(1) STAY31523 Assignment 6

$$
\begin{aligned}
& \operatorname{Com}(x, w)^{2}=\left(\frac{\operatorname{cov}(x, v+x+e)}{\sqrt{\operatorname{van}(x)} \sqrt{\operatorname{van}(v+x+e)^{\prime}}}\right)^{2} \\
& =\left(\frac{\operatorname{Com}(x, x+e)}{\sqrt{\operatorname{van}(x)} \sqrt{\operatorname{van}(x+e}}\right)^{2}=\text { Reliabilixy withoux } \\
& =\text { the intencept }
\end{aligned}
$$

(2) $\operatorname{Corn}\left(w_{1}, w_{e}\right)=\operatorname{Corn}\left(v_{1}+x+e_{1}, v_{2}+x+e_{2}\right)$
$=\operatorname{corn}\left(x+e_{1}, x+e_{2}\right)$ Intencepts don't mater
(3) (a)

$$
\begin{aligned}
& \text { (b) } \operatorname{Corn}(W, \sigma)^{2}=\left(\frac{\operatorname{Cov}(W, \sigma)}{\sqrt{\operatorname{Van}(W) \operatorname{Van}(\sigma)}}\right)^{2} \\
& =\frac{\left(\operatorname{Cov}\left(x+e_{1}, x+e_{2}\right)\right)^{2}}{\left(\sigma_{x}^{2}+\sigma_{1}^{2}\right)\left(\sigma_{x}^{2}+\sigma_{2}^{2}\right)}=\frac{1\left(\sigma_{x}^{2}\right)^{2}}{\left(\sigma_{x}^{2}+\sigma_{1}^{2}\right)\left(\sigma_{x}^{2}+\sigma_{2}^{2}\right)} \\
& <\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{1}^{2}} \Leftrightarrow \frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{2}^{2}}<1 \\
& \Leftrightarrow \sigma_{x}^{2}<\sigma_{x}^{2}+\sigma_{2}^{2} \Longleftrightarrow \sigma_{2}^{2}>0
\end{aligned}
$$

(4)
(a)

$$
\begin{aligned}
& \operatorname{Var}(s)=\operatorname{Var}\left(w_{1}+u_{e}\right)=\operatorname{Var}\left(x+e_{1}+x+e_{2}\right) \\
& =\operatorname{Var}\left(2 x+e_{1}+e_{2}\right)=4 \sigma_{x}^{2}+\sigma_{e}^{2}+\sigma_{e}^{2} \\
& =4 \sigma_{x}^{2}+2 \sigma_{e}^{2} \text {, so Deliabclixy of } S=u_{1}+m_{2} \\
& =\left(\frac{\operatorname{cov}(x, 5)}{\sqrt{\operatorname{Van}(x) \operatorname{Van}(s)}}\right)^{2}=\left(\frac{\operatorname{cov}\left(x, 2 x+e_{,} e_{2}\right)}{\sqrt{\sigma_{x}^{2}\left(4 \sigma_{x}^{2}+2 \sigma_{e}^{2}\right)}}\right)^{2} \\
& =\frac{\left(2 \sigma_{x}^{2}+0\right)^{2}}{\sigma_{x}^{2}\left(4 \sigma_{l}^{2}+2 \sigma^{2}\right)}=\frac{4 \sigma_{x}^{2} \sigma_{x}^{2}}{\left(4 \sigma_{x}^{2} \sigma_{x}^{2}+2 \sigma_{x}^{2} \sigma_{e}^{2}\right) \frac{1}{4 \sigma_{x}^{2}}} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\frac{1}{2} \sigma_{e}^{2}}>\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}
\end{aligned}
$$

(b) $S_{n}=\sum_{i=1}^{n} w_{i} \cdot \operatorname{Van}\left(S_{n}\right)=\operatorname{Van}\left(\sum_{i=1}^{n}\left(x+e_{i}\right)\right)$

$$
\begin{aligned}
& =V_{a n}\left(n x+\sum_{i=1}^{n} e_{i}\right)^{i n d}=n^{2} \sigma_{x}^{2}+\sum_{i=1}^{n} \sigma_{e}^{2} \\
& =n^{2} \sigma_{x}^{2}+n \sigma_{e}^{2}
\end{aligned}
$$

