STA 431s23 Assignment Three ${ }^{1}$

For the Quiz on Friday Feb. 3d, please bring printouts of your full R input for Question 16. The other problems are not to be handed in. They are practice for the Quiz.

1. Let $\operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}=\mathbf{C D C}{ }^{\top}$. The random vector $\operatorname{cov}(\mathbf{x})$ has four elements, so that the matrix of eigenvectors may be written

$$
\mathbf{C}=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \mathbf{v}_{3} \mid \mathbf{v}_{4}\right),
$$

where the \mathbf{v}_{j} are the eigenvectors. What is $\mathbf{v}_{3}^{\top} \mathbf{C}$?
2. Let $\mathbf{x} \sim N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma}=\mathbf{C D C}^{\top}$. Let \mathbf{v}_{j} be the eigenvector (a column of \mathbf{C}) corresponding to the eigenvalue λ_{j} of $\boldsymbol{\Sigma}$.
(a) What is the distribution of the scalar random variable $y=\mathbf{v}_{j}^{\top} \mathbf{x}$?
(b) What is the distribution of $\mathbf{y}=\mathbf{C}^{\top} \mathbf{x}$?
(c) How do you know that the elements of \mathbf{y} are independent?

The elements of \mathbf{y} are called the principal components of \mathbf{x}.
3. Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ be multivariate normal with

$$
\boldsymbol{\mu}=\left(\begin{array}{l}
1 \\
0 \\
6
\end{array}\right) \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Derive the joint distribution of x_{1} and x_{2} using matrices.
(b) Let $y_{1}=x_{1}+x_{2}$ and $y_{2}=x_{2}+x_{3}$. Find the joint distribution of y_{1} and y_{2} using matrices.
4. Let x_{1} be $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and x_{2} be $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$, independent of x_{1}. What is the joint distribution of $y_{1}=x_{1}+x_{2}$ and $y_{2}=x_{1}-x_{2}$? What is required for y_{1} and y_{2} to be independent? Hint: Use matrices.
5. If $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then you know the distribution of $\mathbf{A x}$ from the formula sheet. Use this result to obtain the distribution of the sample mean under normal random sampling. That is, let x_{1}, \ldots, x_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. Find the distribution of \bar{x}. You might want to use $\mathbf{1}$ to represent an $n \times 1$ column vector of ones.

[^0]6. This problem will guide you through the proof that if $\mathbf{w} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}$ positive definite, $y=(\mathbf{w}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w}-\boldsymbol{\mu})$ has a chi-squared distribution with p degrees of freedom.
(a) What is the distribution of $\mathbf{w}-\boldsymbol{\mu}$? Just write down the answer.
(b) Because $\boldsymbol{\Sigma}$ is positive definite, we know that $\boldsymbol{\Sigma}^{-1 / 2}$ exists; there is no need to prove it. What is the distribution of $\mathbf{z}=\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{w}-\boldsymbol{\mu})$? Show some work.
(c) How do you know that \mathbf{z} is made up of independent standard normals?
(d) What is the distribution of $\mathbf{z}^{\top} \mathbf{z}$? Hint: What is the distribution of a squared standard normal? What is the distribution of a sum of independent chi-squares?
(e) Calculate $\mathbf{z}^{\top} \mathbf{z}=(\mathbf{w}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w}-\boldsymbol{\mu})$. Proved.
7. Let x_{1}, \ldots, x_{n} be a random sample from a Poisson distribution with expected value $\lambda>0$.
(a) What is the parameter of this model?
(b) What is the parameter space? See the lecture slides for how to write it.
8. Let x_{1}, \ldots, x_{n} be a random sample from a normal distribution with expected value μ and variance σ^{2}.
(a) What is the parameter space for this model?
(b) Obtain the Maximum Likelihood Estimator of the pair $\theta=\left(\mu, \sigma^{2}\right)$ by specializing a result on the formula sheet. You can just write down the answer.
(c) Find a Method of Moments estimator of θ. Use the fact that $E\left(x_{i}\right)=\mu$ and $\operatorname{Var}\left(x_{i}\right)=\sigma^{2}$. This is very quick. Don't waste time and effort doing unnecessary things.
(d) In the following R output, data are in the vector x. Based on this, give $\hat{\theta}$. Your answer is a pair of numbers. I needed a calculator because R's var function uses $n-1$ in the denominator.
> $c($ length $(x), \operatorname{mean}(x), \operatorname{var}(x))$
[1] $20.0000 \quad 94.3800 \quad 155.1554$
(e) Give the maximum likelihood estimator of the standard deviation σ. The answer is a number. Do it the easy way. How do you know that this is okay?
9. Let x_{1}, \ldots, x_{n} be a random sample from a continuous distribution with density
$$
f(x ; \theta)=\frac{1}{\theta^{1 / 2} \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \theta}}
$$
where the parameter $\theta>0$. Propose a reasonable estimator for the parameter θ, and use the Law of Large Numbers to show that your estimator is consistent.
10. Let x_{1}, \ldots, x_{n} be a random sample from a Gamma distribution with $\alpha=\beta=\theta>0$. That is, the density is
$$
f(x ; \theta)=\frac{1}{\theta^{\theta} \Gamma(\theta)} e^{-x / \theta} x^{\theta-1}
$$
for $x>0$. Let $\widehat{\theta}=\bar{x}_{n}$. Is $\widehat{\theta}$ consistent for θ ? Answer Yes or No and prove your answer. Hint: The expected value of a Gamma random variable is $\alpha \beta$.
11. Let x_{1}, \ldots, x_{n} be a random sample from a distribution with mean μ_{x} and variance σ_{x}^{2}. The formula sheet has a formula for the sample variance $\widehat{\sigma}^{2}$. Show that $\widehat{\sigma}_{x}^{2}$ is a consistent estimator of σ_{x}^{2}.
12. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be a random sample from a bivariate distribution with $E\left(x_{i}\right)=$ $\mu_{x}, E\left(y_{i}\right)=\mu_{y}, \operatorname{Var}\left(x_{i}\right)=\sigma_{x}^{2}, \operatorname{Var}\left(y_{i}\right)=\sigma_{y}^{2}$, and $\operatorname{Cov}\left(x_{i}, y_{i}\right)=\sigma_{x y}$. The formula sheet has a formula for the sample covariance $\widehat{\sigma}_{x y}$. Show that $\widehat{\sigma}_{x y}$ is a consistent estimator of $\sigma_{x y}$.
13. Let x_{1}, \ldots, x_{n} be a random sample from a distribution with expected value μ and variance σ_{x}^{2}. Independently of x_{1}, \ldots, x_{n}, let y_{1}, \ldots, y_{n} be a random sample from a distribution with the same expected value μ, and a variance σ_{y}^{2} that might be different from σ_{x}^{2}. Let $t_{n}=\alpha \bar{x}_{n}+(1-\alpha) \bar{y}_{n}$, where $0 \leq \alpha \leq 1$. Is t_{n} always a consistent estimator of μ ? Answer Yes or No and show your work.
14. Independently for $i=1, \ldots, n$, let $y_{i}=\beta x_{i}+\epsilon_{i}$, where $x_{i} \sim N\left(\mu_{x}, \sigma_{x}^{2}\right), \epsilon_{i} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$, and x_{i} and ϵ_{i} are independent.
(a) What are the parameters of this model?
(b) What is the parameter space?
(c) Write the joint distribution of x_{i} and ϵ_{i} in matrix form.
(d) Obtain the joint distribution of x_{i} and y_{i} by writing
$$
\binom{x_{i}}{y_{i}}=\mathbf{A}\binom{x_{i}}{\epsilon_{i}} .
$$

