
STA 431s23 Assignment Six1

1. In a study of diet and health, suppose we want to know how much snack food each person
eats, and we “measure” it by asking a question on a questionnaire. Surely there will be
measurement error, and suppose it is of a simple additive nature. But we are pretty sure
people under-report how much snack food they eat, so a model like W = X+e with E(e) = 0
is hard to defend. Instead, let

W = ν +X + e,

where E(X) = µx, E(e) = 0, V ar(X) = σ2x, V ar(e) = σ2e , and Cov(X, e) = 0 The unknown
constant ν could be called measurement bias. Calculate the reliability of W for this model.
Is it the same as the expression for reliability given in the text and lecture, or does ν 6= 0
make a difference?

2. Continuing Question 1, suppose that two measurements of W are available.

W1 = ν1 +X + e1

W2 = ν2 +X + e2,

where E(X) = µx, V ar(X) = σ2x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2e , and X, e1
and e2 are all independent. Calculate Corr(W1,W2). Does this correlation still equal the
reliability even when ν1 and ν2 are non-zero and potentially different from one another?

3. Let X be a latent variable, W = X + e1 be the usual measurement of X with error, and
G = X + e2 be a measurement of X that is deemed “gold standard,” but of course it’s not
completely free of measurement error. It’s better than W in the sense that 0 < V ar(e2) <
V ar(e1), but that’s all you can really say. This is a realistic scenario, because nothing is
perfect. Accordingly, let

W = X + e1

G = X + e2,

where E(X) = µx, V ar(X) = σ2x, E(e1) = E(e2) = 0, V ar(e1) = σ21, V ar(e2) = σ22 and X,
e1 and e2 are all independent of one another.

(a) Make a path diagram of this model.

(b) Prove that the squared correlation between W and G is strictly less than the reliability
of W . Show your work.

The idea here is that the squared population correlation2 between an ordinary mea-
surement and an imperfect gold standard measurement is strictly less than the actual

1This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto.
It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23

2When we do Greek-letter calculations, we are figuring out what is happening in the population from which a
data set might be a random sample.
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reliability of the ordinary measurement. If we were to estimate such a squared correla-
tion by the corresponding squared sample correlation, we would be estimating a quantity
that is not the reliability. On the other hand, we would be estimating a lower bound for
the reliability, and this could be reassuring if it were a high number.

4. Suppose we have two equivalent measurements with uncorrelated measurement error:

W1 = X + e1

W2 = X + e2,

where E(X) = µx, V ar(X) = σ2x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2e , and X, e1
and e2 are all independent. The “equivalent” part means the two measurements have the
same amount of noise. What if we were to measure the true score X by adding the two
imperfect measurements together? Would the result be more reliable?

(a) Let S = W1 +W2. Show that the reliability of S is σ2
x

σ2
x+

1
2
σ2
e
. Is this greater than σ2

x
σ2
x+σ

2
e
?

(b) Suppose you take n independent measurements (in psychometric theory, these would be

called equivalent test items). Show that the reliability of Sn =
∑n

i=1Wi is σ2
x

σ2
x+

1
n
σ2
e
.

(c) What is the reliability of Wn = 1
n

∑n
i=1Wi? Show your work.

(d) What happens to the reliability of Sn and Wn as the number of measurements n→∞?

Equivalent test items may be largely a fantasy, but this question shows how equivalent tests
is a goal that can be closely approximated in practice. In the two equations displayed above,
W1 and W2 might not be test items, but tests composed of multiple items. Each item might
have a different error variance. But if the two sums or averages of the error variances are
the same, the two tests are equivalent. This is nice, because it tells you that two tests do not
need to be matched item for item in order to be equivalent.

5. Consider the two equivalent measurements at the start of Question 4. It is easy to imagine
omitted variables that would affect both observed scores. For example, if W1 and W2 are
two questionnaires about eating habits, some people will probably mis-remember or lie the
same way on both questionnaires. Since e1 and e2 represent all other influences apart from
the true quantity being measured, this means that e1 and e2 will have non-zero covariance.
Furthermore, this covariance will be positive, since the omitted variables (there could be
dozens of them) will tend to affect the two measurements in the same way. Accordingly, in
the initial model of Question 4, let Cov(e1, e2) = c > 0.

