STA 431s23 Assignment Three¹

For the Quiz on Friday Feb. 3d, please bring printouts of your full R input for Question 16. The other problems are not to be handed in. They are practice for the Quiz.

1. Let $cov(\mathbf{x}) = \mathbf{\Sigma} = \mathbf{C}\mathbf{D}\mathbf{C}^{\top}$. The random vector $cov(\mathbf{x})$ has four elements, so that the matrix of eigenvectors may be written

$$\mathbf{C} = \left(\begin{array}{c|c} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{array} \right),$$

where the \mathbf{v}_i are the eigenvectors. What is $\mathbf{v}_3^{\top} \mathbf{C}$?

- 2. Let $\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{\Sigma})$, with $\mathbf{\Sigma} = \mathbf{C}\mathbf{D}\mathbf{C}^{\top}$. Let \mathbf{v}_j be the eigenvector (a column of \mathbf{C}) corresponding to the eigenvalue λ_j of $\mathbf{\Sigma}$.
 - (a) What is the distribution of the scalar random variable $y = \mathbf{v}_i^\top \mathbf{x}$?
 - (b) What is the distribution of $\mathbf{y} = \mathbf{C}^{\top} \mathbf{x}$?
 - (c) How do you know that the elements of **y** are independent?

The elements of \mathbf{y} are called the *principal components* of \mathbf{x} .

3. Let $\mathbf{x} = (x_1, x_2, x_3)^{\top}$ be multivariate normal with

$$\boldsymbol{\mu} = \begin{pmatrix} 1\\0\\6 \end{pmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 1 \end{pmatrix}.$$

- (a) Derive the joint distribution of x_1 and x_2 using matrices.
- (b) Let $y_1 = x_1 + x_2$ and $y_2 = x_2 + x_3$. Find the joint distribution of y_1 and y_2 using matrices.
- 4. Let x_1 be Normal (μ_1, σ_1^2) , and x_2 be Normal (μ_2, σ_2^2) , independent of x_1 . What is the joint distribution of $y_1 = x_1 + x_2$ and $y_2 = x_1 x_2$? What is required for y_1 and y_2 to be independent? Hint: Use matrices.
- 5. If $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then you know the distribution of $\mathbf{A}\mathbf{x}$ from the formula sheet. Use this result to obtain the distribution of the sample mean under normal random sampling. That is, let x_1, \ldots, x_n be a random sample from a $N(\boldsymbol{\mu}, \sigma^2)$ distribution. Find the distribution of \overline{x} . You might want to use **1** to represent an $n \times 1$ column vector of ones.

¹This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/431s23

- 6. This problem will guide you through the proof that if $\mathbf{w} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}$ positive definite, $y = (\mathbf{w} \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{w} \boldsymbol{\mu})$ has a chi-squared distribution with p degrees of freedom.
 - (a) What is the distribution of $\mathbf{w} \boldsymbol{\mu}$? Just write down the answer.
 - (b) Because Σ is positive definite, we know that $\Sigma^{-1/2}$ exists; there is no need to prove it. What is the distribution of $\mathbf{z} = \Sigma^{-1/2} (\mathbf{w} \boldsymbol{\mu})$? Show some work.
 - (c) How do you know that **z** is made up of *independent* standard normals?
 - (d) What is the distribution of $\mathbf{z}^{\top}\mathbf{z}$? Hint: What is the distribution of a squared standard normal? What is the distribution of a sum of independent chi-squares?
 - (e) Calculate $\mathbf{z}^{\top}\mathbf{z} = (\mathbf{w} \boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{w} \boldsymbol{\mu})$. Proved.
- 7. Let x_1, \ldots, x_n be a random sample from a Poisson distribution with expected value $\lambda > 0$.
 - (a) What is the parameter of this model?
 - (b) What is the parameter space? See the lecture slides for how to write it.
- 8. Let x_1, \ldots, x_n be a random sample from a normal distribution with expected value μ and variance σ^2 .
 - (a) What is the parameter space for this model?
 - (b) Obtain the Maximum Likelihood Estimator of the pair $\theta = (\mu, \sigma^2)$ by specializing a result on the formula sheet. You can just write down the answer.
 - (c) Find a Method of Moments estimator of θ . Use the fact that $E(x_i) = \mu$ and $Var(x_i) = \sigma^2$. This is very quick. Don't waste time and effort doing unnecessary things.
 - (d) In the following R output, data are in the vector x. Based on this, give $\hat{\theta}$. Your answer is a pair of numbers. I needed a calculator because R's var function uses n-1 in the denominator.

> c(length(x),mean(x),var(x))
[1] 20.0000 94.3800 155.1554

(e) Give the maximum likelihood estimator of the standard deviation σ . The answer is a number. Do it the easy way. How do you know that this is okay?

9. Let x_1, \ldots, x_n be a random sample from a continuous distribution with density

$$f(x;\theta) = \frac{1}{\theta^{1/2}\sqrt{2\pi}} e^{-\frac{x^2}{2\theta}},$$

where the parameter $\theta > 0$. Propose a reasonable estimator for the parameter θ , and use the Law of Large Numbers to show that your estimator is consistent.

