University of Toronto at Mississauga December Examinations 2004 STA 313f Duration - 3 hours Aids allowed: None. Formula Sheet will be supplied.

For the structural equation models in this exam, all expected values are zero. The usual notation applies. That is, x and y variables are manifest, F variables are latent, and e variables are error terms. In path diagrams, unlabeled one-headed straight arrows correspond to a weight of one, while two-headed curved arrows (which are always unlabeled) represent non-zero covariances. Objects in **boldface** are **matrices** or **vectors**.

1. (4 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.



2. (4 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.



3. (4 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.

$$y_1 = b_1 x_1 + b_2 x_2 + e_1$$
  

$$y_2 = b_3 x_2 + b_4 x_3 + e_2$$
  

$$y_3 = b_5 y_1 + b_6 y_2 + e_3,$$

where all random variables have expected value zero, the vector  $\mathbf{x} = (x_1, x_2, x_3)'$  is multivariate normal with a covariance matrix that is *not* diagonal, and the error terms  $e_1$ ,  $e_2$  and  $e_3$  are normal, and independent of  $\mathbf{x}$  and of each other.

Continued on Page 2

## STA313F: Page 2 of 4

4. (4 Points) Is the following path model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.



5. (4 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.

$$y_1 = x + e_1$$
  

$$y_2 = x + y_1 + e_2$$
  

$$y_3 = x + y_1 + y_2 + e_3$$
  

$$y_4 = x + y_1 + y_2 + y_3 + e_4$$
  

$$y_5 = x + y_1 + y_2 + y_3 + y_4 + e_5,$$

where  $x \sim N(0, \sigma_x^2)$ ,  $e_j \sim N(0, \sigma_j^2)$  for  $j = 1, \ldots, 5$ , and the *e* variables are all independent of each other and independent of *x*.

6. (4 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.

$$y_1 = \gamma_1 F + e_1$$
  
$$y_2 = \gamma_2 F + e_2,$$

where  $\gamma_1 > 0$ . The error terms  $e_1$  and  $e_2$  are independent of F and independent of each other.

7. (4 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.

$$y_1 = b_1 x_1 + b_2 x_2 + e_1$$
  

$$y_2 = b_3 x_3 + b_4 x_4 + e_2,$$

where  $x_i \sim N(0, \sigma_i^2)$ ,  $Cov(x_1, x_2) = \kappa_1$ ,  $Cov(x_3, x_4) = \kappa_2$ ,  $x_1$  and  $x_2$  are independent of  $x_3$  and  $x_4$ ,  $Cov(e_1, e_2) = \kappa_e$ , and the error terms  $e_1$  and  $e_2$  are independent of all the x variables.

Continued on Page 3

## STA313F: Page 3 of 4

- 8. (6 Points) Let **X** be a  $p \times 1$  random vector, and let **Y** be a  $q \times 1$  random vector In addition, let **X** and **Y** be independent. Show  $E(\mathbf{X}\mathbf{Y}') = E(\mathbf{X})E(\mathbf{Y}')$ .
- 9. (8 Points) Let  $\mathbf{X}_1, \ldots, \mathbf{X}_n$  be independent and identically distributed multivariate normal random vectors, all with the same mean  $\boldsymbol{\mu}$  and the same variance-covariance matrix  $\boldsymbol{\Sigma}$ . Setting  $\boldsymbol{\mu} = \overline{\mathbf{x}}$  (this maximizes the likelihood over  $\boldsymbol{\mu}$  for any  $\boldsymbol{\Sigma}$ , but you don't have to prove it), derive an expression for  $-2 \log L(\overline{\mathbf{x}}, \boldsymbol{\Sigma})$  that depends on the sample data only through  $\widehat{\boldsymbol{\Sigma}}$  You may use the expression for  $\widehat{\boldsymbol{\Sigma}}$  from the formula sheet.

Again, you are simplifying an expression for minus two times the log likelihood with  $\mu$  set to  $\bar{\mathbf{x}}$ , so that it is a function of  $\Sigma$  and the sample data. Your final answer must depend on the sample data *only* through  $\hat{\Sigma}$ . Show your work.