(46. continuel) Reliatility of S

$$
\begin{aligned}
& =\operatorname{Corn}(x, s)^{2}=\frac{\left(\operatorname{Cou}\left(x, \sum_{i=1}^{n}\left(x+e_{i}\right)\right)^{2}\right.}{\sigma_{x}^{2}\left(n^{2} \sigma_{x}^{2}+n \sigma_{e}^{2}\right)} \\
& =\frac{\left(\operatorname{Cor}\left(x, n x+\sum_{i=1}^{n} e_{i}\right)\right)^{2}}{n^{2} \sigma_{x}^{2}\left(\sigma_{x}^{2}+\frac{1}{n} \sigma_{e}^{2}\right)} \\
& =\frac{\left(n \sigma_{x}^{2}+0\right) \geq}{n^{2} \sigma_{x}^{2}\left(\sigma_{x}^{2}+\frac{1}{n} \sigma_{e}^{2}\right)}=\frac{n^{2} \sigma_{x}^{2} \sigma_{x}^{2}}{n^{2} \sigma_{x}^{2}\left(\sigma_{x}^{2}+\frac{1}{n} \sigma_{e}^{2}\right)} \\
& \text { (c) } D_{0} l^{n}
\end{aligned}
$$

(c) Reliability of $\overline{W_{n}}=\frac{1}{n} \sum_{i=1}^{n} W_{i}=\frac{1}{n} S_{n}$

$$
\begin{gathered}
=\frac{\left(\operatorname{Cov}\left(x, \frac{1}{n} s_{n}\right)\right)^{2}}{\operatorname{Vm}(x) \operatorname{Van}\left(\frac{1}{n} S_{n}\right)}=\frac{\left(\frac{1}{n} \operatorname{Cov}\left(x, S_{n}\right)\right)^{2}}{\frac{1}{n} 2} \operatorname{Var}(x) \operatorname{Van}\left(s_{n}\right) \\
=\frac{\frac{1}{n^{2}}\left(\operatorname{Cov}\left(x, s_{n}\right)\right)^{2}}{\frac{1}{n 2}\left(\sqrt{\operatorname{Vm}(x) \operatorname{Van}\left(S_{n}\right)}\right)^{2}}=\frac{\text { Reliabil, } S_{y} \text { of }}{\operatorname{Sn}} \\
=\frac{\sigma_{n}^{2}}{\sigma_{x}^{2}+\frac{1}{n} \sigma_{e}^{2}}
\end{gathered}
$$

d) Reliability $\rightarrow 1$ as $n \rightarrow \infty$ Longen tests are mone Longen tests are mone
reliablo
(5)
(a)

(b) Reliability is $\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}$

$$
\begin{aligned}
& \operatorname{corr}\left(w_{1}, w_{2}\right)=\frac{\operatorname{cov}\left(x+e_{1}, x+e_{e}\right)}{\sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}} \\
& =\frac{\operatorname{cov}(x, x,)+\operatorname{cov}\left(e_{1}, e_{2}\right)}{\sigma_{x}^{2}+\sigma_{e}^{2}}=\frac{\sigma_{x}^{2}+c}{\sigma_{x}^{2}+\sigma_{e}^{2}}>\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}
\end{aligned}
$$

because $c>0$.
(b)

(b) $\theta=\left(\beta_{0}, \beta_{1}, \mu_{x}, \varnothing, \omega, \psi\right) 6$ parameters

Then are $3 \sigma_{i}$, and 2μ, for 5 moments The true model fails the parameter count rule.
($6 c$)

v| x | w |
| :---: | :---: |
| σ_{x}^{2} | $\beta_{1} \sigma_{x}^{2}$ |
| | $\beta_{1}^{2} \sigma_{x}^{2}$
 $+\psi+\omega$ |

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x+\varepsilon \\
v & =y+e \\
& =\beta_{0}+\beta_{1} x+\varepsilon+e \\
\operatorname{Cov}(x, v) & =\beta_{1} \sigma_{x}^{2}
\end{aligned}
$$

(d)

$$
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(v_{i}-\bar{v}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\hat{\sigma_{x}} v}{\hat{\sigma}_{x}^{2}} \xrightarrow{p} \frac{\sigma_{x}}{\sigma_{x}^{2}}
$$

