µx + ν1
µx + ν2
β0 + β1µx

 ,

and variance covariance matrix cov(di) = Σ = σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .
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A Small Example

Are the parameters in the covariance matrix
identifiable?
Six equations in five unknowns

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

φ = σ12

ω1 = σ11 − σ12
ω2 = σ22 − σ12
β1 =

σ13
σ12

ψ = σ33 − β21φ = σ33 −
σ213
σ12

Yes.
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A Small Example

What about the expected values?

Model equations again:

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

Expected values:

µ1 = ν1 + µx

µ2 = ν2 + µx

µ3 = β0 + β1µx

Four parameters appear only in the expected values: ν1, ν2, µx, β0.

Three equations in four unknowns, even with β1 identified from the
covariance matrix.

Parameter count rule applies.
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A Small Example

Re-parameterize
µ1 = ν1 + µx µ2 = ν2 + µx µ3 = β0 + β1µx

Absorb ν1, ν2, µx, β0 into µ.

Parameter was θ = (ν1, ν2, β0, µx, β1, φ, ψ, ω1, ω2)

Now it’s θ = (µ1, µ2, µ3, β1, φ, ψ, ω1, ω2).

Dimension of the parameter space is now one less.

We haven’t lost much, especially because the model was already
re-parameterized.

Y = β0 + β1X + ε

V = ν0 + Y + e

= ν0 + (β0 + β1X + ε) + e

= (ν0 + β0) + β1X + (ε+ e)

= β′0 + βX + ε′
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A Small Example

Re-parameterization

Re-parameterization makes maximum likelihood possible.

Otherwise the maximum is not unique and it’s a mess.

Estimate µ with d and it simply disappears from

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (d− µ)>Σ−1(d− µ)

}

This step is so common it becomes silent.

Model equations are often written in centered form.
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A Small Example

Back to the covariance structure equations

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

Notice that the model dictates σ1,3 = σ2,3.

There are two ways to solve for β1:
β1 = σ13

σ12
and β1 = σ23

σ12
.

Does this mean the solution for β1 is not “unique?”
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A Small Example

Testing goodness of fit.

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

σ1,3 = σ2,3 is a model-induced constraint upon Σ.

It’s a testable null hypothesis.

If rejected, the model is called into question.

Likelihood ratio test comparing this model to a completely
unrestricted multivariate normal model:

G2 = −2 ln
L
(
d,Σ(θ̂)

)
L(d, Σ̂)

Valuable even if the data are not normal.
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A Small Example

The Reproduced Covariance Matrix

Σ(θ̂) is called the reproduced covariance matrix.

It is the covariance matrix of the observable data, written as a
function of the model parameters and evaluated at the MLE.

Σ(θ̂) =

 φ̂+ ω̂1 φ̂ β̂1φ̂

φ̂+ ω̂2 β̂1φ̂

β̂21 φ̂+ ψ̂


The reproduced covariance matrix obeys all model-induced
constraints, while Σ̂ does not.

But if the model is right they should be close.

G2 = −2 ln
L
(
d,Σ(θ̂)

)
L(d, Σ̂)
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A Small Example

General pattern for testing goodness of fit

Suppose there are k moment structure equations in p parameters,
and all the parameters are identifiable.

If p < k, call the parameter vector over-identifiable.

Only need p equations to solve for θ.

Substituting the solutions (in terms of σij) back into the unused
equations would yield k − p equality constraints on Σ.

Test those constraints with G2 = −2 ln
L(d,Σ(θ̂))
L(d,Σ̂)

.

df = k − p
Don’t need to actually derive the constraints – just count them.
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A Small Example

With the same number of equations and parameters

If the parameter is identifiable, call it just identifiable.

Parameters are 1-1 with those of an unrestricted multivariate
normal.

Call the model “saturated.”

There are no equality constraints on Σ.

No likelihood ratio test because G2 = −2 ln
L(d,Σ(θ̂))
L(d,Σ̂)

= 0.

This is what happens in regression with all observed variables.
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A Small Example

Data analysis strategy

Verify identifiability.

If the model is over-identified, test goodness of fit.

If it passes (non-significant), proceed.

Now think of your model as the “full,” or unrestricted model.

Compared to some (even more) reduced model that is restricted
by a null hypothesis like β1 = 0.

Fit the reduced model.

Subtract goodness of fit (G2 or “chi-square”) statistics to test H0.
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A Small Example

Subtract Likelihood Ratio Fit Statistics
Badness of fit

G2 tests the full model against the saturated model, and G2
0 tests the

restricted model against the saturated model.

