NAME (PRINT):
Last/Surname First /Given Name

STUDENT \#:
SIGNATURE: \qquad

UNIVERSITY OF TORONTO MISSISSAUGA APRIL 2015 FINAL EXAMINATION STA431H5S
 Structural Equation Models
 Jerry Brunner
 Duration-3 hours

Aids: Calculator Model(s): Any calculator is okay; Formula sheet will be supplied.

The University of Toronto Mississauga and you, as a student, share a commitment to academic integrity. You are reminded that you may be charged with an academic offence for possessing any unauthorized aids during the writing of an exam. Clear, sealable, plastic bags have been provided for all electronic devices with storage, including but not limited to: cell phones, tablets, laptops, calculators, and MP3 players. Please turn off all devices, seal them in the bag provided, and place the bag under your desk for the duration of the examination. You will not be able to touch the bag or its contents until the exam is over.

If, during an exam, any of these items are found on your person or in the area of your desk other than in the clear, sealable, plastic bag; you may be charged with an academic offence. A typical penalty for an academic offence may cause you to fail the course.

Please note, you CANNOT petition to re-write an examination once the exam has begun.

Qn. \#	Value	Score
1	12	
2	14	
3	10	
4	13	
5	13	
6	10	
7	8	
8	8	
9	12	
Total $=100$ Points		

1. This simple example illustrates the reason for the entire course. Independently for $i=1, \ldots, n$, let

$$
\begin{aligned}
Y_{i} & =\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i} & =X_{i, 1}+e_{i}
\end{aligned}
$$

where $V\binom{X_{i, 1}}{X_{i, 2}}=\left(\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22}\end{array}\right), V\left(\epsilon_{i}\right)=\psi, V\left(e_{1}\right)=\omega$, all the expected values are zero, and the error terms ϵ_{i} and e_{i} are independent of one another, and also independent of $X_{i, 1}$ and $X_{i, 2}$. The variable $X_{i, 1}$ is latent, while the variables W_{i}, Y_{i} and $X_{i, 2}$ are observable. What people usually do in situations like this is fit a model like $Y_{i}=\beta_{1} W_{i}+\beta_{2} X_{i, 2}+\epsilon_{i}$, and test $H_{0}: \beta_{2}=0$. That is, they ignore the measurement error in variables for which they are "controlling."
(a) Suppose $H_{0}: \beta_{2}=0$ is true. Does the ordinary least squares estimator

$$
\widehat{\beta}_{2}=\frac{\sum_{i=1}^{n} W_{i}^{2} \sum_{i=1}^{n} X_{i, 2} Y_{i}-\sum_{i=1}^{n} W_{i} X_{i, 2} \sum_{i=1}^{n} W_{i} Y_{i}}{\sum_{i=1}^{n} W_{i}^{2} \sum_{i=1}^{n} X_{i, 2}^{2}-\left(\sum_{i=1}^{n} W_{i} X_{i, 2}\right)^{2}}
$$

converge to the true value of $\beta_{2}=0$ as $n \rightarrow \infty$ everywhere in the parameter space? Answer Yes or No and show your work. (And don't forget to answer the question at the bottom of the next page).
(b) Under what conditions (that is, for what values of other parameters) does $\widehat{\beta}_{2} \xrightarrow{\text { a.s. }} 0$ when $\beta_{2}=0$?

14 points
2. In a study of maternal behaviour in rats, mother rats were injected with estrogen (a sex hormone), and the amount of estrogen in their blood was measured by a blood sample. Then their maternal behaviour (nursing, licking, retrieving their young) was recorded. In the path diagram below, the symbol on the arrow from X to Y_{1} looks like the letter Y, but actually it's the Greek letter γ (gamma).

X is drug dose.
Y_{1} is true amount of drug in the animal's blood stream.
V_{1} is measured amount of drug in the animal's blood stream.
Y_{2} is the animal's maternal impulse, or tendency to care for her young.
V_{2} is the animal's observed maternal behaviour.
(a) What is the parameter vector $\boldsymbol{\theta}$ for this model? All the variables are centered, so there are no expected values or intercepts.
(b) Does this problem pass the test of the Parameter Count Rule? Answer Yes or No and give the numbers.
(c) Why is it reasonable to assume $\gamma>0$?
(d) The point of the study is β. Show that this parameter identifiable provided $\gamma>0$. Don't do more work than you have to.