Give the matrix \mathbf{A}, and calculate the vector of expected values and the covariance matrix.
(e) To check your work, obtain $E\left(y_{i}\right), \operatorname{Var}\left(y_{i}\right)$ and $\operatorname{Cov}\left(x_{i}, y_{i}\right)$ with scalar (nonmatrix) calculations.
(f) Based on your work so far, you have two potential method of moments estimators for β, one based on the vector of expected values, and the other based on the covariance matrix. Let $\widehat{\beta}_{1}$ denote the estimator based on the expected values, and let $\widehat{\beta}_{2}$ denote the estimator based on the covariance matrix.
i. Give the formula for $\widehat{\beta}_{2}$, and show it is consistent.
ii. Show that $\widehat{\beta}_{1} \xrightarrow{p} \beta$ in most of the parameter space.
iii. However, consistency means that the estimator converges to the parameter in probability everywhere in the parameter space. Where in the parameter space does $\widehat{\beta}_{1}$ fail?
iv. This last item is optional, and will not be on the quiz or on the final exam. To see exactly how $\widehat{\beta}_{1}$ fails, use the fact that the ratio of two independent standard normal random variables is a standard Cauchy. Start by simplifying \bar{y}_{n}. You can take it for granted that functions of independent random variables are still independent. If you have followed this path without getting lost, you will conclude that if $\mu_{x}=0$, the distribution of $\widehat{\beta}_{1}$ is Cauchy, but multiplied by a constant and centered on β_{1}. Notably, the distribution of $\widehat{\beta}_{1}$ is the same for all n. As $n \rightarrow \infty$, it stays exactly the same, never changing at all. It certainly does not shrink down to any constant, including β.
15. The formula sheet has a useful expression for the multivariate normal likelihood.
(a) Show that you understand the notation by giving the univariate version, in which $x_{1}, \ldots, x_{n} \stackrel{i . i . d}{\sim} N\left(\mu, \sigma^{2}\right)$. Your answer will have no matrix notation for the trace, transpose or inverse.
(b) Now starting with the univariate normal density $f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}$, show that the univariate normal likelihood is the same as your answer to the previous question. Hint: Add and subtract \bar{x}.
(c) How does this expression allow you to see without differentiating that the MLE of μ is \bar{x} ?
16. Let x_{1}, \ldots, x_{n} be a random sample from a distribution with density

$$
f(x)=\frac{\theta e^{\theta(x-\mu)}}{\left(1+e^{\theta(x-\mu)}\right)^{2}}
$$

for x real, where $-\infty<\mu<\infty$ and $\theta>0$. Numerical data are available at http://www.utstat.toronto.edu/brunner/openSEM/data/mystery2.data.txt.
(a) Find the maximum likelihood estimates of μ and θ.
(b) Obtain an approximate 95% confidence interval for θ.
(c) Test $H_{0}: \mu=2.1$ at the $\alpha=0.05$ significance level with a large-sample z-test.

Please bring a printout of your full R input and output to the quiz.

[^0]: ${ }^{1}$ This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/431s23