10. Let x_1, \ldots, x_n be a random sample from a Gamma distribution with $\alpha = \beta = \theta > 0$. That is, the density is

$$f(x;\theta) = \frac{1}{\theta^{\theta}\Gamma(\theta)}e^{-x/\theta}x^{\theta-1},$$

for x > 0. Let $\hat{\theta} = \overline{x}_n$. Is $\hat{\theta}$ consistent for θ ? Answer Yes or No and prove your answer. Hint: The expected value of a Gamma random variable is $\alpha\beta$.

- 11. Let x_1, \ldots, x_n be a random sample from a distribution with mean μ_x and variance σ_x^2 . The formula sheet has a formula for the sample variance $\hat{\sigma}^2$. Show that $\hat{\sigma}_x^2$ is a consistent estimator of σ_x^2 .
- 12. Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a random sample from a bivariate distribution with $E(x_i) = \mu_x$, $E(y_i) = \mu_y$, $Var(x_i) = \sigma_x^2$, $Var(y_i) = \sigma_y^2$, and $Cov(x_i, y_i) = \sigma_{xy}$. The formula sheet has a formula for the sample covariance $\widehat{\sigma}_{xy}$. Show that $\widehat{\sigma}_{xy}$ is a consistent estimator of σ_{xy} .
- 13. Let x_1, \ldots, x_n be a random sample from a distribution with expected value μ and variance σ_x^2 . Independently of x_1, \ldots, x_n , let y_1, \ldots, y_n be a random sample from a distribution with the same expected value μ , and a variance σ_y^2 that might be different from σ_x^2 . Let $t_n = \alpha \overline{x}_n + (1-\alpha)\overline{y}_n$, where $0 \le \alpha \le 1$. Is t_n always a consistent estimator of μ ? Answer Yes or No and show your work.
- 14. Independently for i = 1, ..., n, let $y_i = \beta x_i + \epsilon_i$, where $x_i \sim N(\mu_x, \sigma_x^2)$, $\epsilon_i \sim N(0, \sigma_\epsilon^2)$, and x_i and ϵ_i are independent.
 - (a) What are the parameters of this model?
 - (b) What is the parameter space?
 - (c) Write the joint distribution of x_i and ϵ_i in matrix form.
 - (d) Obtain the joint distribution of x_i and y_i by writing

$$\left(\begin{array}{c} x_i \\ y_i \end{array}\right) = \mathbf{A} \left(\begin{array}{c} x_i \\ \epsilon_i \end{array}\right).$$

Give the matrix \mathbf{A} , and calculate the vector of expected values and the covariance matrix.

(e) To check your work, obtain $E(y_i)$, $Var(y_i)$ and $Cov(x_i, y_i)$ with scalar (non-matrix) calculations.

- (f) Based on your work so far, you have *two* potential method of moments estimators for β , one based on the vector of expected values, and the other based on the covariance matrix. Let $\hat{\beta}_1$ denote the estimator based on the expected values, and let $\hat{\beta}_2$ denote the estimator based on the covariance matrix.
 - i. Give the formula for $\hat{\beta}_2$, and show it is consistent.
 - ii. Show that $\widehat{\beta}_1 \xrightarrow{p} \beta$ in most of the parameter space.
 - iii. However, consistency means that the estimator converges to the parameter in probability *everywhere* in the parameter space. Where in the parameter space does $\hat{\beta}_1$ fail?
 - iv. This last item is optional, and will not be on the quiz or on the final exam. To see exactly how $\hat{\beta}_1$ fails, use the fact that the ratio of two independent standard normal random variables is a standard Cauchy. Start by simplifying \overline{y}_n . You can take it for granted that functions of independent random variables are still independent. If you have followed this path without getting lost, you will conclude that if $\mu_x = 0$, the distribution of $\hat{\beta}_1$ is Cauchy, but multiplied by a constant and centered on β_1 . Notably, the distribution of $\hat{\beta}_1$ is the same for all n. As $n \to \infty$, it stays exactly the same, never changing at all. It certainly does not shrink down to any constant, including β .
- 15. The formula sheet has a useful expression for the multivariate normal likelihood.
 - (a) Show that you understand the notation by giving the univariate version, in which $x_1, \ldots, x_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$. Your answer will have no matrix notation for the trace, transpose or inverse.
 - (b) Now starting with the univariate normal density $f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right\}$, show that the univariate normal likelihood is the same as your answer to the previous question. Hint: Add and subtract \overline{x} .
 - (c) How does this expression allow you to see without differentiating that the MLE of μ is \overline{x} ?
- 16. Let x_1, \ldots, x_n be a random sample from a distribution with density

$$f(x) = \frac{\theta e^{\theta(x-\mu)}}{(1+e^{\theta(x-\mu)})^2}$$

for x real, where $-\infty < \mu < \infty$ and $\theta > 0$. Numerical data are available at http://www.utstat.toronto.edu/brunner/openSEM/data/mystery2.data.txt.

- (a) Find the maximum likelihood estimates of μ and θ .
- (b) Obtain an approximate 95% confidence interval for θ .
- (c) Test $H_0: \mu = 2.1$ at the $\alpha = 0.05$ significance level with a large-sample z-test.

Please bring a printout of your full R input and output to the quiz.