10 points
3. Independently for $i=1, \ldots, n$, let

$$
\begin{aligned}
D_{i, 1} & =F_{i, 1}+e_{i, 1} \\
D_{i, 2} & =F_{i, 2}+e_{i, 2}
\end{aligned} \quad V\binom{F_{i, 1}}{F_{i, 2}}=\left(\begin{array}{cc}
\phi_{11} & \phi_{12} \\
\phi_{12} & \phi_{22}
\end{array}\right) \quad V\binom{e_{i, 1}}{e_{i, 2}}=\left(\begin{array}{cc}
\omega_{1} & 0 \\
0 & \omega_{2}
\end{array}\right)
$$

Suppose the reliability of $D_{i, 1}$ as a measure of $F_{i, 1}$ is r_{1}, and the reliability of $D_{i, 2}$ as a measure of $F_{i, 2}$ is r_{2}. If $\operatorname{Corr}\left(D_{i, 1}, D_{i, 2}\right)=\rho$, what is $\operatorname{Corr}\left(F_{i, 1}, F_{i, 2}\right)$? Show your work and circle your final answer. The answer is an expression in just ρ, r_{1} and r_{2}. It's a way of correcting correlations for measurement error if you know the reliabilities.

13 points
4. In this special case of the latent variable model, there are no exogenous variables. Independently for $i=1, \ldots, n$, let $\mathbf{Y}_{i}=\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\epsilon}_{i}$, where \mathbf{Y}_{i} and $\boldsymbol{\epsilon}_{i}$ are $q \times 1$ random vectors with $V\left(\boldsymbol{\epsilon}_{i}\right)=\boldsymbol{\Psi}$. The $q \times q$ covariance matrix $\boldsymbol{\Psi}$ is strictly positive definite.
(a) Calculate $V\left(\mathbf{Y}_{i}\right)$. Show your work.
(b) Prove that the existence of $(\mathbf{I}-\boldsymbol{\beta})^{-1}$ is implied by the model.

13 points
5. The general unrestricted exploratory factor analysis model can be written $\mathbf{D}_{i}=\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}$, where $\boldsymbol{\Lambda}$ is a $k \times p$ matrix of constants, $V\left(\mathbf{F}_{i}\right)=\boldsymbol{\Phi}, V\left(\mathbf{e}_{i}\right)=\boldsymbol{\Omega}$, and the random vectors \mathbf{F}_{i} and \mathbf{e}_{i} are independent. As usual, the covariance matrices $\boldsymbol{\Phi}$ and $\boldsymbol{\Omega}$ are positive definite.
(a) Write down $\boldsymbol{\Sigma}=V\left(\mathbf{D}_{i}\right)$. It's so quick that you need not show any work.
(b) The problem is that $\boldsymbol{\Phi}$ could be absolutely anything, and you can't tell from $\boldsymbol{\Sigma}$. Ignoring redundant elements of the covariance matrices, the parameter vector could be written $\boldsymbol{\theta}=(\boldsymbol{\Lambda}, \boldsymbol{\Phi}, \boldsymbol{\Omega})$. Let \mathbf{Q} be an arbitrary $p \times p$ symmetric positive definite matrix. There is another parameter vector $\boldsymbol{\theta}_{2}=\left(\boldsymbol{\Lambda}_{2}, \mathbf{Q}, \boldsymbol{\Omega}\right)$ yielding exactly the same $\boldsymbol{\Sigma}$. Give the matrix $\boldsymbol{\Lambda}_{2}$. Show your work. Circle your answer. 6. Compare this path diagram with the general structural equation model on the formula sheet.

Give the matrix $\boldsymbol{\Gamma}$. Your answer is a matrix in which each element is either a zero or a symbol from the path diagram.

