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Abstract

The CALIS procedure in SAS/STAT is a general structural equation modeling (SEM) tool.
This workshop introduces the general methodology of SEM and the applications of the
CALIS procedure. Historical topics such as casual models, path diagram, confirmatory
factor-analysis, measurement error model, and linear structural relations (LISREL) are
reviewed. Applications of the CALIS procedure to SEM are demonstrated with examples
in social, educational, behavioral, and marketing research. Specifically, the following
how-to techniques of the CALIS procedure (SAS/STAT 9.22) are covered: (1) Specifying
structural equation models with latent variables by using the PATH modeling language;
(2) Interpreting the model fit statistics and estimation results; (3) Testing models with
multiple groups and multiple models; (4) Analyzing direct and indirect effects; (5)
Modifying structural equation models.

This workshop is designed for statisticians and data analysts who want to overview the
applications of the SEM by the CALIS procedure. Attendees should have a basic
understanding of regression analysis and experience using the SAS language. Previous
exposure to SEM is useful, but not required.
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SAS/STAT 9.22 or later
IS assumed
for this workshop

In this workshop, SAS/STAT 9.22 (TS2M3) or later is assumed for the CALIS procedure.
Some of the code might work with PROC TCALIS (an experimental procedure) in
SAS/STAT 9.2 (TS2M2). However, there is a major syntactical difference between PROC
TCALIS and PROC CALIS. In PROC TCALIS, the parameter specification for each path in
the PATH statement must not be preceded by an equal sign. But this equal sign is
required in PROC CALIS when you specify parameters. Also, PROC TCALIS does not
support the generalized path specifications (for variances, covariances, means, and
intercepts) and multiple-path specifications when you use the PATH modeling language,
which is the main focus of today’s talk.




Causal Model, Prediction, and Path Diagram

X causesY
X predicts Y

Linear regression equation
Y=bX+ey

Path diagram

ey

e

___________________________________

------

This is the essential representation.
Often the error term is omitted.

The central idea of structural equation modeling is the study of causal relationship
between variables. For example, you have an X and an Y variable. X is the cause of Y, or
doing X results in Y. To give a more realistic example: eating more vegetables (X) brings
down your cholesterol level (Y). However, this causal structure is only an idealized
framework. In making causal inferences, you must have isolated all other background
variables and establish temporal sequence of the variables. Because of the complicated
philosophical issues involved in making causal inferences, in general SEM would avoid
claiming causal inferences.

A predictor-outcome framework might be more appropriate philosophically. The
semantic is now “ X predicts Y”. Mathematically and statistically, this idea is represented
in the simple linear regression analysis, as shown in the linear regression equation:

Y=b*X+e.

The path diagram for this representation is shown in the slide, where b is called the
effect , regression coefficient, or path coefficient. Notice that an error term is added to
show that the prediction of Y from X is not perfect. But essentially, the predictor-
outcome framework is represented by the Y&X path in the path diagram.



Structural Equation Modeling versus
Regression Analysis
= More variables vl a [x Group 1
= More equations ;
= Correlated errors z b w
= Direct and indirect effects |
= Latentvariables
= Parametric constraints S lb [ Group 2
= Multiple-group analysis
R

What are the differences between SEM and regression analysis? What more can SEM
offer than the linear regression analysis?

You can view SEM as a much more complicated system for multiple predictor-outcome
relationships. SEM can handle the following situations where linear regression analysis
is of limited usefulness:

1.More variables (not just X and Y, but you can also add W and Z into the path diagram).
2.More equations or functional relationships (not just X=>Y, but you can also analyze
W=>Z simultaneously).

3.Correlated errors, system of equations can have correlated errors . For example, the
double-headed arrow between Y and Z.

4.Direct and indirect effects: X has a direct effect on Z and an indirect effect on Z via its
effect on W. That is, X>Z and X>W->Z are direct and indirect effects, respectively.
5.Latent variables. For example, LV in the path diagram has effects on X and W.
6.Parametric constraints. For example, the constraints on the path coefficients or
effects labeled as ‘a’ in the upper path diagrams.

7.Multiple-group analysis. For different groups of populations, the overall structure of
the model are the same, but the path constraints could be different---while the
constrained effect in Group 1 is denoted as ‘a,’ the constrained effect in Group 2 is
denoted as ‘b,” which will have a different estimate than that for ‘a’ in Group 1.



_ Other Names for Structural Equation Modeling (SEM)

= Path analysis

= LISREL model (J6reskog 1973, Keesling 1972, Wiley
1973)

= Covariance structures analysis
= Analysis of moment structures
= Confirmatory factor analysis

= Causal modeling

= CALIS: Covariance Analysis of Linear Structural
Equations

SEM has a lot of synonyms in the field: Path analysis (attributed to Sewall Wright),
LISREL model (JKW model), covariance structures analysis, analysis of moment
structures, confirmatory factor analysis, causal modeling, and etc. In terms of the
statistical methodology involved, all these names are more or less the same.

PROC CALIS, which stands for covariance analysis of linear structural equations, is a
software that was designed to handle all these analyses under the umbrella term SEM.
Hopefully, one day PROC CALIS would also be remembered as a synonym of SEM.



_ SEM Software

= AMOS, EQS, LISREL, MPLUS, ...
= Why PROC CALIS?
= Which is best?

There are several well-known software in the field for doing SEM: AMOS, EQS, LISREL,
and MPLUS, and may be more. Why PROC CALIS? Which is best? Although these are
very interesting questions, as the current developer of PROC CALIS procedure | am not
at liberty to judge other SEM software. This workshop gives you an introductory tour of
SEM with the use of PROC CALIS. Therefore, you might compare PROC CALIS with other
software on your own after learning some of the features of PROC CALIS.



A Very Brief History of PROC CALIS

= Qriginal developer: Wolfgang Hartmann (80’s)

» |Influences
o Statistical/mathematical: COSAN (McDonald 1978, 1980)
0 Syntax: EQS (Bentler 1985, 1995)

= TCALIS (SAS 9.2, 2008): experimental version

= “New” CALIS (SAS 9.22, 2010): PATH modeling
language, multiple-group analysis, mean structures,
name-free approach to parameter specifications, and
much more

Let us start with a brief history of PROC CALIS.

In eighties, Wolfgang Hartmann designed and developed the first version of PROC CALIS.
The statistical and mathematical model was greatly influenced by the COSAN model
proposed by R. P. McDonald. In fact, there was evidence that Cosan, instead of Calis,
might have been proposed as the name of the procedure. The most popular syntax in
PROC CALIS, however, was under the influence of the EQS program by Peter Bentler.
The LINEQS syntax in PROC CALIS for model specification is basically a twin brother of
the syntax of the EQS program.

| picked up the development of the software around 2000. | actually rewrote the
mathematical foundations of the software. | kept the optimization techniques and initial
estimation techniques so that the new CALIS is compatible with the old CALIS.

In 2008, an experimental version called TCALIS was released. Since then, | have modified
the syntax a little more and fixed some major bugs.

The new CALIS (SAS 9.22) has been released this year. If you have used PROC CALIS
before, you will notice one major change: the emphasis on the PATH modeling language.
You can see examples using the PATH statement everywhere in the PROC CALIS
documentation. Other noteworthy new features are: multiple-group modeling,
redesigned mean structure analysis, and the name-free approach to parameter
specifications. Certainly, there are many more new features than these, as you will learn
from this workshop and elsewhere.



Structure of the Workshop

= First Part: Basic Modeling
1. A brief description of the process of SEM
2. The PATH modeling language in PROC CALIS
3. Specifying models and interpreting results
4. LISMOD - alanguage tailored to LISREL users

= Second Part: “Advanced” Modeling
Multiple-group analysis

Analyzing direct and indirect effects
Testing specific hypotheses

Model modifications

P wbdpE

The first part of the workshop is about the basic SEM modeling using PROC CALIS. | will
describe the research process of SEM briefly. Then | will introduce the PATH modeling
language in PROC CALIS by using a simple linear regression example. Next, | will move
on to more complicated examples that analyze confirmatory-factor models. | will use
PROC CALIS in these examples to show how you can specify SEM models by the PATH
modeling language, in relation to the path diagram representations. | will show you how
to interpret the results generated by PROC CALIS. | will end the first part by showing you
how a LISREL model can be specified by the LISMOD statement in PROC CALIS.

The second part of the workshop is about “advanced” modeling---relatively speaking. |
will show how multiple-group analysis can be done in PROC CALIS. Other important
topics such as direct and indirect effect analysis, testing specific hypotheses, and model
modifications are discussed.



_ Emphases of the Workshop

» |ntroducing the structural equation methodology
and applications through examples — What is SEM?

= Analyzing structural equation models with PROC
CALIS — How to do SEM?

| & & |
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There are two emphases of this talk.

One, | want to show you an overall picture of SEM. This addresses the “what is SEM?”
question. | will not give you a technical definition, but | will show you SEM examples so
that you will have a “real” feeling about the applications of SEM.

Two, | want to show you how to use PROC CALIS. This addresses the “How to do SEM?”
question. | hope that in the end of the workshop, you will find that PROC CALIS is very
useful for SEM.



[llustrating the Process of

Structural Equation Modeling
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A Structural Equation Model of Web-Surfing
Behavior (Novak, Hoffman, & Yung 2000)

Start Use

Positive
Affect

Future Use

Exploratory
Behavior

42
13| L]

1
.33
Importance Challenge
HiNNN 24 Q
Stimulation
Level

This is a structural equation model about web-surfing behavior. The researchers
hypothesize that the “Playfulness” of a web-site would enhance the future use (“Future
Use”) of the same web-site. However, the theory does not end there. The researchers
then hypothesize what would make a web-site to be perceived as playful. Three
additional constructs are hypothesized in the path diagram: “Control” (of the web-page),
“Arousal” (of interest), and “Focused Attention” are determinants of “Playfulness.” In
fact, the researchers hypothesized even further. For example, they use “Start Use”
(when the users started to use computers) and “Time Use” (how often they use
computers) as remote “causes” of a lot of latent constructs in the path diagram. In sum,
this is a relatively large SEM that theorizes complicated relationships among constructs.

Time Use

In this path diagram, the oval shapes represent latent variables, which are not measured
but serve as useful constructs in the model (e.g., “Playfulness”). The rectangles represent
measured or observed variables (e.g., “Start Use”, “Time Use”, “Future Use”). In order to
analyze the latent constructs, some measured variables (or indicators) are needed. In the
path diagram, those small unlabeled rectangles are measured indicators for the latent
constructs. In this research, these measured indicators are rating responses on a
guestionnaire. For example, “I lost track of the time when using this web-site” (this is
not an exact item from the actual research) could be an item for the “Time Distortion”
construct.

Given this path diagram for the theory about web-surfing behavior, an SEM software fits
the model based on the observed data and informs you the model fit and the estimates
of the effects (path coefficients) in the path diagram. The SEM software also tells you the
significance of these estimates. If the model does not fit the data well, the SEM software
would suggest ways to improve the model.

11



_ Key Features of SEM

= Analyzing complicated relationships among variables
= Path diagram representations for models

= Ability to handle latent and observed variables
simultaneously

= Testing the model fit and significance of the parameters

= Suggesting ways to improve the model

Here is a list of the key features of SEM:

eAnalyzing complicated relationships among variables

ePath diagram representations for models

eAbility to handle latent and observed variables simultaneously
eTesting the model fit and significance of the parameters

eSuggesting ways to improve the model

i
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Basics: A Simple Regression
Model and the PATH
Modeling Language
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_ A Simple Linear Regression Model

y=bx+ey

y: outcome variable

X: predictor variable

= ey: error term

b: effect or regression coefficient

Assumption: Variables are centered.

To introduce the PATH modeling language in PROC CALIS, a simple linear regression
model is used. In the regression equation, y is the outcome variable, x is the predictor
variable, e_y is the error term and b is the effect or regression coefficient. The
regression model written in this form assumes that x and y are centered with means
zero. But this assumption will not affect the generality to un-centered variables.

14



_ Measures of the Number of Hen Pheasants

Fuller (1987) p.34

y : average of the number of birds in August
= X :average of the number of birds in Spring (April/May)

Averages were based on the number of birds sighted by
15 trained observers

Goal: How many birds will survive 3 months?

On p.34 of Fuller’s book “Measurement Error Models”, he describes a data set about
the counting of hen pheasants in April and August. Fifteen trained observers counted
the number of birds in the two occasions. Y is the number of birds in August and X is the
number of birds in April. The goal of the linear regression is to predict the number of
birds in August (Fall) by the number of birds in April (Spring).

