STA 431s23 Assignment Four¹

For the Quiz on Friday Feb. 10th, please bring printouts of your full R input for Questions 3 and 4. The other problems are not to be handed in. They are practice for the Quiz.

- 1. Independently for i = 1, ..., n, let $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_1$, where $E(x_{i1}) = \mu_{x1}, E(x_{i2}) = \mu_{x2}, Var(x_{i1}) = \phi_{11}, Var(x_{i2}) = \phi_{22}, Cov(x_{i1}, x_{i2}) = \phi_{12}, Var(\epsilon_i) = \psi$, and ϵ_i is independent of x_{i1} and x_{i2} .
 - (a) What is the parameter θ for this model?
 - (b) What is the parameter space Θ ?
 - (c) What is the restricted parameter space Θ_0 under $H_0: \beta_1 = \beta_2$ and $\phi_{11} = \phi_{22} = \psi = 1$?
 - (d) The null hypothesis can be written $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$. Give the **L** and **h** matrices
- 2. On the formula sheet, the statement $\hat{\theta}_n \sim N(\theta, \mathbf{V}_n)$ is saying that the vector of maximum likelihood estimates is asymptotically normal. That is, for large sample sizes, $\hat{\theta}_n$ has a probability distribution that is approximately multivariate normal, centered on the vector of true parameter values and with variance-covariance matrix \mathbf{V}_n . Generally speaking, the rules (theorems) for exact multivariate normality also apply to asymptotic multivariate normality. It's not rigorous, but you usually arrive at the correct conclusion. Accordingly,
 - (a) Let $\boldsymbol{\theta}$ be $m \times 1$, and let \mathbf{L} be an $r \times m$ matrix of constants with linearly independent rows. This part of the question develops the Wald statistic for testing $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$.
 - i. What is the asymptotic distribution of $\mathbf{L}\widehat{\boldsymbol{\theta}}_n$? Just write it down.
 - ii. What is the asymptotic distribution of $(\mathbf{L}\widehat{\boldsymbol{\theta}}_n \mathbf{L}\boldsymbol{\theta})^{\top} (\mathbf{L}\mathbf{V}_n\mathbf{L}^{\top})^{-1} (\mathbf{L}\widehat{\boldsymbol{\theta}}_n \mathbf{L}\boldsymbol{\theta})?$
 - iii. What are the dimensions (number of rows and columns) in the matrix $(\mathbf{L}\mathbf{V}_n\mathbf{L}^{\top})^{-1}$?
 - iv. Why is it critical that the rows of \mathbf{L} be linearly independent, so that the rank of \mathbf{L} equals r?
 - v. Compare the expression in Question 2(a)ii to the Wald statistic W_n on the formula sheet. There are two differences. Briefly explain them.
 - (b) Let **a** be an $m \times 1$ non-zero vector of constants. What is the asymptotic distribution of $\mathbf{a}^{\top} \widehat{\boldsymbol{\theta}}_n$?
 - (c) Based on the last result, give a $(1 \alpha)100\%$ confidence interval for $\mathbf{a}^{\top}\boldsymbol{\theta}$. Use $z_{\alpha/2}$ to denote the value that cuts off the top $\alpha/2$ of the standard normal distribution (For example for $\alpha = 0.05$, $z_{\alpha/2} = 1.96$). Show some work. Why are you using $\hat{\mathbf{V}}_n$ instead of \mathbf{V}_n ?
 - (d) Using the same standard error, write down a z statistic for testing $H_0: \mathbf{a}^\top \boldsymbol{\theta} = h$.
 - (e) Show that for $H_0: \mathbf{a}^\top \boldsymbol{\theta} = h, W_n = z^2$.

¹This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IATEX source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/431s23

3. Let x_1, \ldots, x_n be a random sample from a beta distribution. The density is

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

for 0 < x < 1, where α and β are both greater than zero. Numerical data are available HERE. You can get a copy of the data with

x = scan("https://www.utstat.toronto.edu/brunner/openSEM/data/beta24.data.txt")

- (a) Find the maximum likelihood estimates of α and β .
- (b) Test $H_0: \beta = 2\alpha$ with a large-sample likelihood ratio test. Your output should include the G^2 statistic, the degrees of freedom, and the *p*-value. Is the null hypothesis rejected at the 0.05 significance level? What, if anything, do you conclude?
- (c) Test the same null hypothesis, this time with a Wald test. Your output should include the W_n statistic, the degrees of freedom, and the *p*-value. Is the null hypothesis rejected at the 0.05 significance level? What, if anything, do you conclude?
- (d) Give a 95% confidence interval for the quantity $2\alpha \beta$. Your answer is a set of two numbers, the lower confidence limit and the upper confidence limit. Hint: Does this remind you of Problem 2c?