G2
0 −G2 = −2 ln

L
(
d,Σ(θ̂0)

)
L(d, Σ̂)

−−2 ln
L
(
d,Σ(θ̂)

)
L(d, Σ̂)

= −2
(

lnL
(
d,Σ(θ̂0)

)
− lnL(d, Σ̂)− lnL

(
d,Σ(θ̂)

)
+ lnL(d, Σ̂)

)
= −2 ln

L
(
d,Σ(θ̂0)

)
L
(
d,Σ(θ̂)

)
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A Small Example

Further comments

Models with non-identifiable parameters can imply testable
equality constraints, but testing them is not automatic.

Models can imply inequality constraints on Σ, too.

Using the solutions

φ = σ12

ω1 = σ11 − σ12
ω2 = σ22 − σ12
β1 =

σ13
σ12

ψ = σ33 − β21φ = σ33 −
σ213
σ12

We get four inequality constraints.
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A Small Example

Four inequality constraints on Σ

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

φ = σ12 > 0

ω1 = σ11 − σ12 > 0

ω2 = σ22 − σ12 > 0

ψ = σ33 −
σ213
σ12

> 0
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A Small Example

Inequality constraints

Inequality constraints arise because variances are positive.

Or more generally, covariance matrices are positive definite.

Could inequality constraints be violated in numerical maximum
likelihood?

Definitely.

But only a little by sampling error if the model is correct.

So maybe it’s not so dumb to test hypotheses like H0 : ω1 = 0.

Since the model says ω1 = σ11 − σ12 and it might not be true.
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Computation

Computation with lavaan

431s23Babydouble.pdf

This link will probably be broken once the term is over. See the course
website for another route to the output file:

http://www.utstat.toronto.edu/brunner/oldclass/431s23
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The General Model

The general double measurement design

x w
2

w
1

e
2

e
1

β
1

ε

yv
1

v
2

e
4

e
3

Ω
12

Ω
34

Ω doesn't look as good in boldface.

These are all matrices.
Double measurement can help solve a big problem: Correlated
measurement error.

The main idea is that x and y are each measured twice, perhaps
at different times using different methods.

Measurement errors may be correlated within but not between sets
of measurements.
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The General Model

Double Measurement Regression: A Two-Stage Model
Setting up a two-stage proof of identifiability

yi = β0 + β1xi + εi

Fi =

(
xi

yi

)
di,1 = ν1 + Fi + ei,1

di,2 = ν2 + Fi + ei,2

Observable variables are di,1 and di,2: both are (p+ q)× 1.

E(xi) = µx, cov(xi) = Φx, cov(εi) = Ψ, cov(ei,1) = Ω1, cov(ei,2) = Ω2.
Also, xi, εi, ei,1 and ei,2 are independent.
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The General Model

Measurement errors may be correlated
Look at the measurement model

Fi =

(
xi
yi

)
di,1 = ν1 + Fi + ei,1

di,2 = ν2 + Fi + ei,2 x w
2

w
1

e
2

e
1

β
1

ε

yv
1

v
2

e
4

e
3

Ω
12

Ω
34

Ω doesn't look as good in boldface.

cov(ei,1) = Ω1 =

(
Ω11 Ω12

Ω>12 Ω22

)

cov(ei,2) = Ω2 =

(
Ω33 Ω34

Ω>34 Ω44

)
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The General Model

Expected values of the observable variables
di,1 = ν1 + Fi + ei,1 and di,2 = ν2 + Fi + ei,2

E(di,1) =

(
µ1,1

µ1,2

)
=

(
ν1,1 + E(xi)

ν1,2 + E(yi)

)
=

(
ν1,1 + µx

ν1,2 + β0 + β1µx

)

E(di,2) =

(
µ2,1

µ2,2

)
=

(
ν2,1 + E(xi)

ν2,2 + E(yi)

)
=

(
ν2,1 + µx

ν2,2 + β0 + β1µx

)

ν1, ν2, β0 and µx parameters appear only in expected value, not
covariance matrix.
xi is p× 1 and yi is q × 1.
Even with β1 identified from the covariance matrix, have 2(p+ q)
equations in 3(p+ q) unknown parameters.
Identifying the expected values and intercepts is impossible.

Re-parameterize, absorbing them into µ = E

(
di,1
di,2

)
.
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The General Model

Losing the intercepts and expected values by
re-parameterization

We cannot identify ν1, ν2, β0 and µx separately.

Swallow them into µ.

Estimate µ with d.

And it disappears from L(µ,Σ) =

|Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (d− µ)>Σ−1(d− µ)

}
.

And forget it. It’s no great loss.

Concentrate on the parameters that appear only in the covariance
matrix of the observable data.

Try to identify θ = (β1,Φx,Ψ,Ω1,Ω2) from Σ = cov

(
di,1
di,2

)
.
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The General Model

Stage One: The latent variable model
θ = (β1,Φx,Ψ,Ω1,Ω2)

yi = β0 + β1xi + εi, where

cov(xi) = Φx

cov(εi) = Ψ

xi and εi are independent.

Vector of “factors” is Fi =

(
xi
yi

)
.