8 points
7. Please look again at the path diagram of Question 6. Briefly explain why the parameters of this model are identifiable. Cite specific rules by letter and number. Assume that if an arrow is shown, the coefficient is not zero. You have a lot more room than you need for a good answer. You do not have to explain in detail why a particular rule applies.
8. In a reaction time study, subjects are seated at a screen. A light flashes on the screen, and they press a key as fast as they can; the time between the light flash and the key press is recorded automatically.
After some warmup trials, the subjects do the task 50 times, so 50 reaction times are recorded. The 50 times are divided randomly into two sets of 25 , and then the median is calculated for each set. In the end, each subject produces two median reaction times.
The scientists locate sample of university student volunteers whose parents are also available to do the experiment. When all the observable data have been collected, there is a data file with n lines of data, one for each student. Each line of data has 6 numbers. There are two median reaction times for the student, two for the student's mother and two for the student's father.

Make a path diagram. Here are some guidelines.

- Include the error terms. You should assume that the errors are all independent, and independent of the exogenous variables.
- Write coefficients on the arrows. If you leave a coefficient off, it means the coefficient equals one.
- This is an original model, not re-parameterized.
- Your model should represent reasonable ideas about heredity, but my answer is quite unsophisticated so don't worry.
- There is definitely more than one right answer, but all else being equal, simpler models are better.
- You may write some comments under the path diagram if you wish, but no comments are necessary for full marks. The response variable is job performance.

```
    label w11 = 'Knowledge 1'
        w12 = 'Knowledge 2'
        w21 = 'Profit-Loss Orientation 1'
        w22 = 'Profit-Loss Orientation 2'
        w31 = 'Job Satisfaction 1'
        w32 = 'Job Satisfaction 2'
        edu = 'Formal education' /* Assumed measured without error */
            v1 = 'Job Performance 1'
            v2 = 'Job Performance 2';
proc calis pshort nostand pcorr vardef=n;
var w11 w12 w21 w22 w31 w32 edu v1 v2;
lineqs
        Fperform = beta1 Fknowledge + beta2 Fprofitloss + beta3 Fsatisf
            + beta4 edu + epsilon,
        w11 = Fknowledge + e1,
        w12 = Fknowledge + e2,
        w21 = Fprofitloss + e3,
        w22 = Fprofitloss + e4,
        w31 = Fsatisf + e5,
        w32 = Fsatisf + e6,
        v1 = Fperform + e7,
        v2 = Fperform + e8;
variance
        Fknowledge=phi11, Fprofitloss=phi22, Fsatisf=phi33, edu=phi44,
        epsilon = psi, e1-e8 = 8 * omega__ ;
cov
        Fknowledge Fprofitloss = phi12, Fknowledge Fsatisf = phi13,
        Fknowledge edu = phi14,
        Fprofitloss Fsatisf = phi23, Fprofitloss edu = phi24,
        Fsatisf edu = phi34;
bounds 0.0 < phi11 phi22 phi33 phi44 psi omega1-omega6;
simtests AllVars = [b1 b2 b3 b4];
b1 = beta1 ; b2 = beta2 ; b3 = beta3; b4 = beta4;
simtests ReliabilityDifference = [d]; d = omega1-omega2;
```

The next several pages contain partial output, followed by the questions.

431s15A8: Re-constructed farm co-op manager data Using Warren White and Fuller 1974, and Joreskog 1978

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

431s15A8: Re-constructed farm co-op manager data Using Warren White and Fuller 1974, and Joreskog 1978

The CALIS Procedure

Covariance Structure Analysis: Maximum Likelihood Estimation

Linear Equations

Fperform	$0.3468{ }^{(* *)}$	Fknowledge + $0.1712{ }^{(* *)}$	Fprofitloss +0.0498 (ns) Fsatisf +0.0726 (ns) edu +1.0000
w11	$=1.0000$	Fknowledge +1.0000	e1
w12	$=1.0000$	Fknowledge + 1.0000	e2
w21	$=1.0000$	Fprofitloss +1.0000	e3
w22	$=1.0000$	Fprofitloss +1.0000	e4
w31	$=1.0000$	Fsatisf +1.0000	e5
w32	$=1.0000$	Fsatisf +1.0000	e6
v1	$=1.0000$	Fperform + 1.0000	e7
v2	$=1.0000$	Fperform + 1.0000	e8