Please bring a printout of your full R input and output to the quiz.

- 4. Independently for i = 1, ..., n, let $y_i = \beta x_i + \epsilon_i$, where $x_i \sim N(\mu_x, \sigma_x^2)$, $\epsilon_i \sim N(0, \sigma_\epsilon^2)$, and x_i and ϵ_i are independent. This is the model of Question 14 in Assignment 3.
 - (a) Use R to simulate a data set from this model. The true parameter values and the sample size are up to you, but the sample size should be large.
 - (b) In Question 14 of Assignment 3, you found two method of moments estimators for β . They were

$$\widehat{\beta}_1 = \frac{\overline{y}_n}{\overline{x}_n} \text{ and } \widehat{\beta}_2 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}$$

Calculate $\hat{\beta}_1$ and $\hat{\beta}_2$ for your simulated data. Which estimate comes closer to the truth? Of course you would have to carry out this experiment a large number of times to determine whether one of them is better in general.

Please bring a printout of your full R input and output to the quiz.

5. The usual univariate multiple regression model with independent normal errors is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where **X** is an $n \times p$ matrix of known constants, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown constants, and $\boldsymbol{\epsilon}$ is multivariate normal with mean zero and covariance matrix $\sigma^2 \mathbf{I}_n$, with $\sigma^2 > 0$ an unknown constant. But of course in practice, the explanatory variables are random, not fixed. Clearly, if the model holds *conditionally* upon the values of the explanatory variables, then all the usual results hold, again conditionally upon the particular values of the explanatory variables. The probabilities (for example, *p*-values) are conditional probabilities, and the *F* statistic does not have an *F* distribution, but a conditional *F* distribution, given $\boldsymbol{\mathcal{X}} = \mathbf{X}$.

- (a) Show that the least-squares estimator $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ is conditionally unbiased.
- (b) Show that $\widehat{\boldsymbol{\beta}}$ is also unbiased unconditionally.
- (c) A similar calculation applies to the significance level of a hypothesis test. Let F be the test statistic (say for an extra-sum-of-squares F-test), and f_c be the critical value. If the null hypothesis is true, then the test is size α , conditionally upon the explanatory variable values. That is, $P(F > f_c | \mathcal{X} = \mathbf{X}) = \alpha$. Find the *unconditional* probability of a Type I error. Assume that the explanatory variables are discrete, so you can write a multiple sum.
- 6. The point of this question is that under conditions that are fairly common and natural, MLEs and likelihood ratio tests based on a fixed-x regression model are also valid for a random-x model. For notational convenience, suppose that the model parameter $\theta = (\theta_1, \theta_2)$, and that the joint density/probability mass function of the data can be written

$$f_{\theta}(x,y) = g_{\theta_1}(y|x) h_{\theta_2}(x), where$$

- $f_{\theta}(x, y)$ is the joint density of x and y. It depends on the entire parameter vector θ .
- $g_{\theta_1}(y|x)$ is the conditional density of y given x. It depends on θ_1 .
- $h_{\theta_2}(x)$ is the marginal density of x. It depends on θ_2 .

The quantities x, y, θ_1 and θ_2 could all be vectors. There must be no functional connection between θ_1 and θ_2 . For example in a regression, we might have $\theta_1 = (\beta, \sigma^2)$, and if $h_{\theta_2}(x)$ is a multivariate normal density, θ_2 would be the unique elements of μ_x and Σ_x . The lack of functional connection between θ_1 and θ_2 just means there are no β_j parameters and no σ^2 in μ_x or Σ_x . Usually, we only care about the parameters in θ_1 .

- (a) Writing the full likelihood as $L(\theta) = \pi_{i=1}^n f_{\theta}(x_i, y_i)$, show that $\hat{\theta}_1$ for the random-*x* model is the same as for the model of *y* conditional on *x*. It's easiest to see if you take the log of the likelihood and start differentiating.
- (b) Now consider a likelihood ratio test that only restricts θ_1 . In regression, it would be about the β_j parameters. Show that the likelihood ratio test statistic

$$G^{2} = -2\ln\left(\frac{L(\widehat{\theta}_{0})}{L(\widehat{\theta})}\right)$$

for the random-x model is the same as for the model of y conditional on x.

Please bring printouts of your full R input and output for Questions 3 and 4 to the quiz.