15



_ Regression Analysis by PROC REG

data hens;

input y x @@;

datalines;
8 9 6 6.6 9.8 12.3 10.8 11.9 9.7 11.9 9.3 12
9.2 9.6 6.9 7.5 8.1 10.9 8.7 10.4 8.7 10.2 7.4 7.4
10.1 11 10 11.8 7.3 8.2

proc reg data=hens;
model y = x;

run;

To conduct a linear regression analysis, you can use a SAS procedure called PROC REG.
The syntax is quite simple. First, define your data set. Second, call PROC REG with the
interested data set specified in the PROC REG statement. Then, the model statement
specifies that y = x, which means y is predicted by x. No error term needs to be specified,
although PROC REG does assume that prediction is not perfect so that the error does
exist with nonzero variance in the regression.



_ Results Obtained from PROC REG

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value
Intercept 1 2.14227 0.84513 2.53
X 1 9-64941 0.08275 7.85
[b [

Given a base survival of 2.14 birds, every additional bird in Spring predicts a
0.65 bird surviving in August.

This table shows the essential results from PROC REG. The output shows an estimate of
0.65 for the regression coefficient b. The intercept estimate is 2.14. PROC REG also
shows the standard error estimates and the t values for judging statistical significance.
Both estimates are statistically significant.

An interpretation about these regression estimates is this: “Given a base survival of 2.14
birds, every additional bird in Spring predicts a 0.65 bird surviving in August (Fall).”

17



_ Regression Equation, Path Diagram, and the PATH

Modeling Language
y = b X + ey
| Outcome | | Parameter | | Predictor |
b
y * X

PATH y <-—— X = b;

Path | Path Relation | | Parameter (optional) |
Statement

As shown previously, you can represent the linear regression model by the path diagram,
which is also a representation scheme for SEM. Hence, regression models could be
specified as SEM by using the path diagram.

Here is what you do to specify a simple linear regression model in PROC CALIS. You use
the PATH statement to specify the path in the regression model. In this case, it is just Y<-
--X in the PATH statement. Optionally, you can denote the corresponding path
coefficient parameter. For example, you can put “= b” at the back of the path to denote
the parameter label or name.

18



_ Regression Model Specified by PROC CALIS

proc calis data=hens;
path
y <=-= X3

run;

9sas | B,

This is the entire PROC CALIS syntax for the simple linear regression model. Isn’t that
easy and simple?




_ Results from PROC CALIS for the Pheasant Data

PATH List
Standard
———————— Path-------- Parameter Estimate Error t Value
y <——= X _Parmi 0.64941 0.07974 8.14445
The same estimate
of b by PROCREG |
variance Parameters
! Default variance
Variance | parameters Standard
Type Variable Parameter,,/' Estimate Error t Value
&
Exogenous X _Add1 3.62124 1.36870 2.64575
Error y _Add2 0.32233 0.12183 2.64575

This slide shows the results from PROC CALIS.

The estimated effect of x on y, denoted as y <--- x in the output, is 0.65, which is the
same as that in the PROC REG results. Because you did not name this regression
coefficient parameter (but you specify the path nonetheless), PROC CALIS generates a
unique parameter name called _Parm1 for it. The standard error estimate and the t
value are a little bit different from that of the PROC REG results. This is because
different degrees of freedom for computing the standard errors are used in the two
approaches.

In PROC CALIS, it also includes results for two more parameters in the SEM. The variance
of x and the error variance of y are treated as model parameters. Their estimates are
also shown in the PROC CALIS results. Note that PROC CALIS creates default parameter
names for these default variances even though you did not specify them. In this
example, these variance parameters are named “_Add1” and “_Add2”, respectively.

20



Specification with Parameter Names

,z‘— ''''''''''''''''''''''''''''''''''' ~
_ ' Without an explicit error term | }
proc calis data=hens; ! !
1 1
ath i ” b k 1
P I errv_y y - . var_x |
y <-—-— X = b; i N l i
1 1
pvar . A
X = var_x,
J/—{ Equivalent representations
Yy = errv._.y;
run 4 N
- e ’
’ \‘ e .' b “ ‘:
L = 1 <
Use the PVAR statement to specify i y = le var_x 1
variance or error variance parameters. H H
You can also define parameters | H
explicitly in PROC CALIS. ! i
: - :
Ierrv_y Q i
I > 1
1 1
! /

_________________________________________

)
- GSsas .

You could name all the parameters in PROC CALIS by putting your preferred names.

In the path diagram at the top right corner, the parameters are shown in red. In the
regression model, b is the regression coefficient, var_x is the variance for the predictor
variable x, and errv_y is the error variance of y. This path diagram representation is
equivalent to the one shown at the bottom right corner, where an explicit error term is
attached to Y. The error term is represented by an oval shape because it is treated as a
latent variable. This representation has the same set of parameters, only that errv_y is
now attached to the error variable directly.

You can specify these parameters explicitly in PROC CALIS. In the left panel of the slide,
the parameter b is specified after the y <--- x path, separated by an equal sign. To
specify the variances or error variances in the model, you can use the PVAR statement.
For example, “x = var_x"” means that the variance of x is a parameter called “var_x".

Notice that naming parameters is entirely optional. For this example, naming
parameters appears to serve only as an illustration. Later in this talk, you will find
situations where the use of parameter names is not only useful, but also necessary.

21



_ Hen Pheasants Results with Parameter

PATH List
Standard
———————— Path-------- Parameter Estimate Error t Value
y <——- X b ... 0.64941 0.07974 8.14445
{_Parameter name specified |
Variance Parameters

Variance Standard
Type Variable Parameter Estimate Error t Value
Exogenous X var_x 3.62124 1.36870 2.64575
Error y errv_y e 0.32233 0.12183 2.64575

Parameter names specified |

§»Sas TO KNOW,

As shown in this slide, the numerical results from PROC CALIS with explicit parameter
names specified are the same as those without using parameter names. The only

difference is that now you can use these parameter names to locate the corresponding
results directly.



_ Keys to the PATH Modeling Language

= As easy as drawing a path diagram

= PATH statement specifies the functional relationships —
required specification

= PROC CALIS sets variances and error variances by
default — optional specification (most of the time)

= Naming free parameters is optional

S sas e

So far, | have shown you that:

1.The PATH modeling language is as easy as drawing a path diagram.

2.You can use the PATH statement to specify the paths in path diagram, with or without
specify the parameter names for the path coefficients.

3.You can also specify the variance or error variance parameters explicitly. In most
practical applications, variances and error variances have already been set by default
and you do not need to worry about specifying them. The essential part of SEM is
specified in the PATH statement.

4.Naming parameters is optional in PROC CALIS.

23



_ Measurement Errors in Predictors

Bird counting might involve measurement errors in x

= X =fx +ex

fx : true score, but not observed

X : observed, but with measurement error ex

- Gsas B

sees

Let us make a little step forward to show a special SEM feature that linear regression
cannot handle easily.

In the bird counting example, we did not take into account that bird counting could
involve measurement errors. In the current context, the measurement error in bird
counting could be due to the environment factors in the forest: obstruction from the
tree branches, “biased” angles from the bird observers, and etc.

Mathematically, you can hypothesize a variable called fx to represent the “true” counts
obtained from the bird observed. The observed number of birds x is the sum of fx, the

true score, and ex, an error term.

What you got from the data is x, the observed fallible score. However, ideally, you
would want to use fx, the true score in your regression analysis.

24



A Measurement Error Model for the Pheasant Data

= Structural Equation
y=Dbfx+ey

= Measurement equation
X = fx + ex

= Can you estimate b?

= Problem: The measurement equation introduces an
additional parameter: Var(ex) (variance of ex or error
variance of x)

The preceding idea is formalized as the following SEM with a latent variable fx.

In the so-called structural model, y is predicted from fx, the true score, in the linear
regression model. This so-called structural equation takes the role of the original linear
regression equation---only now you are supposed to have a better model by using the
measurement error-free fx as the predictor.

In the so-called measurement model, you hypothesize that the observed variable x is
obtained as the sum of fx and an measurement error term e_x.

Can you estimate b with the latent variable fx in the structural equation?
This answer is yes.

But the technical problem encountered here is that the measurement equation
introduces one additional parameters in var(ex)---error variance of x. This problem will
make the SEM unidentified. In a very loose sense, this means that your model estimates
more parameters than would be allowed by the given information of the data set.
Consequently, the parameters in the model are not estimable. | will describe a method
to deal with this identification problem later.

25



_ Path Diagram Representations

Linear Regression Model ‘ ’ Measurement Error Model ‘
,/’ ----------------------------------- \\\ ,/’ ------------------------------------- \\\
] 1 ] 1
i P i
| b P b 1 |
i y X P X i
: Pl Y :

1
i A 4 A 4 : i A A A A A A i
! i i ) ) ) H
)
i errv_y var_x | i errv_y var_x erv.x i
\\\ / \\\ 'I'

e e e e e e e e e e e g e e

................

One more !
parameter |

This slide compares the linear regression model with the measurement error model by
the use of path diagram. It demonstrates why the measurement error model has one
more parameter to estimate.

In the left panel, the path diagram for the simple linear regression analysis is shown.

In the right panel for the measurement error model, we still have x and y as the
observed variables. But now we have a latent variable fx that takes the role of the
predictor of y. Var_x in this model now represents the true variance of the predictor fx.
The new parameter in the measurement error model is errv_x (error variance of x). With
this additional parameter, we need to make additional assumption to estimate the
model parameters.

26



_ Constraining the Error Variances

= Bird counting is more accurate in fall (y) than in spring (x)

* |n an independent study, error variance (for x) in spring is
six times as much as that (for y) in fall

= Fuller's recommendation: Var(ex) = 6 Var(ey)

errv_x==0o0*errv_y

Fortunately, we have a reasonable assumption about the relative size of the error
variances in the model.

This assumption is based on the fact that bird counting in Fall is more accurate than that
in spring. The reason is that the fallen leaves in Fall makes the counting of birds less
obstructive.

The assumption we are going to make is based on an independent study about the
relative error variances in x and in y. In Fuller’s book, the ratio of these variances is
about 6. Mathematically, Var(ex) = 6*Var(ey). That is, error variance for x is six times as
much as the error variance of y. Or, in the PROC CALIS specification, you want to state
the following parametric constraint in the modeling: errv_x=6*errv_y.

27



_ A Measurement Error Model with a Constraint
for the Pheasant Data

proc calis data=hens;

o e

path g ~

/! 5
\
y <--- fx = i !
! 1
X -——> x =1 i i
: b 1 ;
pvar E y X :
1 1
y = errv.y, N b4 x4 E
1
fx = var_x, ! . : 1 i
1oerv_y var_x errv_x i
X = errv_x; i - - - !
errv_x = 6 * errv_y; i E
- -’ \ ’ errv_x==6*errv_y ‘ ;

run; T

_________________________________________________

The required constraint is specified
as a SAS programming statement.

It turns out that it is pretty straightforward to specify this parametric constraint in PROC
CALIS. You just simply add one more line of code to represent this relationship, as
shown in the SAS code of the slide. In the SAS literature, this line of code is called a SAS
programming statement, which is used extensively in the DATA step of SAS. You can use
as many SAS programming statements as you want to describe the relationships of the
parameters in the model.



_ Measurement Error Model Results for the Pheasant Data

PATH List
Standard
———————— Path---——--- Parameter Estimate Error t Value
y <——- x b 0.75158. 0.09228 8.14427
x —> X 1.00000 NOTT

A larger estimated effect than the one
estimated without taking the
measurement error into account (0.649)

Variance Parameters

Variance Standard

Type Variable Parameter Estimate Error t Value
Error y errv_y 0.08205 0.03101 2.64575
Exogenous x var_x 3.12893 1.36180 2.29765

Error X errv_x .. -~ 0.49231 0.18608 2.64575

L Gsas e

After you take the measurement error into account, the regression coefficient b is now
0.75, which is a larger effect than 0.649, which you obtained from the linear regression
model without taking the measurement error in x into account. Therefore, the previous
regression analysis underestimated this effect because it failed to incorporate the
measurement error into the model. However, with SEM, you can easily incorporate the
measurement errors into the analysis.

Estimates of the variances and error variances are shown in the next table. You can see
that the constraint specified in the PROC CALIS is honored in the estimation. The error

variance estimate of x is 0.49, which is six times as much as the error variance estimate
of y, which is 0.08.



_ Some Features of the PATH Modeling Language

= Specifying paths in the PATH statement is straightforward

= Deals with latent variables easily — variables are latent if
they are not present in the data set

= PVAR statement for specifying variances and error
variances

= PCOQV statement for specifying covariances and error
covariances (to be shown)

= Parameter dependency can be specified by the SAS
programming statements. For example,

parml = 4 * parm2 + exp(parmd4) ** parmé6;

This slide summarizes some features of the PATH modeling language.