Effects in Linear Equations								
Variable	Predictor	Parameter	Estimate	Standard Error	\mathbf{t} Value	Pr > \|t		
Fperform	Fknowledge	beta1	0.34683	0.13166	2.6342	0.0084		
Fperform	Fprofitloss	beta2	0.17122	0.07909	2.1649	0.0304		
Fperform	Fsatisf	beta3	0.04984	0.05040	0.9889	0.3227		
Fperform	edu	beta4	0.07260	0.04420	1.6427	0.1004		
w11	Fknowledge		1.00000					
w12	Fknowledge		1.00000					
w21	Fprofitloss		1.00000					
w22	Fprofitloss		1.00000					
w31	Fsatisf		1.00000					
w32	Fsatisf		1.00000					
v1	Fperform		1.00000					
V2	Fperform		1.00000					

Estimates for Variances of Exogenous Variables								
Variable Type	Variable	Parameter	Estimate	Standard Error	t Value	Pr > \|t		
Latent	Fknowledge	phi11	0.03017	0.00761	3.9646	$<.0001$		
	Fprofitloss	phi22	0.07593	0.01814	4.1859	$<.0001$		
	Fsatisf	phi33	0.07158	0.01299	5.5088	$<.0001$		
Observed	edu	phi44	0.09363	0.01338	7.0000	$<.0001$		
Disturbance	epsilon	psi	0.00550	0.00193	2.8468	0.0044		
Error	e1	omega1	0.05026	0.00895	5.6128	$<.0001$		
	e2	omega2	0.02996	0.00685	4.3725	$<.0001$		
	e3	omega3	0.09132	0.01802	5.0671	$<.0001$		
	e4	omega4	0.08248	0.01713	4.8148	$<.0001$		
	e5	omega5	0.04147	0.00985	4.2117	$<.0001$		

431s15A8: Re-constructed farm co-op manager data Using Warren White and Fuller 1974, and Joreskog 1978

The CALIS Procedure
 Covariance Structure Analysis: Maximum Likelihood Estimation

Estimates for Variances of Exogenous Variables								
Variable Type	Variable	Parameter	Estimate	Standard Error	t Value	Pr > \|t		
	e6	omega6	0.02952	0.00892	3.3082	0.0009		
	e7	omega7	0.00878	0.00182	4.8353	$<.0001$		
	e8	omega8	0.00596	0.00157	3.8086	0.0001		

Covariances Among Exogenous Variables								
Var1	Var2	Parameter	Estimate	Standard Error	\mathbf{t} Value	Pr > \|t		
Fknowledge	Fprofitloss	phi12	0.02564	0.00814	3.1491	0.0016		
Fknowledge	Fsatisf	phi13	0.00546	0.00668	0.8167	0.4141		
Fknowledge	edu	phi14	0.01875	0.00710	2.6423	0.0082		
Fprofitloss	Fsatisf	phi23	-0.00623	0.01042	-0.5978	0.5500		
Fprofitloss	edu	phi24	0.03388	0.01121	3.0223	0.0025		
Fsatisf	edu	phi34	-0.00687	0.00924	-0.7438	0.4570		

Simultaneous Tests						
Simultaneous Test	Parametric Function	Function Value	DF	Chi-Square	p Value	
AllVars			4	63.27343	$<.0001$	
	b1	0.34683	1	6.93896	0.0084	
	b2	0.17122	1	4.68658	0.0304	
	b3	0.04984	1	0.97791	0.3227	
	b4	0.07260	1	2.69851	0.1004	
ReliabilityDifference			1	3.35235	0.0671	
	d	0.02030	1	3.35235	0.0671	

(a) Based strictly on the $\alpha=0.05$ significance level, does the model appear to fit the data adequately?
i. Answer the question Yes or No.
ii. Give the value of a test statistic and a p-value that supports your conclusion. These are two numbers from the printout.
(b) Controlling for formal education, knowledge and profit-loss orientation, is there evidence that job satisfaction is related to job performance? Base your answers strictly on the $\alpha=0.05$ significance level.
i. Answer the question Yes or No.
ii. Give the value of a test statistic and a p-value that supports your conclusion. These are two numbers from the printout.
iii. If the answer is Yes (and only if the answer is Yes), say whether satisfaction is positively related to performance, or negatively related.