Let Φ = cov(Fi).

We know that Φx, β1 and Ψ are functions of Φ.

We’ve already shown it; this is a regression model.

That’s Stage One. Parameters of the latent variable model are
functions of Φ.
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The General Model

Stage Two: The measurement model

di,1 = ν1 + Fi + ei,1

di,2 = ν2 + Fi + ei,2

cov(ei,1) = Ω1, cov(ei,2) = Ω2. Also, Fi, ei,1 and ei,2 are independent.

cov

(
di,1
di,2

)
= Σ =

(
Σ11 Σ12

Σ>12 Σ22

)
=

(
Φ + Ω1 Φ

Φ Φ + Ω2

)

Φ, Ω1 and Ω2 can easily be recovered from Σ.
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The General Model

All the parameters in the covariance matrix are
identifiable
θ = (β1,Φx,Ψ,Ω1,Ω2)

Φx, β1 and Ψ are functions of Φ = cov(Fi).

Φ, Ω1 and Ω2 are functions of Σ = cov

(
di,1
di,2

)
.

Σ is a function of the probability distribution of the observable
data.

So β1,Φx,Ψ,Ω1,Ω2 are all functions of the probability
distribution of the observable data.

They are identifiable.
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The General Model

Parameters of the double measurement regression model
are identifiable
After re-parameterization
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Ω doesn't look as good in boldface.

Correlated measurement error within sets is allowed.
This is a big plus, because omitted variables are a reality.
Correlated measurement error between sets must be ruled out by
careful data collection.
No need to do the calculations ever again.
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The BMI study

The BMI Health Study

Body Mass Index: Weight in Kilograms divided by Height in
Meters Squared.

Under 18 means underweight, Over 25 means overweight, Over 30
means obese.

High BMI is associated with poor health, like high blood pressure
and high cholesterol.

People with high BMI tend to be older and fatter.

But, what if you have a high BMI but are in good physical shape
(low percent body fat)?
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The BMI study

The Question

If you control for age and percent body fat, is BMI still associated
with indicators for poor health?

Percent body fat (and to a lesser extent, age) are measured with
error. Standard ways of controlling for them with ordinary
regression are highly suspect.

Use the double measurement design.
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The BMI study

True variables (all latent)

X1 = Age

X2 = BMI

X3 = Percent body fat

Y1 = Cholesterol

Y2 = Diastolic blood pressure
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The BMI study

Measure twice with different personnel at different
locations and by different methods

Measurement Set One Measurement Set Two

Age Self report Passport or birth certificate

BMI Dr. Office measurements Lab technician, no shoes, gown

% Body Fat Tape and calipers, Dr. Office Submerge in water tank

Cholesterol Lab 1 Lab 2

Diastolic BP Blood pressure cuff, Dr. office Digital readout, mostly automatic

Set two is of generally higher quality.

Correlation of measurement errors is unlikely between sets.
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Method of Moments

Method of Moments

What if the distributions are not normal?

What’s the parameter vector?

θ = (β, Fx, Fε, Fe).

Φ is a function of Fx.
Ω is a function of Fe.
Ψ is a function of Fε.

We are only interested in β anyway.

Put hats on solution to covariance structure equations?
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Method of Moments

Path diagram again
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Ω doesn't look as good in boldface.
37 / 42



Method of Moments

Covariance structure equations

Σ = cov


wi,1

vi,1

wi,2

vi,2



=


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44



=


Φ + Ω11 Φβ> + Ω12 Φ Φβ>

βΦβ> + Ψ + Ω22 βΦ βΦβ> + Ψ

Φ + Ω33 Φβ> + Ω34

βΦβ> + Ψ + Ω44
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Method of Moments

The interesting equations

cov(wi,1,wi,2) = Σ13 = Φ

cov(vi,1,wi,2) = Σ23 = βΦ

cov(wi,1,vi,2) = Σ14 = Φβ>

Solutions

Φ = Σ13

β = Σ23Φ
−1 = Σ>14Φ

−1
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Method of Moments

MOM estimates

Using the solutions

Φ = Σ13 = cov(wi,1,wi,2)

β = Σ23Φ
−1 = Σ>14Φ

−1

Φ̂M =
1

2
(Σ̂13 + Σ̂

>
13)

β̂M =
1

2

(
Σ̂23 + Σ̂

>
14

)
Φ̂
−1
M

The asymptotic distribution of β̂M is multivariate normal. Use
Theorem A.1 from Appendix A, and the multivariate delta method,
also given in Appendix A.
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Method of Moments

Asymptotic distribution of β̂M = 1
2

(
Σ̂23 + Σ̂

>
14

)
Φ̂
−1

M

Where Φ̂M = 1
2
(Σ̂13 + Σ̂

>
13)

β̂M is approximately multivariate normal with expected value β

And covariance matrix . . .

Bootstrap.
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Method of Moments

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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