1.It is as straightforward as drawing the paths.

2.1t can deal with latent variables easily.

3.You can use the PVAR statement to specify variances or error variances (double-
headed arrows attached to individual variables in the path diagram).

4.You can use the PCOV statement to specify covariances or error covariances (double-
headed arrows attached to pairs of variables in the path diagram).

5.You can specify parameter dependency by using the SAS programming statements
directly. Indeed, even very strange and complicated (continuous) parametric functions
are supported in PROC CALIS.

30



A Confirmatory Factor Model

GSsas | B,

We now move on to a more complicated type of structural equation models called
confirmatory factor models.
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Political Democracy Data

= Bollen (1989) Chapter 7

= Two latent factors: political democracy in 75 developing
countries in 1960 and 1965

= Four indicator measures for the latent factors in each year:

Freedom of press (Press60, Press65)

Freedom of group oppositions (Freop60, Freop65)
Fairness of elections (Fair60, Fair65)

Elective nature of the legislative body (Legis60, Legis65)

= Purpose of the confirmatory factor analysis: Validate the
measurement indicators

)
- GSsas .

This example is based on an example in Chapter 7 of Bollen’s classic textbook: Structural

Equation Modeling.

In this example, two latent factors for measuring political democracy in 75 developing

countries in 1960 and 1965 were hypothesized.

These two latent factors are not observed, but they have some related observed

variables that serve as indicators. In each year, you measure four variables to gauge the

political democracy: freedom of press, freedom of group oppositions, fairness of
elections, and elective nature of the legislative body.

The purpose of the confirmatory factor analysis is to validate these measurement
indicators statistically.
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A Confirmatory Factor Model for the Political
Democracy Data (Implicit Error Representation)

Press60

Freop60

Fair60

Legis60

Press65

Freop65

Fair65

1 Legis65

This path diagram shows the hypothesized confirmatory factor model.

VAV AVAVERV VAUV

In the path diagram, two latent factors are represented by two ovals. Dem60 is the
political democracy in 1960 and Dem65 is the political democracy in 1965. They are
linked to the respective measured variables, as shown in the path diagram. These single-
headed paths represent the typical factor-observed variable relationships.

The double-headed arrow that connects Dem60 and Dem®65 represents the covariance
parameter between the two factors. It means that the two factors are correlated.
Double-headed arrows that are attached to Dem60 and Dem65 individually represent
the variance parameters of the two factors. In the model, you fix these variances to 1 so
that the scales of the factors are identified. This is conventionally done because the
scale of latent factors is arbitrary (you do not measure latent variables directly so that
they could be defined on any unit of measurement).

The double-headed arrows that are attached to the observed variables represent the
error variances. They signify the fact that the factors in the model do not account for
100% of the variances of the observed variables. The error variances are the unique
part of the variances in the variables that are not due to their relationships with the
factors in the model.
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A Confirmatory Factor Model for the Political
Democracy Data (with Error Terms)

1. Press60 <«—— el :)

1.
Freop60 <«—— €2 :)

Dem60
Fair60 <~ e3 :>

Legis60 <« e4:>

1.
Press65 <«—— €5 :)

1.
Freop65 <«—— e6 :)

Fair65 <«—— e7 :)

' 1. Legis65 L e8 :>

This is an alternative path diagram representation with the use of explicit error terms.
Notice that the double-headed arrows for the observed variables now shift to the error
terms. This path diagram representation is shown here only for illustration purposes. In
this workshop, I rely on the path diagram representation that does not use explicit error
terms.



Basic Confirmatory Factor Model for the Political
Democracy Data
proc calis data=polidem; Press60 :>
path
Dem60 ---> Press60, Freop60 ::>
Dem60 ---> Freop60,
Dem60 ---> Fair60, .
Dem60 ---> Legis60, Fair60 ::>
Dem65 ---> Press65,
Dem65 ---> Freop65, Legis60 ::)
Dem65 ---> Fair65,
Dem65 ---> Legis65;
pvar Press65 :)
Dem60 = 1, Dem65 = 1,
Press60 Freop60 Fair60
Legis60 Press65 Freop60 e ::>
Fair65 Legis65;
pcov Fair65 :>
Dem60 Dem65;
run; Legis65 ::)

Specifying the CFA model is not much harder than the previous measurement error
model. Basically, you only need to specify more paths for the CFA model.

In the PATH statement, you specify all the single-headed paths (arrows) in the path
diagram.

In the PVAR statement, you specify all double-headed arrows that are attached to
individual variables. PVAR actually stands for partial variance---you can specify the
variances and error variances in this statement. “Dem60 =1"” means that the variance of
Dem60 is fixed to one. Similarly for “Dem65=1". The eight observed variable are
specified in the PVAR statement to signify that their error variances are free parameters
in the model.

In the PCOV statement, you specify pairs of variables that have covariances or error
covariances as parameters in the model. In the current path diagram, Dem60 and
Dem65 are correlated.
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Error Variances, Variances, and Exogenous
Covariances Are Free Parameters by Default

Specifying All Variance and Using Default Variance and Covariance
Covariance Parameters Parameters
proc calis data=polidem; proc calis data=polidem;
path path
Dem60 ---> Press60, Dem60 ---> Press60,
Dem60 ---> Freop60, Dem60 ---> Freop60,
Dem60 ---> Fair60, Dem60 ---> Fair60,
Dem60 ---> Legis60, Dem60 ---> Legis60,
Dem65 ---> Press65, Dem65 ---> Press65,
Dem65 ---> Freop65, Dem65 ---> Freop65,
Dem65 ---> Fair65, Dem65 ---> Fair65,
Dem65 ---> Legis65; Dem65 ---> Legis65;
pvar pvar
___Dem60 =1, Dem65 =1, Dem60 = 1, Dem65 = 1;
/" Press60 Freop60 Fair60 run;
f Legis60 Press65 Freop65
| Fair65 Legis65; f
fpcov 1
\  Dem60 Dem65; ;
run; T ST ’

| These could have been set

automatically by default.

2010, SAS Institute Inc. All rights reserved.

To make model specification more efficient and error-free, PROC CALIS employs default
free parameters in the model. These default free parameters are set because they are
commonly employed in practice.

For example, because predictions of outcome variables are usually not perfect, the error
variances are free parameters by default. This means that all the PVAR specifications for
the observed variables are not necessary because PROC CALIS would have treated them
as free parameters by default.

Similarly, the variances of Dem60 and Dem®65 and their covariance are default free
parameters because they are assumed in most practical applications. In the current
example, this means that the PCOV statement specification for the covariance between
Dem60 and Dem65 is not necessary.

However, because the variances of Dem60 and Dem65 are fixed to 1 (for identification

of the latent variable scales), they must be specified explicitly in the PVAR statement.
Otherwise, these variances would have been free parameters by default.
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_ Estimates of Path Coefficients (Loadings) for the

Political Democracy Data

Dem60
Dem60
Dem60
Dem60
Dem65
Dem65
Dem65
Dem65

—>

—>

——>

—>

—>

——>

—>

—>

Press60
Freop60
Faire0

Legis60
Press65
Freop65
Fairé5

Legis65

PATH List
Parameter Estimate
_Parmi 2.20567
_Parm2 3.00132
_Parm3 2.31033
_Parm4 2.89483
_Parm5 2.04790
_Parmé 2.68003
_Parm7 2.70879
_Parm8 2.76604

Standard

O O O O O O o o

Error

.25122
.39735
.34026
.31582
.25930
.33258
.31804
.30830

W 0 0 N © O N

Value

. 77998
.55335
. 78989
.16619
.89771
.05834
.51711
.97190

This table shows the estimates of path coefficients from PROC CALIS.

All path estimates are significant (t > 1.96). ‘

In the factor analysis literature, these path coefficients are also called loadings. To

validate the relationships between the democracy factors and the observed variables,
the t-values must be examined for statistical significance. Using normal approximation,
t values with their absolute values bigger than 1.96 are significantly different from zero.

In a typical factor-analysis study, you would want all these t-values to be significant in
order to claim nonzero factor-variable relationships . An insignificant t-value means that
the corresponding variable is not an indicator for the purported factor. Insignificant t-

values for path coefficients would challenge the validity of your factor model.
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Estimates of Variances for the Political
Democracy Data
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Exogenous Dem60 1.00000
Dem65 1.00000
Error Press60 _Add1 2.01359 0.41048 4.90549
Freop60 _Add2 6.57189 1.20964 5.43294
Faire0 _Add3 5.42661 0.96546 5.62076
Legis60 _Add4 2.83887 0.61417 4.62229
Press65 _Add5 2.63180 0.49311 5.33709
Freop65 _Add6 4.19276 0.79422 5.27906
Faireés _Add7 3.46180 0.68155 5.07928
Legis65 _Add8 2.88292 0.59927 4.81068
’ All error variance estimates are significant (t > 1.96). ‘
| & & |
Pt 9sas | K.

Estimates of variances and error variances are shown in this table. The variances of
Dem60 and Dem65 are fixed to 1 and therefore there are no significance tests for these
variances. All other error variance estimates are significantly larger than zeros. This also
means that the factors do not account for all the variances of the observed variables.
This is natural because deterministic relationships between factors and observed
variables are rare.



_ Estimate of Covariance for the Political
Democracy Data

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value
Dem65 Dem60 _Add9 0.97528 0.02656 36.72321

High and significant correlation between the Democracy factors in 1960 and 1965.

3— . = §.Sas. TO KNOW,

This table shows the covariance between Dem60 and Dem65. This estimate is also the
estimated correlation between the two latent factors because the variances of the
factors are fixed to one. This correlation is extremely high, possibly because the political
democracy status do not change much during those 5 years.



_ How Is the Model Fit?
Fit Summary

Modeling Info N Observations 75
N Variables 8
N Moments 36
N Parameters 17
N Active Constraints [¢]
Baseline Model Function Value 6.1482
Baseline Model Chi-Square 4549633
Baseline Model Chi-Square DF 28
Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.6009
Chi-Square 44.4686
Chi-Square DF 19
Pr > Chi-Square 0.0008
Z-Test of Wilson & Hilferty 3.1383
Hoelter Critical N 51
Root Mean Square Residual (RMSR) 0.5388
Standardized RMSR (SRMSR) 0.0494
Goodness of Fit Index (GFI) 0.8658

Parsimony Index Adjusted GFI (AGFI) 0.7457
Parsimonious GFI 0.5875
RMSEA Estimate 0.1346 e,
RMSEA Lower 90% Confidence Limit 0.0833 ‘\Z:: __________
RMSEA Upper 90% Confidence Limit 0.1865 S T
Probability of Close Fit 0-0062 A lot of fit indices, but researchers
ECVI Estimate 1.1240 .
ECVI Lower 90% Confidence Limit 0.9065 usually report just a few of them.
ECVI Upper 90% Confidence Limit 1.4608
Akaike Information Criterion 78.4686
Bozdogan CAIC 134.8659
Schwarz Bayesian Criterion 117.8659
McDonald Centrality 0.8438

Incremental Index Bentler Comparative Fit Index 0.9403
Bentler-Bonett NFI 0.9023
Bentler-Bonett Non-normed Index 0.9121
Bollen Normed Index Rhol 0.8560
Bollen Non-normed Index Delta2 0.9416
James et al. Parsimonious NFI 0.6122

We have looked at the estimates and concluded that the relationships between the
factors and the variables are strong and significant. Those results validated the
individual factor-variable relationships.

To gain support for the overall confirmatory factor model, you would want to examine
the model fit statistics. This table shows various fit indices computed by PROC CALIS. In
the SEM field, a large number of fit indices have been proposed. There is no consensus
as to which indices are best to report in the research. But researchers tend to report
some of the most popular ones in their respective fields.

Because a large number of indices might be confusing, PROC CALIS provides a way to
customize this fit summary table.
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_ Using the FITINDEX Statement to Customize the

Fit Summary Output
proc calis data=polidem;
path
Dem60 ---> Press60,
Dem60 ---> Freop60,
Dem60 ---> Fair60,
Dem60 ---> Legis60,
Dem65 ---> Press65,
Dem65 ---> Freop65,
Dem65 ---> Fair65, ON(ONLY)= selects the set of fit
Dem65 ---> Legis65; indices to display.
NOINDEXTYPE suppresses the
pvar printing of index types.
Dem60 = 1, Dem65 = 1; P
{ fitindex on(only) = [chisq df probchi rmsea cn srmsr
f bentlercfi agfi] noindextype;
run;

9Ssas | K.