(a) Draw a path diagram of the model.

(b) Show that Corr(W1,W2) is strictly greater than the reliability.

This means that in practice, omitted variables will result in over-estimates of reliability.
There are almost always omitted variables.
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6. This question explores the consequences of ignoring measurement error in the response vari-
able. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Vi = Yi + ei,

where V ar(Xi) = φ, E(Xi) = µx, V ar(ei) = ω, V ar(εi) = ψ, andXi, ei, εi are all independent.
The explanatory variable Xi is observable, but the response variable Yi is latent. Instead of
Yi, we can see Vi, which is Yi plus a piece of random noise. Call this the true model.

(a) Make a path diagram of the true model.

(b) Strictly speaking, the distributions of Xi, ei and εi are unknown parameters because
they are unspecified. But suppose we are interested in identifying just the Greek-letter
parameters. Does the true model pass the test of the Parameter Count Rule? Answer
Yes or No and give the numbers.

(c) Calculate the variance-covariance matrix of the observable variables as a function of the
model parameters. Show your work.

(d) Suppose that the analyst assumes that Vi is that same thing as Yi, and fits the naive
model Vi = β0 + β1Xi + εi, in which

β̂1 =

∑n
i=1(Xi −X)(Vi − V )∑n

i=1(Xi −X)2
.

Assuming the true model (not the naive model), is β̂1 a consistent estimator of β1?
Answer Yes or No and show your work.

(e) Why does this prove that β1 is identifiable?

7. This question explores the consequences of ignoring measurement error in the explanatory
variable when there is only one explanatory variable. Independently for i = 1, . . . , n, let

Yi = βXi + εi

Wi = Xi + ei

where all random variables are normal with expected value zero, V ar(Xi) = φ > 0, V ar(εi) =
ψ > 0, V ar(ei) = ω > 0 and εi, ei and Xi are all independent. The variables Wi and Yi are
observable, while Xi is latent. Error terms are never observable.

(a) What is the parameter vector θ for this model?

(b) Denote the covariance matrix of the observable variables by Σ = [σij ]. The unique
σij values are the moments, and there is a covariance structure equation for each one.
Calculate the variance-covariance matrix Σ of the observable variables, expressed as a
function of the model parameters. You now have the covariance structure equations.

(c) Does this model pass the test of the parameter count rule? Answer Yes or No and give
the numbers.

(d) Are there any points in the parameter space where the parameter β is identifiable? Are
there infinitely many, or just one point?
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(e) The naive estimator of β is

β̂n =

∑n
i=1WiYi∑n
i=1W

2
i

.

Is β̂n a consistent estimator of β? To what does β̂n converge?

(f) Are there any points in the parameter space for which β̂n converges to the right answer?
Compare your answer to the set of points where β is identifiable.

(g) Suppose the reliability of Wi were known, or to be more realistic, suppose that a good
estimate of the reliability were available; call it r2wx. How could you use r2wx to improve
β̂n? Give the formula for an improved estimator of β.

8. The improved version of β̂n in the last question is an example of correction for attenuation
(weakening) caused by measurement error. Here is the version that applies to correlation.
Independently for i = 1, . . . , n, let

Di,1 = Fi,1 + ei,1

Di,2 = Fi,2 + ei,2
cov

(
Fi,1
Fi,2

)
=

(
φ11 φ12
φ12 φ22

)
cov

(
ei,1
ei,2

)
=

(
ω1 0
0 ω2

)

To make this concrete, it would be natural for psychologists to be interested in the correlation
between intelligence and self-esteem, but what they want to know is the correlation between
true intelligence and true self-esteem, not just the between score on an IQ test and score
on a self-esteem questionnaire. So for subject i, let Fi,1 represent true intelligence and Fi,2
represent true self-esteem, while Di,1 is the subject’s score on an intelligence test and Di,1 is
score on a self-esteem questionnaire.

(a) Make a path diagram of this model.

(b) Show that |Corr(Di,1, Di,2)| ≤ |Corr(Fi,1, Fi,2)|. That is, measurement error weakens
(attenuates) the correlation.

