% 431s23Formulas6.tex \documentclass[11pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb %\usepackage{graphicx} % To include pdf files! \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \oddsidemargin=0in % Good for US Letter paper \evensidemargin=0in \textwidth=6.3in \topmargin=-0.5in \headheight=0.1in \headsep=0.1in \textheight=9.4in % \pagestyle{empty} % No page numbers \begin{document} %\enlargethispage*{1000 pt} \begin{center} {\Large \textbf{STA 431 Formulas}}\\ \vspace{1 mm} \end{center} \noindent \renewcommand{\arraystretch}{2.0} \begin{tabular}{ll} $ Pr\{ Y \in A\} = \sum_x Pr\{ Y \in A|X=x\} p_x(x)$ & $ Pr\{ Y \in A\} = \int_{-\infty}^\infty Pr\{ X \in A|X=x\} f_x(x) \, dx$ \\ $Var(X) \stackrel{def}{=} E\left( \, (X-\mu_x)^2 \, \right) $ & $Var(X) = E(X^2)-[E(X)]^2 $ \\ $Cov(X,Y) \stackrel{def}{=} E\left( \, (X-\mu_x)(Y-\mu_{_Y}) \, \right)$ & $Cov(X,Y) = E(XY)-E(X)E(Y)$ \\ $Cov(aX,bY) = ab \, Cov(X,Y)$ & $Cov(x+a,Y+b) = Cov(X,Y)$ \\ $Corr(X,Y) \stackrel{def}{=} \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)} } $ & $Cov\left(\sum_{i=1}^na_iX_i~,\,\sum_{j=1}^m b_j Y_j \right) = \sum_{i=1}^n\sum_{j=1}^m a_i b_j Cov\left( X_i, Y_j \right)$ \\ %%%%%%%%%%% $\mathbf{Av} = \lambda\mathbf{v}$ & $\mathbf{A} = \mathbf{CDC}^\top$ with $\mathbf{CC}^\top = \mathbf{C}^\top\mathbf{C} = \mathbf{I}$, for $\mathbf{A}$ symmetric.\\ $\mathbf{A}^{-1} = \mathbf{C} \mathbf{D}^{-1} \mathbf{C}^\top$ & \\ $\mathbf{A}^{1/2} = \mathbf{CD}^{1/2} \mathbf{C}^\top$ & $\mathbf{A}^{-1/2} = \mathbf{CD}^{-1/2} \mathbf{C}^\top$ \\ \multicolumn{2}{l}{$\mathbf{A}$ \emph{positive definite} means $\mathbf{v}^\prime \mathbf{Av} > 0$ for all vectors $\mathbf{v} \neq \mathbf{0}$.} \\ %%%%%%%%%%% $cov(\mathbf{x}) \stackrel{def}{=} E\left\{(\mathbf{x}-\boldsymbol{\mu}_x)(\mathbf{x}-\boldsymbol{\mu}_x)^\top\right\}$ & $cov(\mathbf{x,y}) \stackrel{def}{=} E\left\{ (\mathbf{x}-\boldsymbol{\mu}_x) (\mathbf{y}-\boldsymbol{\mu}_y)^\top\right\}$ \\ $cov(\mathbf{Ax}) = \mathbf{A} \, cov(\mathbf{x}) \, \mathbf{A}^\top$ & $cov(\mathbf{Ax},\mathbf{By}) = \mathbf{A} \, cov(\mathbf{x,y}) \, \mathbf{B}^\top$ \\ $\mathbf{L} = \mathbf{A}_1\mathbf{X}_1 + \cdots + \mathbf{A}_m\mathbf{X}_m + \mathbf{b}$ & $cov(\mathbf{L}_1,\mathbf{L}_2) = \sum_{i=1}^m \sum_{j=1}^n \mathbf{A}_i \, cov(\mathbf{x}_i,\mathbf{y}_j) \, \mathbf{B}_j^\top$ \\ \multicolumn{2}{l} {If $\mathbf{x} \sim N_p(\boldsymbol{\mu},\boldsymbol{\Sigma} )$, then $\mathbf{Ax} + \mathbf{b} \sim N_r(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^\top )$ and $(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \sim \chi^2(p)$} \\ \multicolumn{2}{l} {$L(\boldsymbol{\mu,\Sigma}) = |\boldsymbol{\Sigma}|^{-n/2} (2\pi)^{-np/2} \exp -\frac{n}{2}\left\{ tr(\boldsymbol{\widehat{\Sigma}\Sigma}^{-1}) + (\overline{\mathbf{x}}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}}-\boldsymbol{\mu}) \right\}$ } \\ $\boldsymbol{\widehat{\mu}} = \overline{\mathbf{x}}$, ~~ $\boldsymbol{\widehat{\Sigma}} = \frac{1}{n}\sum_{i=1}^n (\mathbf{x}_i-\overline{\mathbf{x}}) (\mathbf{x}_i-\overline{\mathbf{x}})^\top $ & $\widehat{\sigma}^2_x = \frac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2$, ~~ $\widehat{\sigma}_{xy} = \frac{1}{n} \sum_{i=1}^n (x_i-\overline{x})(y_i-\overline{y})$ \\ %%%%%%%%%%% \multicolumn{2}{l} { If $\mathbf{t}_n \stackrel{p}{\rightarrow} \mathbf{c}$ and $g(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{c}$, then $g(\mathbf{t}_n) \stackrel{p}{\rightarrow} g(\mathbf{c})$. } \\ \multicolumn{2}{l} { If $\mathbf{x}_1, \ldots, \mathbf{x}_n \stackrel{iid}{\sim} (\boldsymbol{\mu},\boldsymbol{\Sigma})$, then $\overline{\mathbf{x}}_n \stackrel{p}{\rightarrow} \boldsymbol{\mu}$ and $\overline{\mathbf{x}}_n \stackrel{\cdot}{\sim} N_p(\boldsymbol{\mu}, \frac{1}{n}\boldsymbol{\Sigma})$ } \\ \multicolumn{2}{l} {$\widehat{\boldsymbol{\theta}}_n \stackrel{p}{\rightarrow} \boldsymbol{\theta}$ and $\widehat{\boldsymbol{\theta}}_n \stackrel{\cdot}{\sim} N_m(\boldsymbol{\theta},\mathbf{V}_n)$, with $\widehat{\mathbf{V}}_n = \mathbf{H}^{-1}$, where $\mathbf{H} = \left[\frac{\partial^2 (-\ell)} {\partial\theta_i\partial\theta_j}\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}}$ } \\ \multicolumn{2}{l} { $G^2 = -2 \ln \left( \frac{\max_{\theta \in \Theta_0} L(\theta)} {\max_{\theta \in \Theta} L(\theta) } \right) = -2 \ln \left( \frac{L(\widehat{\theta}_0)}{ L(\widehat{\theta}) }\right) \sim \chi^2(r)$ if $H_0: \theta \in \Theta_0$ is true.} \\ \multicolumn{2}{l} {$W_n = (\mathbf{L}\widehat{\boldsymbol{\theta}}_n-\mathbf{h})^\top \left(\mathbf{L} \widehat{\mathbf{V}}_n \mathbf{L}^\top \right)^{-1} (\mathbf{L}\widehat{\boldsymbol{\theta}}_n-\mathbf{h}) \stackrel{\cdot}{\sim} \chi^2(r)$ if $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ is true.} \\ \multicolumn{2}{l} {The reliability of an observable variable $d$ as a measurement of a latent variable $F$ is $\rho^2 \stackrel{def}{=} \left(Corr(F,d)\right)^2$. } \\ \multicolumn{2}{l} {If $d = F + e$ with $Var(F)=\phi$ and $Var(e)=\omega$, then $\rho^2 = \frac{\phi}{\phi+\omega}$. } \\ \multicolumn{2}{l} {For symmetric $\boldsymbol{\Sigma}_{k \times k}$, there are $k(k+1)/2$ unique elements and $k(k-1)/2$ unique off-diagonal elements.