You can use the FITINDEX statement to customize your fit summary table.

Use the ON(ONLY)= option to select your “favorite” fit indices.

Use the NOINDEXTYPE option to suppress the printing of the fit index types.
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Customized Fit Summary Table

Fit Summary

Chi-Square 44 _4686
Chi-Square DF 19
Pr > Chi-Square 0.0008
Hoelter Critical N 51
Standardized RMSR (SRMSR) 0.0494
Adjusted GFI1 (AGFI) 0.7457
RMSEA Estimate 0.1346
Bentler Comparative Fit Index 0.9403

"Good" SRMSR and Bentler's CFI. "Bad" chi-square,
AGFI, RMSEA.

This is the customized fit summary output by using the previous FITINDEX statement
specifications.

This table contains the more popular fit indices reported in research (as recognized by
the author).

In practice, the model fit chi-square model statistic, its df, and the corresponding p-
value are routinely reported even though very few researchers in the field would use
the model fit chi-square alone to judge model fit. As shown in this table, the p-value is
very small so that statistically it means that the hypothesized model should be rejected.
However, it is a known issue in SEM that even very useful SEM models with minimum
departures from the data would be rejected statistically. Therefore, researchers in the
SEM field tend to focus more on other fit indices to judge model fit.

The SRMSR, AGFI, RMSEA, and CFl are four of the most popular fit indices in the SEM
field. See the glossary page for the descriptions of these fit indices. For the SRMSR and
RMSEA, the smaller the values the better the fit. Usually, values under 0.05 indicate
good model fit. Therefore, the SRMSR says that the current model is good, but the
RMSEA says that the current model is bad. For the AGFI and Bentler’s CFl, the larger the
values the better the model fit. Therefore, the AGFI says that the current model is bad,
but the CFl says that it is good. Because these indices do not consistently indicate a
good model fit, it is safe to say that the current CFA model is promising, but it needs
further confirmation.
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A Confirmatory Factor Model
with Loading Constraints
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_ Constraining the Path Coefficients (Loadings)

Press60

Freop60

Fair60

Legis60

Note: Error variances
are not represented
Press65 because they are
default parameters.

Freop65

Fair65

Legis65

- Gsas B

sees

In addition to fitting a basic confirmatory factor model, PROC CALIS enables you to set
up parameter constraints easily. The main tool is to use parameter names in the
specification.

For the political democracy example, the researcher wants to constraint the factor
loadings (path coefficients) across time. The theoretical reason is that basically the
measured variables are the same in the two years. In the path diagram, you can
represent equality constraints by putting the same parameter names or labels to the
pairs of the related paths. For example, lam1 is the loading of Press60 on Dem60. It is
also the loading of Press65 on Dem65. Similarly, you can set the other 3 sets of
constraints in the path diagram.



_ Fitting a CFA Model with Constraints on the Loadings

proc calis data=polidem;

path
Dem60 ---> Press60 | = laml, !,
Dem60 ---> Freop60 = lamz, Theie cons'rr'iif\ the path coefficients. i
Dem60 ---> Fair60 = jam3, e
Dem60 ---> Legis60 = lam4,
Dem65 ---> Press65 = laml,
Dem65 ---> Freop65 = lam2,
Dem65 ---> Fair65 = lam3,
Dem65 ---> Legis65 | = lam4;
pvar T

Dem60 = 1, Dem65 = 1;
fitindex on(only) = [chisq df probchi rmsea cn srmsr
bentlercfi agfi] noindextype;
run;

In the PATH modeling language, the constraints could be handled similarly. The code
shown in this slide is modified from the previous code by adding the parameter names
in the paths. The syntax is to add an equal sign and then the parameter names after the
path specifications in the PATH statement. With the same parameter names for the
pairs of the related paths, the estimates would be exactly the same.
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_ Fit Summary Table for the Political Democracy Data
with Loading Constraints

Fit Summary

Chi-Square 46.8893
Chi-Square DF 23
Pr > Chi-Square 0.0023
Hoelter Critical N 56
Standardized RMSR (SRMSR) 0.0714
Adjusted GF1 (AGFI) 0.7844
RMSEA Estimate 0.1185
Bentler Comparative Fit Index 0.9440

Only Bentler's CFI indicates a good model fit.

This table shows the fit summary of the model with the loading constraints. Because of
the constraints, this model does not fit as well as the previous model. The SRMSR is

larger than 0.05. The AGFI is much smaller than 0.9. The RMSEA is much larger than 0.05.

All these show a bad model fit. However, Bentler’s CFl (0.94) shows a good model fit.
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Estimates of the Constrained Loadings for the
Political Democracy Data

PATH List
Standard
---------- Path---——————- Parameter Estimate Error t Value
Dem60 —-——> Press60 laml 2.13970 0.21716 9.85319
Dem60 —> Freop60 lam2 2.80116 0.29976 9.34473
Dem60 —> Faire0 l1am3 2.54987 0.27316 9.33459
Dem60 —> Legis60 lam4 2.82969 0.27285 10.37075
Dem65 —-——> Press65 laml 2.13970 0.21716 9.85319
Dem65 —> Freop65 l1am2 2.80116 0.29976 9.34473
Dem65 —-——> Fair65 l1am3 2.54987 0.27316 9.33459
Dem65 —-——> Legis65 lam4 2.82969 0.27285 10.37075

All path coefficients are significant.

As required from the model, paths with the same loading parameter have the same
estimates. For example, both Dem60--->Press60 and Dem65--->Press65 have a loading
estimate of 2.14 (lam1). All loading estimates, again, are statistically significant. This
shows that all the purported factor-variable relationships are supported.
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Estimates of Variances and Covariances for the Political
Democracy Data with Loading Constraints

Variance
Type

Exogenous

Error

Varl

Dem65

Variance Parameters

Standard
Variable Parameter Estimate Error
Dem60 1.00000
Dem65 1.00000
Press60 _Add1 2.01017 0.40312
Freop60 _Add2 6.72037 1.21196
Legis60 _Add3 2.88468 0.60956
Press65 _Add4 2.61966 0.49456
Freop65 _Add5 4.16958 0.79818
Legis65 _Addé 2.85029 0.59556
Fair6é0 _Add7 5.40824 0.97833
Fairés _Add8 3.55382 0.67700
Covariances Among Exogenous Variables
Standard
Var2 Parameter Estimate Error
Dem60 _Add9 0.97480 0.02682

t Value

.98647
.54503
.73243
.29699
.22383
.78593
.52803
.24935

oo boab

t Value

36.34662

All the error variance estimates are also significant. The correlation between Dem60 and

Dem60 is very high and significant.
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A Confirmatory Factor Model
with Correlated Errors
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Adding Error Covariances

Press60
Freop60
Fair60
Legis60
Press65
Freop65
Fair65
Legis65

_SAM’ 9Sas F

With the loading constraints, you observed a worse model fit.

The four equality constraints on the loadings you basically reduce the number of model
parameters by 4. This naturally leads to a worse model fit than if you would allow all the
loadings to be freely estimated.

Now you consider an opposite direction. Instead of reducing parameters by putting equality
constraints, you want to add more parameters to the model. Adding more parameters to your
model would improve the model fit. But the drawback of adding more parameters is that it
makes your model more complicated, which is usually judged as an undesirable property for a
scientific theory. It does not mean that you cannot add parameters. It only means that you
should add only those parameters that could be justified by theoretical or substantive reasons.

In this example, it has been argued that freedom of group opposition and the elective nature of
the legislative body have a part of their correlation that is beyond their common latent factors
could explain (see Bollen). In SEM, this “extra” correlation is conceptualized as a correlation (or
covariance) between the errors of the two variables. In the path diagram, this error covariance is
represented by a double-headed arrow connecting the two variables. That is, Freop60 and
Legis60 are connected by a double-headed arrow in 1960. By the same argument, Freop65 and
Legis65 are also connected by a double-headed arrow to represent error covariance.

In addition, it is argued in Bollen that each of the variable pairs that were of the same nature but
were measured at different times have a part of correlation that is beyond their common latent
factors could explain. For example, Press60 and Press65 are connected by a double-headed
arrow to represent their error covariance, which explains the part of the covariance between
the two variables that is beyond the explanation by the covariance between Dem60 and Dem65.
Similarly, the Freop-, Fair-, and Legis- pairs are all connected by double-headed arrows to
represent error covariances.
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Adding Error Covariances (with Error Terms
Displayed)

Press60 <«—— el

Freop60 <« e2

Fair60 [«—— e3

Legis60 «—— e4

Press65 ~<«~—— e5

Freop65 <«—— e6

Fair65 <« e7

Legis65 <«—— e8

S 6sas e

The path diagram in this slide is equivalent to the previous representation that does not
use explicit error variables.

In this path diagram, error terms for the measured variables are shown. The double-
headed arrows are shifted to the error terms. This makes it obvious that those double-
headed arrows are covariances between the error variables (but not as partial
covariances between the observed variables, as shown in the previous slide).

Therefore, this path diagram representation is conceptually clearer about what are
really being correlated in the model. However, the addition of the error terms makes
the path diagram more cluttered. In this workshop, | would stick with the path diagram
representation that does not use explicit error terms.
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_ Fitting a CFA Model with Loading Constraints
and Correlated Errors

proc calis data=polidem;
path

Dem60 ---> Press60 = laml,

Dem60 ---> Freop60 = lam2,

Dem60 ---> Fair60 = lam3,

Dem60 ---> Legis60 = lam4,

Dem65 ---> Press65 = laml,

Dem65 ---> Freop65 = lam2,

Dem65 ---> Fair65 = lam3,

Dem6s ---> Legis65 = lam4; Use the PCOV statement to
pvar specify error covariances.
. Dem60 = 1, Dem65 = 1; e
{ pcov v

Freop60 Legis60, Freop65 Legis6s,
Press60 Press65, Freop60 Freop65,
Fair60 Fair65, Legis60 Legis65;
fitindex on(only) = [chisq df probchi rmsea cn srmsr
bentlercfi agfi] noindextype;

runj;

'TIXY 55&3 W

88 @

With the six additional pairs of correlated errors, you have six more error covariance
parameters in the model.

In the PATH modeling language, you can specify these covariance parameters in the
PCOV statement. In this example, this means that you enumerate the six pairs of
measured variables in the PCOV statement. For example, the first pair is Freop60 and
Legis60, which represent a covariance parameter between their error terms.
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_ Fit Summary Table for the CFA Model with Loading
Constraints and Correlated Errors

Fit Summary

Chi-Square 15.1946
Chi-Square DF 17
Pr > Chi-Square 0.5815
Hoelter Critical N 135
Standardized RMSR (SRMSR) 0.0590
Adjusted GFI (AGFI) 0.9043
RMSEA Estimate 0.0000
Bentler Comparative Fit Index 1.0000

All indices indicate a good model fit.

This model is supposed to fit better because of the added parameters for the error
covariances.

In fact, the model fit chi-square is not statistically significant. This supports the
hypothesized model in the population.

All other fit indices show good or excellent fit. The SRMSR is 0.059, which is only slightly
larger than the 0.05 criterion. The AGFl is 0.90, which is an indication of good model fit
by convention. The RMSEA is essentially zero, which is the smallest RMSEA you could
ever get. The CFl is 1, which is also the largest CFl you could ever get.
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_ Estimates of the Loadings for the CFA Model with
Constrained Loadings and Correlated Errors

PATH List
Standard
---------- Path---——————- Parameter Estimate Error t Value
Dem60 —-——> Press60 laml 2.16450 0.23009 9.40738
Dem60 —> Freop60 lam2 2.61630 0.32500 8.05017
Dem60 —> Faire0 l1am3 2.61693 0.28700 9.11832
Dem60 —> Legis60 lam4 2.75291 0.28312 9.72356
Dem65 —-——> Press65 laml 2.16450 0.23009 9.40738
Dem65 —> Freop65 l1am2 2.61630 0.32500 8.05017
Dem65 —-——> Fair65 l1am3 2.61693 0.28700 9.11832
Dem65 —-——> Legis65 lam4 2.75291 0.28312 9.72356

All path coefficients are significant.

All loading (path coefficients) estimates are statistically significant, supporting the
relationships between the latent factors and the measured variables.
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_ Estimates of the Variances for the CFA Model with

Constrained Loadings and Correlated Errors

All error variance estimates are significant.