(c) Suppose the reliability of Di,1 is ρ21 and the reliability of Di,2 is ρ22. How could you apply
ρ21 and ρ22 to Corr(Di,1, Di,2), to obtain Corr(Fi,1, Fi,2)?

(d) You obtain a sample correlation between IQ score and self-esteem score of r = 0.25,
which is disappointingly low. From other data, the estimated reliability of the IQ test
is r21 = 0.90, and the estimated reliability of the self-esteem scale is r22 = 0.75. Give an
estimate of the correlation between true intelligence and true self-esteem. My answer is
0.304.
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9. This is a simplified version of the situation where one is attempting to “control” for explana-
tory variables that are measured with error. People do this all the time, and it doesn’t work.
Independently for i = 1, . . . , n, let

Yi = β1Xi,1 + β2Xi,2 + εi

Wi = Xi,1 + ei,

where cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12
φ12 φ22

)
, V ar(εi) = ψ, V ar(e1) = ω, all the expected values are

zero, and the error terms εi and ei are independent of one another, and also independent of
Xi,1 and Xi,2. The variable Xi,1 is latent, while the variables Wi, Yi and Xi,2 are observable.
What people usually do in situations like this is fit a model like Yi = β1Wi + β2Xi,2 + εi, and
test H0 : β2 = 0. That is, they ignore the measurement error in variables for which they are
“controlling.” The usual fixed-x estimator is

β̂2 =

∑n
i=1W

2
i

∑n
i=1Xi,2Yi −

∑n
i=1WiXi,2

∑n
i=1WiYi∑n

i=1W
2
i

∑n
i=1X

2
i,2 − (

∑n
i=1WiXi,2)2

(a) β̂2 converges in probability to a definite target. Give the target in terms of the model
parameters. Remember that if E(X) = 0, then E(X2) = V ar(X). This means you can
use rules about variances to make some of the calculations easier.

(b) The target is a fairly complicated expression, but if it’s correct, it should reduce to β2
when ω = 0 (no measurement error). Verify this.

(c) Now let ω > 0 as before, and suppose that H0 : β2 = 0 is true. Does the β̂2 converge to
the true value of β2 = 0 as n → ∞ everywhere in the parameter space? Answer Yes or
No.

(d) Under what conditions (that is, for what values of other parameters) does β̂2
p→ 0 when

β2 = 0?
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10. Finally we have a solution, though as usual there is a little twist. Independently for i =
1, . . . , n, let

Yi = βXi + εi

Vi = Yi + ei

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2

where

• Yi is a latent variable.

• Vi, Wi,1 and Wi,2 are all observable variables.

• Xi is a normally distributed latent variable with mean zero and variance φ > 0.

• εi is normally distributed with mean zero and variance ψ > 0.

• ei is normally distributed with mean zero and variance ω > 0.

• ei,1 is normally distributed with mean zero and variance ω1 > 0.

• ei,2 is normally distributed with mean zero and variance ω2 > 0.

• Xi, εi, ei, ei,1 and ei,2 are all independent of one another.

(a) Make a path diagram of this model.

(b) What is the parameter vector θ for this model?

(c) Does the model pass the test of the Parameter Count Rule? Answer Yes or No and give
the numbers.

(d) Calculate the variance-covariance matrix of the observable variables as a function of the
model parameters. Some of the variances and covariances you can just write down. For
the others, show your work.

(e) Is the parameter vector identifiable at every point in the parameter space? Answer Yes
or No and prove your answer.

(f) Some parameters are identifible, while others are not. Which ones are identifiable?

(g) If β (the paramter of main interest) is identifiable, propose a Method of Moments esti-
mator for it and prove that your proposed estimator is consistent.

(h) Suppose the sample variance-covariance matrix Σ̂ is

W1 W2 V

W1 38.53 21.39 19.85

W2 21.39 35.50 19.00

V 19.85 19.00 28.81

Give a reasonable estimate of β. There is more than one right answer. The answer is a
number. (Is this the Method of Moments estimate you proposed? It does not have to
be.) Circle your answer.

(i) Describe how you could re-parameterize this model to make the parameters all identifi-
able, allowing you do maximum likelihood.
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