- 10. (8 Points) Let  $X_1, \ldots, X_n$  be independent and identically distributed univariate normal random variables, all with the same mean  $\mu$  and the same variance  $\sigma^2$ . Derive a large-sample likelihood ratio test for  $H_0: \sigma^2 = 1$ . Show your work and *simplify*! If you know the MLEs of  $\mu$  and  $\sigma^2$ , you do not have to derive them. Give a formula for G and *circle your final answer*. What are the degrees of freedom for this test?
- 11. (10 Points) Consider this model:

$$F = bx + e_1$$
  

$$y_1 = F + e_2$$
  

$$y_2 = F + e_3,$$

where all random variables are normal with expected value zero,  $V(x) = \sigma_x^2$ ,  $V(e_j) = \sigma_j^2$ , and the error terms are independent of x and of each other.

- (a) Draw a path diagram.
- (b) What is the parameter  $\theta$ ?
- (c) Is this model saturated? Answer Yes or No.
- (d) Give the variance-covariance matrix of the manifest variables in terms of the parameter  $\theta$ ; show your work. Each cell in your matrix should contain a formula for the variance or covariance in terms of quantities like  $\sigma_1^2$ ,  $\sigma_2^2$ , and so on.
- (e) Is this model identified? Answer Yes or No and justify your answer.

## STA313F: Page 4 of 4

12. (8 Points) Is the following model identified? Answer Yes or No and say why. No marks for the right answer without a good reason.



- 13. (9 Points) Let  $\mathbf{y} = \mathbf{\Gamma}\mathbf{x} + \boldsymbol{\zeta}$ , with  $V(\mathbf{x}) = \boldsymbol{\Phi}$ ,  $V(\boldsymbol{\zeta}) = \boldsymbol{\Psi}$ , and  $\mathbf{x}$  and  $\boldsymbol{\zeta}$  independent. Of course  $\mathbf{x}$  and  $\mathbf{y}$  are manifest. Is this model identified? Answer Yes or No, and prove it. If the model is identified, this time solve explicitly for the parameters; don't just say you can do it.
- 14. (9 Points) Let

$$egin{array}{rcl} \mathbf{x}_1&=&oldsymbol{\xi}+oldsymbol{\delta}_1\ \mathbf{x}_2&=&oldsymbol{\xi}+oldsymbol{\delta}_2\ \mathbf{y}&=&oldsymbol{\Gamma}oldsymbol{\xi}+oldsymbol{\zeta}, \end{array}$$

with  $\delta_1$ ,  $\delta_2$ ,  $\zeta$  and  $\xi$  all independent,  $V(\xi) = \Phi$ ,  $V(\zeta) = \Psi$ ,  $V(\delta_1) = \Theta_1$ ,  $V(\delta_2) = \Theta_2$ , and  $\Theta_1 \neq \Theta_2$ . Is this model identified? Answer Yes or No, and prove it.

Note: If you were able to do Question 13, you will see that this one is quite similar. Therefore, *if* you did Question 13 correctly, you can just describe how you would try to solve for the model parameters here, without actually doing it. You do have to give a little detail; don't just say you can do it or that you can't do it.

- 15. (6 Points) In this question, you will partly connect the notation of the LISREL and EQS models.
  - (a) Express the random vector  $\boldsymbol{\xi}$  of the EQS model as a partitioned vector; its elements are random vectors from the LISREL model.
  - (b) Express the covariance matrix  $\Phi$  of the EQS model as a partitioned matrix; its nonzero elements are matrices from the LISREL model.
- 16. (8 Points) If you examine the LISREL model, you will see that it contains a factor analysis model for the latent exogenous variables, and another factor analysis model for the latent endogenous variables. Consider just the model for the exogenous variables that is, the  $\mathbf{x} = \Delta_x \boldsymbol{\xi} + \boldsymbol{\delta}$  part. Is this model identified? Answer Yes or No, and prove your answer. Show details; don't just say you can solve for the parameters or that you cannot solve for them.

## Total marks = 100 points