} \end{tabular} \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent \begin{tabular}{ll} \multicolumn{2}{c} {\sffamily The Double Measurement Model in centered form:~~~~~~~~~~~~} \\ $\mathbf{y}_i = \boldsymbol{\beta} \mathbf{x}_i + \boldsymbol{\epsilon}_i$ & $cov(\mathbf{x}_i)=\boldsymbol{\Phi}_x$, $cov(\boldsymbol{\epsilon}_i)=\boldsymbol{\Psi}$ \\ ${\mathbf{F}}_i = \left( \begin{array}{c} {\mathbf{x}}_i \\ \hline {\mathbf{y}}_i \end{array} \right)$ & \hspace{-2.4mm}\begin{tabular}{l} $\mathbf{x}_i$ is $p \times 1$, $\mathbf{y}_i$ is $q \times 1$, $\mathbf{F}_i$ is $(p+q) \times 1$ \\ $cov(\mathbf{F}_i) = \boldsymbol{\Phi}$ \end{tabular} \\ ${\mathbf{d}}_{i,1} = {\mathbf{F}}_i + \mathbf{e}_{i,1}$ & $cov(\mathbf{e}_{i,1})=\boldsymbol{\Omega}_1$, $cov(\mathbf{e}_{i,2})=\boldsymbol{\Omega}_2$ \\ ${\mathbf{d}}_{i,2} = {\mathbf{F}}_i + \mathbf{e}_{i,2}$ & $\mathbf{x}_i$, $\boldsymbol{\epsilon}_i$, $\mathbf{e}_{i,1}$ and $\mathbf{e}_{i,2}$ are independent. \\ \multicolumn{2}{c} {\sffamily The General Structural Equation Model in centered form: ~~~~~~} \\ $\mathbf{y}_i = \boldsymbol{\beta} \mathbf{y}_i + \boldsymbol{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i$ & $cov(\mathbf{x}_i)=\boldsymbol{\Phi}_x$ and $cov(\boldsymbol{\epsilon}_i)=\boldsymbol{\Psi}$\\ $\mathbf{F}_i = \left( \begin{array}{c} \mathbf{x}_i \\ \hline \mathbf{y}_i \end{array} \right)$ & $cov(\mathbf{F}_i) = \boldsymbol{\Phi} = \left( \begin{array}{c | c} \boldsymbol{\Phi}_{11} & \boldsymbol{\Phi}_{12} \\ \hline \boldsymbol{\Phi}_{12}^\top & \boldsymbol{\Phi}_{22} \\ \end{array} \right)$ \\ $\mathbf{d}_i = \boldsymbol{\Lambda}\mathbf{F}_i + \mathbf{e}_i$ & $cov(\mathbf{e}_i) = \boldsymbol{\Omega}$ \\ $\mathbf{x}_i$, $\boldsymbol{\epsilon}_i$ and $\mathbf{e}_i$ are independent. & $\mathbf{x}_i$ is $p \times 1$, $\mathbf{y}_i$ is $q \times 1$, $\mathbf{d}_i$ is $k \times 1$. \\ $\boldsymbol{\Phi}_x$ and $\boldsymbol{\Psi}$ are positive definite. & % Not $\boldsymbol{\Omega}$ because of the trick of adding observed variables. \\ \end{tabular} \renewcommand{\arraystretch}{1.0} % \begin{verbatim} > df = 1:8; CriticalValue = qchisq(0.95,df) > round(rbind(df,CriticalValue),3) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] df 1.000 2.000 3.000 4.000 5.00 6.000 7.000 8.000 CriticalValue 3.841 5.991 7.815 9.488 11.07 12.592 14.067 15.507 \end{verbatim} \vspace{30mm} \vspace{3mm} \hrule \vspace{3mm} This formula sheet was prepared by \href{http://www.utstat.toronto.edu/brunner}{Jerry Brunner}, Department of Statistics, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \begin{center} \href{http://www.utstat.toronto.edu/brunner/oldclass/431s23} {\texttt{http://www.utstat.toronto.edu/brunner/oldclass/431s23}} \end{center} \end{document} \vspace{20mm} \vspace{5mm}