By LCN and continuous mappiñs.

$$
\frac{\sigma_{x N}}{\sigma_{x}^{2}}=\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}}=\beta \text { consistent, Yes }
$$

(e) β_{1} is identifiuble, because otherwise consistant estimation would be impossiblo
(7) (a) $\theta=(\beta, \varnothing, \psi, \omega)$
(b)

$$
\left.\sum=\begin{array}{cc}
w & y \\
y & \beta \varnothing \\
\hline & \beta+w
\end{array}\right)
$$

(C) No. There are 4 parameters and three unigics moments.
(d) β is rentifiable at all (infinitely many) points where $\beta=0:\{(\beta, \phi, \psi, \omega): \beta=0, \phi>0$

$$
\psi>0, w>0\}
$$

Because $\beta=0$ if and one if $\sigma_{12}=0$
(e) $\hat{\beta}$ cannot be consistent De cause β is not identifiable in the whole parameter space.
$(7 f)$

$$
\begin{aligned}
\hat{\beta} & =\frac{\frac{1}{n} \sum_{i=1}^{n} w_{i} \psi_{i}}{\frac{1}{n} \sum_{i=1}^{n} w_{i}^{2}}=\frac{\hat{\sigma_{w y}}}{\frac{1}{\sigma_{w}^{2}}} \xrightarrow{\rho} \frac{\sigma_{w / 3}}{\sigma_{w}^{2}} \\
& =\frac{\beta \varnothing}{\varnothing+w}=\left(\frac{\theta}{\varnothing+w}\right) \beta
\end{aligned}
$$

(g) $\hat{\beta}_{n} \xrightarrow{p} \beta$ where $\beta=0$. This is exactly where β is identifiablo.
(h) $\operatorname{Try} \hat{\beta}_{n / r_{w x}^{2}}$. Ib $r_{w x}$ is consistent, this estimator will be consistent too, by continuous mapping (and tho stack theorem).
(8)
(a)

(b)

$$
\begin{aligned}
& \operatorname{Corn}\left(D_{1}, D_{2}\right)=\frac{\operatorname{Cov}\left(D_{1}, D_{2}\right)}{\operatorname{SO}\left(D_{1}\right) S D\left(D_{2}\right)}=\frac{\operatorname{Cov}\left(F_{1}+e_{1}, F_{2}+C_{2}\right)}{\sqrt{\left(\phi_{11}+\omega_{1}\right)\left(\varnothing_{22}+\omega_{2}\right.}} \\
& =\frac{\operatorname{Cov}\left(F_{1}, F_{2}\right)+0}{\sqrt{\left(\varnothing_{11}+\omega_{1}\right)\left(D_{22}+\omega_{2}\right)}}=\frac{\varnothing_{12}}{\sqrt{\left(\varnothing_{11}+\omega_{1}\right)\left(\varnothing_{22}+\omega_{2}\right)}}
\end{aligned}
$$

And

$$
\begin{aligned}
& \left|\operatorname{Corr}\left(D_{1}, D_{2}\right)\right|=\frac{\left|\varnothing_{12}\right|}{\sqrt{\left(\varnothing_{11}+w_{1}\right)\left(\varnothing_{22}+w_{2}\right)}} \\
& \quad<\frac{\left|\varnothing_{12}\right|}{\sqrt{\varnothing_{11} \varnothing_{22}}}=\left|\operatorname{Corr}\left(F_{1}, F_{2}\right)\right|
\end{aligned}
$$

Since $w_{1}>0$ and $w_{2}>0$.

