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Sampling distributions

Sampling distributions

Let x = (X1, . . . , Xn) be a random sample from some distribution
F .

t = t(x) is a statistic (could be a vector of statistics).

Need to know about the distribution of t.

Sometimes it’s not easy, even asymptotically.
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Sampling distributions

Sampling distribution of t: The elementary version
For example t = X

Sample repeatedly from this population (pretend).

For each sample, calculate t.

Make a relative frequency histogram of the t values you observe.

As the number of samples becomes very large, the histogram
approximates the distribution of t.

4 / 21



Bootstrap

Bootstrap?
Pull yourself up by your bootstraps

This photograph was taken by Tarquin. It is licensed under a Creative Commons

Attribution - ShareAlike 3.0 Unported License. For more information, see the entry at the

wikimedia site.
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Bootstrap

The (statistical) Bootstrap
Bradley Efron, 1979

Select a random sample from the population.

If the sample size is large, the sample is similar to the population.

Sample repeatedly from the sample. This is called resampling.

Sample from the sample? Think of putting the sample data values
in a jar . . .

Calculate the statistic for every bootstrap sample.

A histogram of the resulting values approximates the shape of the
sampling distribution of the statistic.
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Bootstrap

Notation

Let x = (X1, . . . , Xn) be a random sample from some distribution
F .

t = t(x) is a statistic (could be a vector of statistics).

Form a “bootstrap sample” x∗ by sampling n values from x with
replacement.

Repeat this process B times, obtaining x∗1, . . . ,x
∗
B.

Calculate the statistic for each bootstrap sample, obtaining
t∗1, . . . , t

∗
B.

Relative frequencies of t∗1, . . . , t
∗
B approximate the sampling

distribution of t.

7 / 21



Bootstrap

Why does it work?
Empirical distribution function

F̂ (x) =
1

n

n∑
i=1

I{Xi ≤ x}
p→ E(I{Xi ≤ x}) = F (x)

Resampling from x with replacement is the same as simulating a
random variable whose distribution is the empirical distribution
function F̂ (x).

Suppose the distribution function of t is a nice smooth function of
F .

Then as n→∞ and B →∞, bootstrap sample moments and
quantiles of t∗1, . . . , t

∗
B converge to the corresponding moments and

quantiles of the unknown distribution of t.

If the distribution of x is discrete and supported on a finite
number of points, the technical issues are minor.
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Bootstrap

Main Application for This Course
Skipping quantile bootstrap confidence intervals and many other interesting things

t = θ̂n.

Even when the data are non-normal and the model is wrong, θ̂n is
asymptotically normal and converges to a definite target, provided
the MLE is unique.

For the models that appear in this class,

If the model is correct (except for the distribution) and the
parameters are identifiable, θ̂n is consistent as well as
asymptotically normal.

The only problem is that the variances and covariances in
Vn = 1

nI(θ) may be wrong.

Need a different asymptotic covariance matrix (sometimes).
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Bootstrap

Bootstrap the covariance matrix of θ̂n

Asymptotic distribution is multivariate normal

Centered on the right thing.

The only other thing we need to know about the distribution of θ̂n
is its covariance matrix.
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Bootstrap

Procedure

The data ‘jar” contains not balls with single numbers, but strings
of beads with a vector of observed values di written on them.
Data values for a case stay together.

Select n strings of beads with replacement, obtaining x∗1. .

Do this B times. Now you have x∗1, . . . ,x
∗
B.

Calculate θ̂
∗
1, . . . θ̂

∗
B.

You have a lot of information about the multivariate distribution
of θ̂n, but all you care about is the covariance matrix.

If there are m parameters, you have a B ×m matrix of numbers,
with one column for each parameter in the model.

Calculate the sample covariance matrix for the data (using var).

This is the new V̂n.

Use it for Wald tests and z-tests.

All this applies to MOM as well as MLE.
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Bootstrap

Sometimes it’s Unnecessary

Linear structural equation models have a lot of robustness to the
multivariate normal assumption.

When it fails, it’s usually for data with “excess kurtosis” (heavy
tails).

And even then, not necessarily for all parameters.

Trouble arises when the variance of the sample variance is
involved.

V ar

(
1

n

n∑
i=1

(xi − xn)2

)
Fourth moments of the normal distribution will be too small,
leading to an under-estimate.

For the double measurement design, standard errors of the
regression coefficients are robust to normality.
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Example

Example: Double measurement

X����
W1 W2

@
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�
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?

e2

?

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = φ, E(e1) = E(e2) = 0, V ar(e1) = ω1,
V ar(e2) = ω2, and X, e1 and e2 are all independent.
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Example

Equivalent measurements?