Variance Parameters

Variance Standard

Type Variable Parameter Estimate Error t Value

Exogenous Dem60 1.00000
Dem65 1.00000

Error Press60 _Add1 1.91664 0.43982 4.35780
Freop60 _Add2 7.65544 1.39023 5.50661
Legis60 _Add3 3.27028 0.73387 4.45621
Press65 _Add4 2.52969 0.52882 4.78360
Freop65 _Add5 4.87208 0.94384 5.16199
Legis65 _Addé6 3.25392 0.73319 4.43805
Fair6é0 _Add7 5.03798 0.98299 5.12514
Faire5 _Add8 3.32508 0.71220 4.66875
’ All error variance estimates are significant. ‘

D
9Sas | B
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Estimates of the Covariances for the CFA Model with
Constrained Loadings and Correlated Errors

Covariances Among Exogenous Variables
Standard
Varl Var2 Parameter Estimate Error t Value
Dem65 Dem60 _Add9 0.96603 0.02928 32.99044
Covariances Among Errors

Error Error Standard
of of Parameter Estimate Error t Value
Freop60 Legis60 _Parml 1.42826 0.69666 2.05017
Freop65 Legis65 _Parm2 1.26677 0.59365 2.13389
Press60 Press65 _Parm3 0.58548 0.37178 1.57478
Freop60 Freop65 _Parm4 2.09624 0.74763 2.80386
Faire0 Faireé5 _Parmb 0.74805 0.62336 1.20003
Legis60 Legis65 _Parmé 0.47686 0.46214 1.03186

’ Bad news: Some error covariance estimates are not significant. ‘

_SAM’ 9Sas F

The first table shows the correlation between the two latent factors. Again, the
correlation is very high and significant.

The second table shows the estimates for the newly added covariances between errors.
Three of these covariances are significant, while the others are not. For example,
Freop60 and Legis60, Freop65 and Legis65, and Freop60 and Freop65 are three error
covariances that have t values larger than 1.96. The other three pairs have insignificant
t-values. This means that adding these three covariances might be somewhat
undesirable because their estimates are actually not significantly different from zero,
casting doubts about their presence in the model.

The lesson here is that even though adding error correlations (or covariances) might
improve the model fit, you should not routinely add error covariances only to boost the
model fit. Adding unjustified error covariances makes your model more complicated and
harder to interpret, especially when some error variance estimates turn out to be
insignificant.
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Political Democracy and
Industrialization:

A Full Structural Equation Model
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Political Democracy and Industrialization

= Bollen (1989) Chapter 8
= A full structural equation model (a full LISREL model)

= Additional variables for measuring industrialization (Indust)
in 1960

o0  Gross national product per capita (Gnppc60)
o  Energy consumption per capita (Enpc60)
o  Percent of labor force in industrial occupations (IndIf60)

= Purposes: Validate the measurement model and the
structural relationships

We continue with the previous model and add one more latent factor and its indicators
into the model.

This example illustrates a full structural equation model (or a full LISREL) model.
Essentially, this means that our focus is not only on validating the relationships between
the latent factors and the measured variables (that is, the measurement model), but
also on validating the functional relationships among latent variables (that is, the
structural model).

For example, you have a latent factor called industrialization (Induct) that is supposed to
be reflected by three observed variables: gross national product per capita (Gnppc60),
energy consumption per capita (enpc60), and percent of labor force in industrial
occupations (IndIf60). All these variables were measured in 1960.

The industrialization (Induct) latent variable serves as a predictor of the two democracy

factors (Dem60 and Dem65). This kind of functional relationships between latent
variables has not been explored in the confirmatory factor models discussed previously.
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Political Democracy and Industrialization:
The Path Diagram
Press60
Freop60
Fair60
Gnppc60 .
Leqgis60
Enpc60
IndIf60 Press65
Freop65
Fair65
Legis65

The entire SEM model is depicted in the path diagram of the current slide. The most
notable addition is the paths from Indust to Dem60 and Dem65--- industrialization in
1960 serves as a predictor of democracy in both 1960 and 1965. Three observed
variables serve as indicators of the industrialization: Gnppc60, Enpc60, and IndIf60.

There are two main modifications from the preceding confirmatory factor model.

First, instead of allowing Dem60 and Dem65 to freely covary in the CFA, the current
model treats Dem60 as a predictor of Dem65.

Second, a different method for identifying the latent factor scales is used in the current
model. In the preceding CFA model, variances of Dem60 and Dem65 are fixed to one.
But because they become endogenous in the current model, you can no longer use this
type of scale identification method. Instead, one of their observed indicator variables
(that is, Press60 and Press65) now has a fixed path coefficient at one. Similarly, the path
coefficient from Indust to Gnppc60 is fixed to one for scale identification.
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Fitting the Structural Equation Model for the Political
Democracy and Industrialization Data

proc calis data=polidem; Multiple-path specifications
path

/ Dem60 ---> Press60 Freop60 Fair60 Legis60 ) 1. lam2 lam3 lam4,
1 Dem65 ---> Press65 Freop65 Fair65 Legis65 1 1. lam2 1lam3 lam4,
1 Indust ---> Gnppc60 Enpc60 Indif60 ‘ 1.,
k Indust ---> Dem60 Dem65,
‘Dem60  —-—> Dem65:
pcov
Freop60 Legis60, Freop65 Legis65,
Press60 Press65, Freop60 Freop65,
Fair60 Fair65, Legis60 Legis65;
fitindex on(only) = [chisq df probchi rmsea cn srmsr
bentlercfi agfi] noindextype;

run;

You can use PROC CALIS to specify this structural equation model easily.

In the PATH statement, | use a multiple-path specification syntax. In the first
specification, Dem®60 is a predictor of 4 outcome variables: Press60, Freop60, Fair60,
and Legis60. This specifies four paths in a single path specification. After using an equal
sign, | specify four parameters for the four paths. The first one is a fixed constant 1,
which is applied to the Dem60 ---> Press60 path. The second one is a free parameter
lam2, which is applied to the Dem60 ---> Freop60 path, and so on.

In the next 3 path specifications, | also use the multiple-path specification syntax. The
second multiple-path syntax specifies that Dem®65 is a factor with four indicators. The
path coefficients (loadings) are also specified explicitly. The third multiple-path syntax
specifies that Indust is a factor of three observed indicators, with a fixed one for the
effect of Indust on Gnppc60. The path coefficients for the paths Indust--->Enpc60 and
Indust--->IndIf60 are unnamed free parameters (with the empty specifications). The
fourth multiple-path syntax specifies that Indust is a predictor of both Dem60 and
Dem65. The corresponding path coefficients are (unnamed) free parameters in the
model.

The last path in the PATH statement specifies Dem60 as a predictor of Dem65. Notice
that no PVAR statement is used because fixing the Dem60 and Dem®65 variances to one
is not used in the current model. The scales of the latent factors are identified by fixing
some path coefficients to 1.
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Political Democracy and Industrialization:
Fit Summary Table

Fit Summary

Chi-Square 39.6438
Chi-Square DF 38
Pr > Chi-Square 0.3966
Hoelter Critical N 100
Standardized RMSR (SRMSR) 0.0558
Adjusted GF1 (AGFI) 0.8606
RMSEA Estimate 0.0242
Bentler Comparative Fit Index 0.9975

Not a bad fit for the data.

The fit of the structural model is acceptable, if not exceptionally good.

The model fit chi-square is not significant, supporting the hypothesized model. The
SRMSR is close to 0.05. The AGFl is 0.86, which shows a reasonable fit. The RMSEA
indicates a very good model fit, as the value (.0242) is much lower than 0.05. The CFl is
almost 1, which shows a perfect model fit.
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_ Political Democracy and Industrialization:

Estimates of Path Coefficients

Dem60
Dem60
Dem60
Dem60
Dem65
Dem65
Dem65
Dem65
Indust
Indust
Indust
Indust
Indust
Dem60

Press60
Freop60
Faire0
Legis60
Press65
Freop65
Faireés
Legis65
Gnppc60
Enpc60
Ind1T60
Dem60
Dem65
Dem65

PATH List

Parameter Estimate

1.00000
lam2 1.19079
lam3 1.17454
lam4 1.25099

1.00000
lam2 1.19079
l1am3 1.17454
lam4 1.25099

1.00000
_Parm01 2.17966
_Parm02 1.81821
_Parm03 1.47133
_Parmo4 0.60046
_Parm05 0.86504

Standard
Error

.14020
212121
.11757

[eNeoNe]

.14020
212121
.11757

[eNeoNe]

.13932
-15290
-39496
.22722
.07538

[eNeoNeoNeoNe]

Value

.49336
.68988
.64006

.49336
.68988
.64006

.64530
.89126
.72529
.64267
.47648

All path coefficients are significant---a pretty good sign.
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_ Political Democracy and Industrialization:

Estimates of Variances
Variance Parameters

Variance Standard

Type Variable Parameter Estimate Error t Value

Exogenous Indust _Addo1 0.45466 0.08846 5.13991

Error Press60 _Addo2 1.87973 0.44229 4.25001
Freop60 _Addo3 7.68378 1.39404 5.51189
Legis60 _Addo4 3.26801 0.73807 4.42779
Press65 _Addo5 2.34432 0.48851 4.79895
Freop65 _Addo6 5.03534 0.93993 5.35716
Legis65 _Addo7 3.35236 0.71788 4.66983
Gnppc60 _Addo8 0.08249 0.01986 4.15376
Enpc60 _Add0o9 0.12206 0.07105 1.71776
Ind1¥60 _Add10 0.47297 0.09197 5.14268
Fair60 _Add11 5.02270 0.97587 5.14691
Fairée5 _Add12 3.60813 0.72394 4.98402
Dem60 _Add13 3.92767 0.88311 4.44753
Dem65 _Add14 0.16668 0.23158 0.71975

Some error variances are not significant: Enpc60 and Dem65. Enpc60 is an indicator of
the Industrialization in 1960. This insignificant error variance means that the Indust
factor predict Enpc60 perfectly. However, the corresponding t-value is 1.71, which could
be judged as marginally significant.

The error variance for Dem65 is also not significant, as evident by the non-significant t-
value of 0.72. This means that given Indust and Dem60, Dem65 can be predicted almost
perfectly.



_ Political Democracy and Industrialization:
Estimates of Covariances

Covariances Among Errors
Error Error Standard
of of Parameter Estimate Error t Value
Freop60 Legis60 _Parmo6 1.45956 0.70251 2.07764
Freop65 Legis65 _Parmo7 1.39032 0.58859 2.36212
Press60 Press65 _Parm08 0.59042 0.36307 1.62619
Freop60 Freop65 _Parm09 2.21252 0.75242 2.94054
Fair60 Fair6é5 _Parmi10 0.72123 0.62333 1.15706
Legis60 Legis65 _Parmi1l 0.36769 0.45324 0.81125
. 9Sas | B
A ] KHOW,

Again, there are some insignificant error covariances. This result challenges their
presence in the model.
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_ Political Democracy and Industrialization: Squared
Multiple Correlations

Squared Multiple Correlations
Error Total
Variable Variance Variance R-Square
Enpc60 0.12206 2.28211 0.9465
Fair60 5.02270 11.79895 0.5743
Fair6s 3.60813 10.09361 0.6425
Freop60 7.68378 14.64875 0.4755
Freop65 5.03534 11.70144 0.5697
Gnppc60 0.08249 0.53715 0.8464
Ind1¥60 0.47297 1.97602 0.7606
Legis60 3.26801 10.95502 0.7017
Legis65 3.35236 10.70953 0.6870
Press60 1.87973 6.79166 0.7232
Press65 2.34432 7.04548 0.6673
Dem60 3.92767 4.91193 0.2004
Dem65 0.16668 4.70116 0.9645

The square multiple correlations are usually used to measure the percentage of
overlapping variance between the predictors and the outcome variables. In the current
example, R-squares range from 0.2 to extreme high values such as 0.95 and 0.96.

The smallest R-square is the one for predicting Dem60, which is 0.2. This actually is not
that small an R-square value for social science data.

But the R-square (0.96) for Dem65 is extremely high. This means that Dem65 is almost
perfectly predicted from democracy and industrialization in 1960.



A LISREL Model for the Political Democracy and
Industrialization Data

" Structural " Measurement

Press60
Freop60
..... medell
‘ Fair60
Cnppeed ‘\1 Legis60
Enpc60 <«
60 L Press65
Freop65
Fair65
Legis65

.
. ]
. !
! i

This full SEM model is also a good illustration of the LISREL model.

The path diagram for the preceding model remains unchanged here. In order to call this
path diagram a LISREL model, you have to identify the LISREL components in this path
diagram. The two main components in LISREL are the measurement models and the
structural model.