$$
\begin{aligned}
& \text { (8c) } \frac{\operatorname{Corr}\left(D_{1}, D_{2}\right)}{P_{1} P_{2}}=\frac{\frac{\theta_{12}}{\sqrt{\left(\phi_{1}+\omega_{1}\right)\left(\phi_{22}+\omega_{2}\right)}}}{\sqrt{\frac{\theta_{11}}{\phi_{1}+\omega_{1}}} \sqrt{\frac{\theta_{22}}{\phi_{22}+\omega_{2}}}} \\
& =\frac{\theta_{12}}{\sqrt{\phi_{11}+\omega_{1}} \sqrt{\phi_{22}+u_{2}}} \cdot \frac{\sqrt{\phi_{11}+\omega_{1}} \sqrt{\phi_{22}+u_{2}}}{\sqrt{\phi_{11}} \sqrt{\varnothing_{22}}} \\
& =\frac{\varnothing_{12}}{\sqrt{\varnothing_{11} \varnothing_{22}}}=\operatorname{corn}\left(F_{1}, F_{2}\right) \\
& \text { (d) } \frac{0.25}{\sqrt{0.90} \sqrt{0.75}}=0.304
\end{aligned}
$$

(a)
(9) Dividins nomaratos and denominatos by n^{2},

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{\frac{1}{n} \sum_{i=1} W_{i}^{2} \frac{1}{n} \sum_{i=1}^{n} X_{i 2} Y_{i}-\frac{1}{n} \sum_{i=1}^{n} W_{i} X_{i 2} \frac{1}{n} \sum_{i=1}^{n} W_{i} Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} W_{1}^{2} \frac{1}{n} \sum_{i=1}^{n} X_{i 2}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} W_{i} X_{i 2}\right)^{2}} \\
& \stackrel{p}{\longrightarrow} \frac{E\left(W^{2}\right) E\left(X_{2} Y\right)-E\left(W X_{2}\right) E(W Y)}{E\left(W^{2}\right) E\left(X_{2}^{2}\right)-\left(E\left(W X_{2}\right)\right)^{2}}
\end{aligned}
$$

Need to calculute the expected values.

$$
\begin{aligned}
& E\left(w^{2}\right)=\operatorname{Var}(w)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}(e)=\theta_{11}+\omega \\
& E\left(x_{2} \uparrow\right)=E\left\{x_{2}\left(\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon\right)\right\}=\beta_{1} E\left(x_{1} x_{2}\right)+\beta_{2} E\left(X_{2}^{2}\right) \\
& =\beta_{1} \phi_{12}+\beta_{2} \varnothing_{22} \\
& E\left(W X_{2}\right)=E\left\{\left(x_{1}+e\right) x_{2}\right\}=E\left(x_{1} x_{2}\right)=\varnothing_{12} \\
& \begin{aligned}
E\left(W_{Y}\right) & =E\left\{\left(X_{1}+e\right)\left(\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon\right)\right\}=\beta_{1} E\left(X_{1}^{2}\right)+\beta_{2} E\left(X_{1} X_{2}\right) \\
& =\beta
\end{aligned} \\
& =\beta_{1} \varnothing_{11}+\beta_{2} \varnothing_{12} \\
& E\left(x_{2}^{2}\right)=\varnothing_{22}, s_{0} \\
& \hat{\beta}_{2} \xrightarrow{\rho} \frac{\left(\phi_{11}+w\right)\left(\beta_{1} \phi_{12}+\beta_{2} \phi_{22}\right)-\phi_{12}\left(\beta_{1} \phi_{11}+\beta_{2} \phi_{12}\right)}{\left(\phi_{11}+\omega\right) \phi_{22}-\varnothing_{12}^{2}} \\
& =\frac{\varnothing_{11} \beta_{1} \phi_{12}+\phi_{11} \beta_{2} \phi_{22}+\omega\left(\beta_{1} \phi_{12}+\beta_{2} \phi_{22}\right)-\varnothing_{2} \beta_{1} \phi_{11}-\varnothing_{12}^{2} \beta_{2}}{\left(\phi_{11}+\omega\right) \phi_{22}-\phi_{12}^{2}}+\beta_{2}\left(\phi_{11} \phi_{22}-\phi_{12}^{2}+\omega\left(\beta_{12}+\beta_{2} \phi_{22}\right)\right. \\
& =\frac{\beta_{2}\left(\phi_{11} \varnothing_{22}-\varnothing_{12}^{2}\right)+\omega\left(\beta_{1} \phi_{12}+\beta_{2} \varnothing_{22}\right)}{\left(\phi_{11}+w\right) \phi_{22}-\varnothing_{12}^{2}}
\end{aligned}
$$