X����
W1 W2

@
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If ω1 = V ar(e1) and ω2 = V ar(e2) are equal, W1 and W2 are equivalent
measurements, and Corr(W1,W2) = φ

φ+ω , the reliability.
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Example

Simulate from the t Distribution: Heavy-tailed
V ar(t) = ν/(ν − 2), so with ν = 3, V ar(t) = 3

> rm(list=ls())

> # Parameter values and sample size

> phi = 7; omega1 = 3; omega2 = 3

> rel1 = round(phi/(phi+omega1),3); rel2 = round(phi/(phi+omega2),3)

> c(rel1,rel2) # Reliabilities

[1] 0.7 0.7

> n = 1500

> # Simulate from t distribution -- heavy tails

> # Var(t) = nu/(nu-2)

> set.seed(9999)

> x = sqrt(phi) * rt(n,3)/sqrt(3)

> e1 = sqrt(omega1) * rt(n,3)/sqrt(3); e2 = sqrt(omega2) * rt(n,3)/sqrt(3)

> w1 = x + e1; w2 = x + e2

> ww = cbind(w1,w2)

> vcovW = var(ww) * (n-1)/n; vcovW # Divide by n to get MLEs

w1 w2

w1 10.120663 6.727376

w2 6.727376 9.347715
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Example

Normal Theory Fit with lavaan

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-11

lavaan is FREE software! Please report any bugs.

> # Normal theory with lavaan

> mod = "x =~ 1.0*w1 + 1.0*w2

+ x ~~ phi*x; w1 ~~ omega1*w1; w2 ~~ omega2*w2

+ vardiff := omega1-omega2

+ "

> fit = lavaan(mod, data=ww)

> # summary(fit)

> parameterEstimates(fit)

lhs op rhs label est se z pvalue ci.lower ci.upper

1 x =~ w1 1.000 0.000 NA NA 1.000 1.000

2 x =~ w2 1.000 0.000 NA NA 1.000 1.000

3 x ~~ x phi 6.727 0.305 22.031 0.000 6.129 7.326

4 w1 ~~ w1 omega1 3.393 0.220 15.448 0.000 2.963 3.824

5 w2 ~~ w2 omega2 2.620 0.205 12.778 0.000 2.218 3.022

6 vardiff := omega1-omega2 vardiff 0.773 0.364 2.124 0.034 0.060 1.486

> thetahat = coef(fit); thetahat

phi omega1 omega2

6.727 3.393 2.620
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Example

Bootstrap

> # Bootstrap the "hard" way

> # n = dim(ww)[1] is not needed

> jar = 1:n; B = 1000

> tstar = matrix(NA,B,3) # Rows will hold theta-hat values

> colnames(tstar) = names(coef(fit))

> for(j in 1:B)

+ {
+ rowz = sample(jar,size=n,replace=TRUE)

+ xstar = ww[rowz,]

+ fitstar = lavaan(mod, data=xstar)

+ tstar[j,] = coef(fitstar)

+ } # Next bootstrap sample

> head(tstar)

phi omega1 omega2

[1,] 6.969279 4.360700 2.182922

[2,] 6.324895 4.075226 2.259924

[3,] 6.607809 3.034017 2.047602

[4,] 6.931564 3.314822 3.254835

[5,] 6.157233 3.992400 2.434781

[6,] 8.465813 3.019230 2.719412 17 / 21



Example

Sampling Distribution of ω̂1 − ω̂2

> vdiff = tstar[,2] - tstar[,3] # Vector of omega1hat - omega2hat values

> hist(vdiff)

Histogram of vdiff
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> shapiro.test(vdiff) # Test of normality

Shapiro-Wilk normality test

data: vdiff

W = 0.99873, p-value = 0.7097
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Example

Standard error of ω̂1 − ω̂2

> var(vdiff)

[1] 0.2889961

> bootse = sqrt(var(vdiff))

> bootse # Compare normal theory estimate of 0.364

[1] 0.5375836

> z = (thetahat[2]-thetahat[3])/bootse; z # Compare z = 2.124

omega1

1.437819

> # Now bootstrap with lavaan: The easy way

> fitB = lavaan(mod, data=ww, se = "bootstrap")

> parameterEstimates(fitB)

lhs op rhs label est se z pvalue ci.lower ci.upper

1 x =~ w1 1.000 0.000 NA NA 1.000 1.000

2 x =~ w2 1.000 0.000 NA NA 1.000 1.000

3 x ~~ x phi 6.727 0.922 7.295 0.000 5.255 8.734

4 w1 ~~ w1 omega1 3.393 0.386 8.781 0.000 2.685 4.213

5 w2 ~~ w2 omega2 2.620 0.353 7.419 0.000 1.996 3.390

6 vardiff := omega1-omega2 vardiff 0.773 0.525 1.473 0.141 -0.192 1.833
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Example

Advantages and Disadvantages
Of bootstrapping the normal MLEs

Advantages

No assumptions about the distribution of the data.

Works for any linear structural equation model provided the
observed data have finite fourth moments.

It’s easy.

Disadvantages

It might take a minute or two.

The answer is slightly different every time.

You need the raw data.

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (d− µ)>Σ−1(d− µ)

}
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Example

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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