First, the measurement models are identified. A measurement model is about how
observed variables are related to the latent variables or constructs in the model.
Specifically, the measurement model involving industrialization is the measurement
model of x because Indust serves as an exogenous (independent) variable in the path
diagram. The measurement model involving Dem60 and Dem65 is the measurement
model of y because Dem60 and Dem65 are endogenous (dependent) variables in the
path diagram.

Second, the structural model is identified and highlighted in the center of the path
diagram. The structural model describes the functional relationships among the latent
variables (constructs) in the path diagram.

Therefore, all the essential component of the LISREL model is identified in the current
path diagram.
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Fitting the Structural Equation Model for the Political
Democracy and Industrialization Data

proc calis data=polidem;

path

" DemB60 ---> Press60 Freop60 Fair60 Legis60 = 1. fkam2 fam3 lam4,)
Dem65 ---> Press65 Freop65 Fair65 Legis65 = 1. HRam2 l§am3 Ilam4,
Indust ---> Gnppc60 Enpc60 Indif60 = 1., 3
indust ---> Dem60 Dem65, ! e Structural model: Relationships
bl o : L___among latent constructs

}pcov
Freop60 Legis60, Freop65 Legisés,
Press60 Press65, Freop60 Freop65,

Fair60 Fair65, Legis60 Legis65;
fitindex on(only) = [chisq df probchi rmsea cn srmsr e

bentlercfi agfi] noindextype; { Measurement model

run;

In the PATH modeling language, you can also identify the code for the measurement
models and the structural model. The preceding code is recited here for illustrations.

In the PATH statement, the first three multiple-path specifications are concerned with
the measurement of the latent constructs. In addition, all specifications in the PCOV
statement are for the covariances of the measurement errors.

The last two specifications in the PATH statement are for the structural model. They
describe the functional relationships between Indust, Dem60, and Dem65.

After identifying the LISREL components in the path diagram and in the SAS code, you
now have a clue to specify the LISREL model in PROC CALIS. Essentially, it should be
clear that the same path diagram is being used by the PATH modeling language and the
LISREL model. The only task is to transcribe the code in the PATH modeling language to
the language for the LISREL model.
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A LISREL Model Specified by the LISMOD
Modeling Language of PROC CALIS

proc calis data=polidem nose noparmname; -----------~"NOSE"No6 sfandard errors sy
lismod 1 NOPARMNAME: No parameter names in the
xvar = Gnppc60 Enpc60 IndIf60, L

yvar = Press60 Freop60 Fair60 Legis60 Press65 Freop65 Fair65 Legis65,
xi = Indust, 7 Measurement model For
eta = Dem60 Dem65; ey ]
Smatrix \
_lambday_ [ 1, @1] = 1. Flam2 tam3 lan4, E/* Paths from Dem60 and Dem65 to yvar */
[5,02] =1. lam2 lam3 lam4;
matrix
Thetay. [ 4. 2]. [ 8. 61. 1/* pcov statement in the path model */
[5 11.06,21. [ 7 31. [8 41:
"~ matrix 1
_LambdaX_ [ 1, 1] =1., \_ /* Path from Indust to xvar*/
[ 2 to 3, 11; ‘
" matrix
_Gamma_ [ 1 to 2, 1];
matrix
_Beta_ [2,1];

run;

PROC CALIS supports the so-called LISMOD modeling language. In order to fully understand the
PROC CALIS code for the LISREL model, knowledge about matrix algebra is needed. But | will only
describe the code in a conceptual way.

In the LISMOD statement, you first classify your variables into one of the four categories:

1.x-variables: observed indicators for the exogenous (independent) latent factors in the model.
2.y-variables: observed indicators for the endogenous (dependent) latent factors in the model.
3.xi-variables: exogenous (independent) latent factors in the model.

4 eta-variables: endogenous (dependent) latent factors in the model.

The LISREL model or LISREL program had been developed as a matrix-based language.
Parameters in the models are specified as matrix elements in some specific model matrices with
Greek names. PROC CALIS supports the matrix input of these LISREL model matrices. For
example, in the measurement model for y, _LambdaY_ is the matrix that relates the y-variables
to the eta-variables. Instead of specifying the paths as in the PATH statement, the MATRIX
statement for _LambdaY_ serves the same purpose in the LISMOD modeling language. The
MATRIX statement for _ThetaY_ specifies the error variances and covariances of the y-variables,
much like the specifications of the PCOV statement in the PATH modeling language. In other
words, the PATH model specifications are transcribed into the LISMOD model specifications for
the y-variables.

Similarly, the MATRIX statement for LAMBDAX_ specifies the parameters in the measurement
model for the x-variables.

Finally, the structural relationships or the path relationships among the latent factors are
specified in the MATRIX statements for the _GAMMA_and _BETA_ matrices.

To simplify the output, | used two options in PROC CALIS statement. The NOSE option
suppresses the printing of standard errors and the NOPARMNAME option suppresses the
printing of the parameter names.
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LISMOD Output for the Political Democracy and
Industrialization Data (Measurement for y)

_LAMBDAY_ Matrix

Dem60 Dem65
Press60 1.0000 0
Freop60 1.1908 0
Fair6o 1.1745 0
Legis60 1.2510 0
Press65 0 1.0000
Freop65 0 1.1908
Fair6és 0 1.1745
Legis65 0 1.2510

Note: The NOSE and NOPARMNAME options suppress the printing of
the standard error estimates and parameter names.

| GSas|Be
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The following few slides show the output from PROC CALIS for the LISREL model. All the
results are matrix-oriented. Details for these results have been discussed for the PATH
model output and will not be repeated here. In general, you can find correspondence
between the LISMOD and the PATH results.

This slide shows the measurement model for the y-variables.
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_ LISMOD Output for the Political Democracy and
Industrialization Data (Measurement for y)

_THETAY_ Matrix

Press60 Freop60 Faire0 Legis60 Press65 Freop65 Fairé5 Legis65
Press60 1.8797 0 0 0 0.5904 0 0 0
Freop60 0 7.6838 0 1.4596 0 2.2125 0 0
Fair6o 0 0 5.0227 0 0 0 0.7212 0
Legis60 0 1.4596 0 3.2680 0 0 0 0.3677
Press65 0.5904 0 0 0 2.3443 0 0 0
Freop65 0 2.2125 0 0 0 5.0353 0 1.3903
Fairé5 0 0 0.7212 0 0 0 3.6081 0
Legis65 0 0 0 0.3677 0 1.3903 0 3.3524

Note: Error variances (diagonal elements) were set by default.

GSsas | B,

This slide shows the measurement error variances and covariances for the y-variables.



_ LISMOD Output for the Political Democracy and
Industrialization Data (Measurement for Xx)

_LAMBDAX_ Matrix

Indust
Gnppc60 1.0000
Enpc60 2.1797
Ind1£60 1.8182

_THETAX_ Matrix

Gnppc60 Enpc60 Ind1¥60
Gnppc60 0.0825 0 0
Enpc60 0 0.1221 0
Ind1¥60 0 0 0.4730

’ Note: Error variances (diagonal elements in _THETAX_) were set by default. ‘

GSsas | B,

This slide shows the results of the measurement model for the x-variables, including the
path coefficients and the error variances.



_ LISMOD Output for the Political Democracy and
Industrialization Data (Structural Model)

_BETA_ Matrix

Dem60 Dem65
Dem60 0 0
Dem65 0.8650 0

_GAMMA_ Matrix

Indust
Dem60 1.4713
Dem65 0.6005

G§sas

This slide shows the functional relationships between latent constructs.
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_ LISMOD Output for the Political Democracy and
Industrialization Data (Structural Covariances)

_PSI_ Matrix
Dem60 Dem65
Dem60 3.9277 0
Dem65 0 0.1667
_PHI_ Matrix
Indust
Indust 0.4547

’ Note: All variances (diagonal elements in _PST_ and _PHI_) were set by default. ‘

GSsas | B,

This slide shows the error variances of the eta-variable and the variance of the xi-

variable.
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Features of the LISMOD Modeling Language

= Supports the JKW (LISREL) models (not the LISREL
program)

= Supports mean structure analysis

= Users input:
= The ordered lists of x, y, £, and n variables
= MATRIX statements to define free and fixed parameters
= Names for parameters (not required for free parameters)

= Default covariance structure parameters of the LISMOD
language:
= Diagonal elements of all covariance matrices (all variances)

= Lower triangular elements of the _PHI_ matrix (covariances of the £ -
variables)

In sum, the LISMOD modeling language in PROC CALIS supports the LISREL model by providing
syntax to specify the essential components of the LISREL model. However, LISMOD itself does not
interpret a LISREL program.

The LISMOD modeling language in PROC CALIS also supports the mean structure analysis. This is
done by providing additional MATRIX statement input for the mean model matrices in the LISREL
model.

If you understand the LISREL model, here are three things you input by using the LISMOD language:
1.The ordered lists of x, y, €, and n variables

2.MATRIX statements to define free and fixed parameters

3.Names for parameters (not required for free parameters)

(Note: This slide was updated after the printing of the handout)
The Default covariance structure parameters in the LISMOD language are:

1.Diagonal elements of all covariance matrices (all variances)
2.Lower triangular elements of the _PHI_ matrix (covariances of the ¢- variables)

Specifying the default parameters explicitly is certainly allowed, especially when you need to set
constraints on these parameters.

In addition, when the mean structures are modeled, the intercepts of the x- and y- variables are

default free parameters, while the intercepts of the n- variables and the means of the &- variables
are fixed zeros by default.

74



The Generalized

PATH Modeling Language

2
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_ Political Democracy and Industrialization: Variances
and Covariances Are “Paths” P
Press60
Freop60
Fair60
Gnppc60
Legis60
Enpc60
IndlIf60 Press65
Freop65
Fair65
Legis65
{""Covar‘lqnces are represented as double-headed '
ARRQWS e

To generalize the PATH modeling language, error covariances in the path diagram could
also be specified as “paths” in PROC CALIS. In fact, covariances in the path diagram are
already represented as double-headed arrows, as shown in the political democracy and
industrialization example.



_ An Example of the Generalized

PATH Modeling Language

PROC CALIS DATA=polidem;

PATH

Dem60 ---> Press60 Freop60 Fair60 Legis60 = 1. lam2 1lam3 lam4,

Dem65 ---> Press65 Freop65 Fair65 Legis65 = 1. lam2 1lam3 lam4,

Indust ---> Gnppc60 Enpc60 IndlIf60 = 1.,

Indust ---> Dem60 Dem65, -

Dem60 ---> Dem65; {" Use the PCOV statement to specify
/PEOV ’”1:;”_junfhecovqﬁances _____
! Freop60 Legis60, Freop65 Legisés, T

Press60 Press65, Freop60 Freop6b,

Fair60 Fair65, Legis60 Legis65;

proc calis data=polidem;
path

Dem60 ---> Press60 Freop60 Fair60 Legis60 = 1. lam2 lam3 lam4,

Dem65 ---> Press65 Freop65 Fair65 Legis65 = 1. lam2 1lam3 lam4,

Indust ---> Gnppc60 Enpc60 IndIf60 = 1.,

Indust ---> Dem60 Dem65,

Dem60 ---> Dem6S, {”Usefhegenerahzedpafhto

(Freopb0 <--> Legis60, Freop65 <--> Legis65, i specify covariances (and
f Press60 <--> Press65, Freop60 <--> Freop65, “---__variances)
i Fair60 <--> Fair65, Legis60 <--> Legis65;

The top panel shows the use of PCOV statement to specify the covariances. The bottom
panel shows that these covariances are specified as double-headed paths, which

| & & |

resemble their representations in the path diagram.

8@ 55:55355 il

The two PROC CALIS specifications shown above are equivalent.
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Political Democracy and Industrialization: Output with
Generalized Paths
PATH List
Standard

——————————— Path-----—————- Parameter Estimate Error t Value

Dem60 —-——> Press60 1.00000

Dem60 —-——> Freop60 lam2 1.19079 0.14020 8.49336

Dem60 ———> Fairée0 lam3 1.17454 0.12121 9.68988

Dem60 —-——> Legis60 lam4 1.25099 0.11757 10.64006

Dem65 —-——> Press65 1.00000

Dem65 ———> Freop65 lam2 1.19079 0.14020 8.49336

Dem65 ———> Fair6és lam3 1.17454 0.12121 9.68988

Dem65 —-——> Legis65 lam4 1.25099 0.11757 10.64006

Indust ———> Gnppc60 1.00000

Indust ———> Enpc60 _ParmO1 2.17966 0.13932 15.64530

Indust —-——> Ind160 _Parm02 1.81821 0.15290 11.89126

Indust -——> Dem60 _Parm03 1.47133 0.39496 3.72529

Indust —-——> Dem65 _Parmo04 0.60046 0.22722 2.64267

Dem60 —-——> Dem65 _Parm05 0.86504 0.07538 11.47648
/Freop60 <> Legis60 _Parm06 1.45956 0.70251 2.07764 "\
| Freop65 <> Legis65 _Parm07 1.39032 0.58859 2.36212 g
§ Press60 <--> Press65 _Parm08 0.59042 0.36307 1.62619 i
§ Freop60 <--> Freop65 _Parm09 2.21252 0.75242 2.94054 §
{ Fairéo <> Fair6s _Parmi0 0.72123 0.62333 1.15706 E
\LeqisGO <= Legis6s Parmll 0.36769 0.45324 0.81125 J

§>‘ TO KNOW.