(9b) With $w=0$,

$$
\begin{aligned}
& \frac{\beta_{2}\left(\phi_{11} \phi_{22}-\phi_{12}^{2}\right)+w\left(\beta_{1} \theta_{12}+\beta_{2} \sigma_{22}\right)}{\left(\phi_{11}+w\right) \theta_{22}-\theta_{12}^{2}} \\
& =\frac{\beta_{2}\left(\phi_{11} \phi_{22}-\phi_{12}^{2}\right)}{\phi_{11} \phi_{22}-\phi_{12}^{2}}=\beta_{2}
\end{aligned}
$$

(c) with $w>0$ and $\beta_{2}=0$, taget is

$$
\frac{w \beta_{1} \phi_{12}}{\left(\varnothing_{11}+\omega\right) \phi_{22}-\varnothing_{12}^{2}}
$$

No. It's onk zew when $\beta_{1}=0, \varnothing_{12}=0, \sigma$ both
(d)

(a)

β

$$
(b) \theta=\left(\beta, \varnothing, \psi, \omega, w_{1}, w_{2}\right)
$$

(c) There are 6 parameters and $3(3+1) / 2=6$ covariance structure equation, so yes.

w_{1}							w_{2}	v
w_{2}	$\varnothing+w_{1}$	\varnothing	$\beta \varnothing$					
w_{2}		$\varnothing+w_{2}$	$\beta \varnothing$					
			$\beta^{2} \varnothing+\psi+w_{1}$					

$$
\begin{aligned}
& \operatorname{Var}(v)=\operatorname{Var}(4+e)=\operatorname{Var}(\beta x+\varepsilon+e)=\beta^{2} \varnothing+\psi+\omega \\
& \operatorname{Cov}\left(w_{1}, w_{2}\right)=\operatorname{cov}\left(x+e_{1}, x+e_{2}\right)=\operatorname{cov}(x, x)+0=\varnothing \\
& \operatorname{Cor}\left(w_{1}, v\right)=\operatorname{cov}\left(x+e_{1}, \beta x+\varepsilon+e\right)=\beta \varnothing=\operatorname{cov}\left(w_{2}, v\right)
\end{aligned}
$$

(e) No. The parameters ψ and w only appear in \sum as $\psi+w$. This means that any two pmumetes vectors $\theta=\left(\beta, \varnothing \psi, \omega, \omega_{1}, \omega_{2}\right)$ and

$$
\theta^{\prime}=\left(\beta^{\prime}, \phi^{\prime}, \psi^{\prime}, \omega^{\prime}, \omega_{1}^{\prime}, \omega_{2}^{\prime}\right) \quad \omega_{1}+a
$$

$\beta=\beta^{\prime}, \sigma=\varnothing^{\prime}, \omega_{1}=w_{1}^{\prime}$ and $w_{2}=w_{2}^{\prime}$ but $\psi \neq \psi^{\prime} \notin \omega \neq w^{\prime}$ w_{i} h $\psi+w=\psi^{\prime}+w^{\prime}$ mill yield the same Σ and the same dixtrib utisi of the observable data.
(Or you could giro a numerical example)
(10 f) The identifiable parameters us $\varnothing, \beta, w_{1}$ and u_{2}

$$
(g) \operatorname{Let} \hat{\rho}_{n}=\frac{1}{2}\left(\hat{\sigma}_{13}+\hat{\sigma_{23}}\right) / \frac{1}{\sigma_{12}}
$$

$$
\begin{aligned}
& \xrightarrow[\longrightarrow]{p} \frac{1}{2}\left(\sigma_{13}+\sigma_{23}\right) / \sigma_{12} \begin{array}{l}
\text { by consistency of the } \\
\text { stumper covariance; thostack } \\
\text { theorem and continuous mapping }
\end{array} \\
& \frac{1}{2}(\beta \phi+\beta \varnothing)^{11} / \varnothing=\frac{1}{2} 2 \beta \varnothing / \varnothing=\beta
\end{aligned}
$$

(h) Using answa to (g)

$$
\hat{\beta}_{n}=\frac{1}{2}(19.85+19.00) / 21.39=(0.908
$$

(i) Set $c=\psi+w$. Then the pmametes $\operatorname{vecto}\left(\beta, \theta, c, \omega_{1}, \omega_{2}\right)$ is icloutifulslo.