The results obtained from PROC CALIS now shows the covariance estimates as “paths”
in the PATH list. This table could be used directly in research paper for reporting the
SEM estimation results.



_ Features of the Generalized PATH Modeling
Language

= Extension of the PATH modeling language
» Represents all generalized paths in the PATH statement
» Variance-path: Y <-->Y

= Covariance-path: X <-->Y

= Mean or intercept (one-path): 1 --->Y

In sum, the generalized path modeling language enables you to specify all types of
arrows in the path diagram as “paths,” including the variance, covariance, intercept, and
mean parameters.

Variance of Y is a path like Y <--> Y.

Covariance between X and Y is a path like X <-->Y

Mean or intercept for Y is one-path like 1--->Y.
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Default Free and Fixed Parameters in PROC CALIS

= Default free parameters

o Variances of and covariances among all exogenous
(independent) variables (observed or latent, except for error terms)

o Error variances of all endogenous (dependent) variables
0 Means or intercepts of all observed variables

= Default fixed zeros
0 Unspecified paths and error covariances
0 Means or intercepts of all latent variables

The main purpose of setting default parameters is to enable you to specify only the
functional relationships among variables in most practical applications.

_SAM’ 9Sas F

Knowing the default free and fixed parameters in PROC CALIS are useful because it
enhances the coding efficiency and accuracy. Here is a list of default free parameters
and fixed zeros used in PROC CALIS:

(This slide has been changed slightly after the printing of the handout)
¢ Default free parameters
0 Variances of and covariances among all exogenous (independent) variables
(observed or latent, except for error terms)
0 Error variances of all endogenous (dependent) variables
0 Means or intercepts of all observed variables
¢ Default fixed zeros
0 Unspecified paths and error covariances
O Means or intercepts of all latent variables

At the first glance, it might seem to be tedious and demanding that modelers must
remember all these default parameter rules to specify an SEM accurately. However, the
default parameterization used in PROC CALIS matches that of regression analysis and it
is designed with the following main purpose in mind: In most practical applications, you
would only need to specify the functional relationships among variables (that is, the
single-headed paths in the path diagram) and the fixed variances of the latent variables.



Multiple-Group Analysis

Gsas

Multiple-group analysis represents an important class of SEM applications.

F
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_ PROC CALIS Syntax for Specifying a
Multiple-Group Analysis

proc calis;
group 1 / data=dsl; /* dsl: data set for Group 1 */
group 2 / data=ds2; /* ds2: data set for Group 2 */
model 1 / group=1; /* Group 1 is fitted by Model 1 */
/* Insert the Model Specification for Group 1 */
model 2 / group=2; /* Group 2 is fitted by Model 2 */
/* Insert the Model Specification for Group 2 */

run;

S 6sas e

The skeleton of the multiple-group syntax of PROC CALIS is shown in this slide.

In this specification, you have two independent groups, which are stored in separate
data sets ‘ds1’ and ‘ds2.” You define two models: Model 1 and Model 2, respectively, for
fitting to the two groups.

Under each MODEL statement, you specify the model by one of the modeling languages
supported by PROC CALIS. For example, a PATH statement or a LISMOD statement.
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Group-Model Mapping and Model Referencing

proc calis;
group 1 / data=dsl;

group 2 / data=ds2 ; {""Both Groups T and 2 are fitted by
group 3 / data=ds3; “.Modell
model 1 / group = 1,2; —
path
X1l ---> X2-X5,
X2 ---> x3-x5,
X3 ---> x5 = effectl; -
A ~"Model 2 makes reference to Model 1, ™™,
model 2 / group = 3 T but with a unique parameter for the
refmodel 1; SeeERE i path from x3 to x5. All other paths
! are constrained between the two
path “omodels. - >
X3 ---> x5 = effect2;

run;

Note: REFMODEL does not constrain default free parameters in the two models.
Tt constrains only those parameters that are specified explicitly.

This example shows three groups of data. Model 1 is fitted to Groups 1 and 2 by the
PATH model specified immediately after. Model 2 is fitted to Group 3. To define Model
2, a REFMODEL statement is used. REFMODEL 1 means that the specifications in Model
1 is referenced here. This means that all explicit specifications in Model 1 are copied
into the current model. For example, all the PATH statement specifications in Model 1
are copied into Model 2. However, REFMODEL allows modifications from the reference
model. In this example, the x3 --->x5 path is re-specified with a new path coefficient
called ‘effect2.” This ‘effect2’ in Model 2 is a different parameter than ‘effectl’ in Model
1, even though both model have this x3--->x5 path. Except for this x3--->x5 path, Models
1 and 2 share all the remaining specified paths with the same set of path coefficients.

Notice that by using the REMODEL statement to connect models, all (and only) the
explicit specifications in the models are constrained (unless being modified or re-
specified). The constraints, however, will not apply to default parameters (assuming that
they are not explicitly specified). To constrain the default parameters, they will have to
be specified explicitly in the MODEL definitions.
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_ Completely Constrained CFA Models for Male
and Female Groups

Males Females

V]f\ . . Y vl
1. Visual - ,/\ 1 Visual

Cubes Cubes

Lozenges

cv
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Data source: Holzinger and Swineford1939 (an example used in Arbuckle 2008) |

Let us use an example to illustrate the multiple-group analysis. The Holzinger and
Swineford data are sued. This data set is also used in Arbuckle’s AMOS manual.

In this research, visual and verbal test scores were observed. Visual, Cubes, and
Lozenges are spatial tests. Paragraph, Sentence, and WordMean are verbal tests. CFA
models were hypothesized for the two groups: one group is for males and the other for
females. The basic factor structures for the groups are the same. Two latent factors
‘Spatial’ and ‘Verbal’ are assumed for the measured variables. All parameters (including
those default parameters in PROC CALIS) in the two models for the groups are labeled in
red.

This is a completely constrained multiple-group model because the two path diagrams

for males and females are exactly the same (that is, both have the same path structures
and the same set of parameters).
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_ Different Methods to Specify the Completely
Constrained Models

1. Male and female groups fit by two models, but with all
parameters (including all default parameters) being
constrained in the models

2. Male and female groups fit by a single model
definition

3. Male and female groups fit by two models that are
constrained through the REFMODEL specification

In PROC CALIS, you can use one of the following three ways to specify the preceding
completely constrained model:

1.Male and female groups fitted by two models, but with all parameters (including all
default parameters) being constrained in the models

2.Male and female groups fitted by a single model definition

3.Male and female groups fitted by two models that are constrained through the
REFMODEL specification

| will describe each of these methods.
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_ Method 1: Two Groups Fitted by the Two Completely
Constrained Models

proc calis; e

group 1 / label="Males” data=males; }'Maa?SFr%fh :
group 2 / label="Females" data=females; = ConSTEanegToNg
et i the use of the same :
model 1 / group = 1; | ‘__parameter names. .-’
path ]
Spatial ---> Visual Cubes Lozenges = 1. a2 a3,”
Verbal ---> Paragraph Sentence Wordmean = 1. a5 a6;
pvar

Visual Cubes Lozenges Paragraph Sentence Wordmean = evl-ev6,
Spatial = v1, Verbal = v2;
pcov
Spatial Verbal = cv;
model 2 / group = 2; !

path
Spatial ---> Visual Cubes Lozenges = 1. a2 a3,
Verbal ---> Paragraph Sentence Wordmean = 1. a5 a6;
pvar

Visual Cubes Lozenges Paragraph Sentence Wordmean = evl-evé6,
Spatial = v1, Verbal = v2;
pcov
Spatial Verbal = cv;
fitindex on(only) = [chisq df probchi rmsea srmsr aic
bentlercfi agfi] noindextype;

run;

The first method is to define two models for the two groups. The model specifications
under the two MODEL statements must be exactly the same.

This method is intuitive, but a little clumsy because you need to specify all parameters
with matching names in the models (although you can cut-and-paste the model
specifications to ensure an exact copy). You also need to specify each parameter in the
model, including the default parameters, which you might sometimes miss.
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_ Method 2: Two Groups Fitted by the Same Model

proc calis;
group 1 / label="Males” data=males;
group 2 / label="Females” data=females; &=

i model 1 / group = 1, 2; | TSI by the same model. j
path - -
Spatial ---> Visual Cubes Lozenges = 1.
Verbal ---> Paragraph Sentence Wordmean = 1. ;

fitindex on(only) = [chisq df probchi rmsea srmsr aic
bentlercfi agfi] noindextype;
run;

The second method is very simple and intuitive. You specify one model and fit this
model to the two gender groups. This ensures the groups are fitted exactly by the same
model.

The advantage of this method is that it is simple, intuitive, and no parameter names are
necessary for constraining models. Also, you do not need to specify any of the default
parameters explicitly for setting up constraints.

This is an ideal specification method if this model is all what you want to fit. However, if
you are going to fit a sequence of multiple-group models to the groups, you might want
to consider the next method.
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Method 3: Two Groups Fitted by the Two Models
That Are Constrained Through the REFMODEL

proc calis;
group 1 / label="Males™ data=males;
group 2 / label="Females”™ data=females;
model 1 / group = 1;

path
Spatial ---> Visual Cubes Lozenges = 1.,
Verbal ---> Paragraph Sentence Wordmean = 1. ;
pvar

Visual Cubes Lozenges Paragraph Sentence Wordmean
Spatial Verbal;
pcov

ial v 1; e e N \
Spatia erbal; i The REFMODEL statement makes reference '

Pt - lhutcd . to all explicit specifications in Model 1.

Ffitindex on(only) = [chisq df probchi rmsea srmsr aic
bentlercfi agfi] noindextype;
run;

Note: This method is used for the completely constrained
model and the subsequent models with parameter constraints.

The third method constrains the models by the REFMODEL statement. As discussed
previously, the REFMODEL copies all the explicit specifications from the reference
model to the target model. In this slide, all path coefficients, variance parameters, and
covariance parameters are specified in Model 1, which is fitted to Group 1 (Males).
Model 2, which is fitted to Group 2 (Females), makes reference to Model 1 without any
modifications or re-specifications.

Notice that in order to completely constrain the two models for the two groups, all
parameters, including those could have been set by default by PROC CALIS (e.g.,
specifications in the PVAR statement and PCOV statement), must be specified explicitly
in Model 1. This way, Model 2 will copy all these parameter specifications via the
REFMODEL statement specification.

Unlike Method 1, this method does not require the use of parameter names for
constraints across models. Constraints are done via the REFMODEL statement.
Although not as intuitive as Method 2, this method would be useful if you need to
consider fitting a sequence of multiple-group models, which will be illustrated later.
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Fit Summary of the Completely Constrained

Multiple-Group Model
Fit Summary
Chi-Square 26.0154
Chi-Square DF 29
Pr > Chi-Square 0.6247
Standardized RMSR (SRMSR) 0.0968
Adjusted GFI (AGFI) 0.9235
RMSEA Estimate 0.0000
Akaike Information Criterion 52.0154
Bozdogan CAIC 103.7130
Schwarz Bayesian Criterion 90.7130
Bentler Comparative Fit Index 1.0000

Not a bad fit.

S sas e

The completely constrained model provide a good fit of the data. The model fit chi-
square is not significant. The RMSEA is perfect, although the SRMSR is not very good.
The AGFI and the CFl are also good. The AIC, the CAIC, and the SBC are also printed.
These indices cannot be interpreted by their absolute values, but will be useful when
you compare the fits of different multiple-group models. You will use these indices to
select the “best” multiple-group model for the data later.



_ Fitting Less Restrictive Multiple-Group Models

= Completely constrained multiple-group model: Error
variances, structural covariances, and loadings are all
constrained

= Release the constraints on error variances

= Release the constraints on structural covariances

» Release the constraints on the loadings — Completely
unconstrained

We have fitted the completely constrained multiple-group model by the REFMODEL
method. We can further fit less constrained multiple-group model by modifying our
PROC CALIS code.

We can release the constraints on error variances.

Then we can release the constraints on the structural covariances (among latent
variables).

Finally, we can release the constraints on the path coefficients (or loadings).

| am going to show these step by step.
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_ Release the Constraints on Error Variances
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’ Common parameter names for the error variances are removed. ‘
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The path diagrams for the multiple-group model that releases the constraints on the
error variances are shown above.

Except for the error variance parameters, all the remaining parameters are labeled. This
means that only the error variance parameters are not invariant across the models for

the groups.
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Releasing the Constraints on the Error Variances

proc calis;
group 1 / label="Males™ data=males;
group 2 / label="Females® data=females;
imodel 1 / group = 1;

path
Spatial ---> Visual Cubes Lozenges = 1.,
Verbal ---> Paragraph Sentence Wordmean = 1.
pvar

/* Visual Cubes Lozenges Paragraph Sentence Wordmean */
Spatial Verbal;
pcov
Spatial Verbal;
imodel 2 / group = 2;
refmodel 1;
Ffitindex on(only) = [chisq df probchi rmsea srmsr aic
bentlercfi agfi] noindextype;

run;

Comment out the error variance specifications in the PVAR statement, and let PROC CALIS
set two distinct sets of default error variances for the two models.

In terms of PROC CALIS specification, this means that the model for females makes
reference to the model for males with regard to those constrained parameters only.

This could be done very easily from modifying the completely constrained multiple-
group model. All you need to do is to comment out the PVAR statement specifications
for the observed variables.

When Model 2 makes reference to Model 1, only those explicit specifications would be
constrained between the two models. Because the error variances are not specified in
both models (that is, commented out from the previous code), PROC CALIS would
generate different sets of default error variance parameters for the two models. In
other words, the error variance constraints are released in this PROC CALIS specification.
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_ Fit Summary of the Multiple-Group Model with
Constraints on Loadings and Structural Covariances

Fit Summary
Chi-Square 22.0334
Chi-Square DF 23
Pr > Chi-Square 0.5182
Standardized RMSR (SRMSR) 0.0903
Adjusted GFI (AGFI) 0.9163
RMSEA Estimate 0.0000
Akaike Information Criterion 60.0334
Bozdogan CAIC 135.5913
Schwarz Bayesian Criterion 116.5913
Bentler Comparative Fit Index 1.0000

The model fit chi-square still is not significant, indicating a good model fit. The RMSEA,
the AGFI, and the CFl are all good. However, the SRMSR does not indicate a good model
fit.



_ Release the Constraints on the Structural
Variances and Covariances

/ Males \ / Females \

v/\ 1. Visual :> /\ 1. Visual :)

a2 a

. Cubes :) az Cubes :)

Lozenges :) Lozenges :>

1. Paragraph :> 1. Paragraph :>

ZZ Sentence :> ZZ Sentence :>
\ WordMean :>/ \ WordMean :>/

’ Common parameter names for the structural variances and covariance are removed. ‘
GSas | B

How about releasing the constraints on the structural covariances?

In the path diagram, only the path coefficients are constrained now (by using the same
set of parameter names). This means that only the path effects are invariant across the
models for the groups.



_ Releasing the Constraints on the Error Variances
and Structural Covariances

proc calis;
group 1 / label="Males” data=males;
group 2 / label="Females” data=females;
model 1 / group = 1;

path
Spatial ---> Visual Cubes Lozenges = 1.,
Verbal ---> Paragraph Sentence Wordmean = 1. ;
/*
pvar

Visual Cubes Lozenges Paragraph Sentence Wordmean
Spatial Verbal;
pcov
Spatial Verbal;
*/
model 2 / group = 2;
refmodel 1;
Ffitindex on(only) = [chisq df probchi rmsea srmsr aic
bentlercfi agfi] noindextype;
run;

Comment out the PVAR and PCOV statements, and let the PROC CALIS set
two distinct sets of default variances and covariances for the two models.

Sebey §S&S %

| 1 K &7

This new multiple-group model can be specifying by commented out the explicit
specifications of the structural covariances (variances and covariances among latent
variables) in Model 1.

When Model 2 makes reference to Model 1, it copies the explicit specifications in the
PATH statement of Model 1. Error variances, structural variances and covariances in the
two models are now set by default and are unconstrained between the two models.
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_ Fit Summary of the Multiple-Group Model with
Loading Constraints

Fit Summary
Chi-Square 18.2915
Chi-Square DF 20
Pr > Chi-Square 0.5682
Standardized RMSR (SRMSR) 0.0539
Adjusted GFI (AGFI) 0.9179
RMSEA Estimate 0.0000
Akaike Information Criterion 62.2915
Bozdogan CAIC 149.7796
Schwarz Bayesian Criterion 127.7796
Bentler Comparative Fit Index 1.0000

9Ssas | K.

The model fit chi-square is not significant. Now, the SRMSR is acceptable. The AGFI, the
RMSEA, and the CFl continue to be very good.



_ Release the Constraints on the Loadings

/ Males / Females
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Finally, for the completely unconstrained multiple-group the path diagrams for the two
groups are the same, but no parameter names (except for fixed values of 1) are used to
denote constraints.



_ Completely Unconstrained Multiple-Group Model

proc calis;
group 1 / label="Males” data=males;
group 2 / label="Females” data=females;
model 1 / group = 1;

path
Spatial ---> Visual Cubes Lozenges = 1.,
Verbal ---> Paragraph Sentence Wordmean = 1. ;
model 2 / group = 2;
path
Spatial ---> Visual Cubes Lozenges = 1.,
Verbal ---> Paragraph Sentence Wordmean = 1. ;
fitindex on(only) = [chisq df probchi rmsea srmsr aic

bentlercfi agfi] noindextype;
run;

The REFMODEL statement is not used here because the two models are
not constrained with each other.

Because the two models for the groups are totally unrelated, you should not need to
use the REFMODEL statement any more. Instead, the two models are defined exactly by
the same PATH statement specifications. However, because no common parameter
names are used for the path coefficients, the two models are not constrained.
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_ Fit Summary of the Completely Unconstrained

All fit indices indicate very good fit of the completely unconstrained multiple-group

model.

Multiple-Group Model

Fit Summary

Chi-Square

Chi-Square DF

Pr > Chi-Square

Standardized RMSR (SRMSR)
Adjusted GF1 (AGFI)

RMSEA Estimate

Akaike Information Criterion
Bozdogan CAIC

Schwarz Bayesian Criterion
Bentler Comparative Fit Index

16.

[eNeoNeoNe]

68.
171.
145.

4795

.4200
.0449
.9077
.0205

4795
8746
8746

.9984

The unconstrained SEM model for the groups gives you the best fit,
but it is also the least interesting multiple-group model.

9Ssas | K.
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_ Chi-Square Difference Tests for the Nested

Constrained
Completely Loadings and Constrained
Constrained Struct. Cov. Loadings
Constrained Loadings and 3.892
Structural Covariances (p=0.32)
Constrained Loadings 7.724 3.742
(p=0.44) (p=0.71)
Completely Unconstrained 9.536 5.539 1.182
p=-27) (p=-41) (p=-23)

There are no significant differences between the multiple-group models. ‘

Which model is the best for the data?
Chi-square difference tests provide a statistical method to see if models are significantly
different from each other. This slides shows the chi-square difference tests for

comparing the four multiple-group models.

As all p-values are bigger than 0.05, it means all these multiple-group models are not
significantly different from each other.
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Comparing Model Fits by Using Various Fit Indices

Constrained

Completely Loadings and Constrained Completely

Constrained Struct. Cov. Loadings Unconstrained
Chi-Square 26.0154 22.0334 18.2915 16.4795
Chi-Square DF 29 23 20 16
Pr > Chi-Square 0.6247 0.5182 0.5682 0.4200
Standardized RMSR (SRMSR) 0.0968 0.0903 0.0539 0.0449
Adjusted GFI (AGFI) 0.9235 0.9163 0.9179 0.9077
RMSEA Estimate 0.0000 0.0000 0.0000 0.0205
Akaike Information Criterion 52.0154 60.0334 62.2915 68.4795
Bozdogan CAIC 103.7130 135.5913 149.7796 171.8746
Schwarz Bayesian Criterion 90.7130 116.5913 127.7796 145.8746
Bentler Comparative Fit Index 1.0000 1.0000 1.0000 0.9984

Absolute indices: Chi-square, SRMSR (smaller is better)
Parsimonious indices: AGFT (larger is better),

RMSEA, AIC, CAIC, SBC (smaller is better)
Incremental indices: Bentler CFT (larger is better)

9Sas | .
_ JERRVIGNHE 2010,SAS Institute Inc. All rights reserved. J i

We can also compare the four models by means of the fit index values.

The model fit chi-square value always favors the model with the largest number of
parameters. So, according to the model fit chi-square, the completely unconstrained
model is the best model. The SRMSR also favors the completely unconstrained model
simply because it can be viewed as a monotone transformation of the chi-square value.
However, you should not select your best model based on the absolute indices such as
model-fit chi-square value or the SRMSR because these indices do not take model
parsimony into account. Complicated models might have perfect model fit chi-square
and SRMSR values (i.e., 0). But these complex models should not be selected as the best
models because they have very little scientific value.

The AGFI, the RMSEA, the AIC, the CAIC, and the SBC all takes model parsimony into
account. For the AGFI, the larger the better. For other indices, the smaller the better. All
these parsimonious indices point to the completely constrained model as the best
multiple-group model for the data.

Lastly, the incremental fit index Bentler CFl favors the completely constrained model too.

However, virtually all multiple-group model in this comparison are equally good
according to the CFl. Notice that incremental indices such as the CFl measures how a
target model measures better than a so-called baseline model. They do not take model
parsimony into account. In addition, they depend on how good the baseline model is
used in the computing formula. If the baseline model is very bad (such as the commonly-
used uncorrelatedness model), all competing models would have good incremental fit
only because the baseline model is much worse. For this reason, incremental fit indices
might not serve as good criteria for model selection.
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Analyzing Direct and
Indirect Effects
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_ Democracy and Industrialization Data: Direct and

Indirect Effects of Industrialization

Dem60

Analyzing direct and indirect effects is something unique to SEM.

Let us look at the model for the democracy and industrialization data. Only the

structural part of the SEM is shown to illustrate the idea.
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_ Industrialization Effects on Democracy in 1960
and 1965

= On democracy in 1960
A direct effect:
Indust --->Dem60

= On democracy in 1965
A direct effect:
Indust --->Dem65

An indirect effect:
Indust --->Dem60 --->Dem65

Dem60

= Total effect = direct effect + indirect effect

First, let us look at the effect of industrialization on the democracy measure in 1960.
The direct effect of Indust on Dem60 refers to the path Indust ---> Dem60. This effect
can be estimated directly from any SEM software.

On the democracy measure in 1965, industrialization has a direct and indirect effect.
The direct effect refers to the path Indust ---> Dem65. The indirect effect is indicated by
the track Indust ---> Dem60 ---> Dem65.

When you add up the direct and indirect effect, it gives you the total effect.

In SEM, the direct effects are estimated as the path coefficients. Indirect effects and
total effects are functions of the parameter estimates. Fortunately, PROC CALIS can
compute these functions efficiently and it can also provide standard error estimates for
these effects.
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Factors Affecting Mental Abilities: A Model Inspired by
Marjoribanks (1974)

S1 S2 S3 P1 P2 P3 M1 M2 M3

Parental
Encouragement

Social Status Mental Ability

Achievement

Sl Motivation

Al A2 A3

This slide shows a more interesting example about analyzing direct, indirect, and total effects.

The example is inspired by a model of Marjoribanks (1974). The current model is a simplification
and the data are generated. The results here do not represent the original study, but would
serve well for illustration purposes.

The main idea of the study is to model the mental ability of students. The mental ability is a
latent construct, which is supposed to be determined (predicted) by parental encouragement
and achievement motivation, both of which are formulated as latent construct in the model.
Two remote causes (predictors), social status and family size, have direct effects on parental
encouragement and achievement motivation. However, these two remote causes affect the
mental ability only indirectly. Social status is also formulated as a latent variable, while family
size is an observed variable. For all the latent variables, observed indicators are used and they
are represented by small rectangles in the path diagram.

There are some motivating questions about this path diagram regarding the direct and indirect
effects. For example,

1.Even though social status does not affect the mental ability, it does have an indirect effect on
the mental ability via parental encouragement and achievement motivation. One would like the
SEM software to compute this this indirect effect and its significance.

2.Parental encouragement has a direct and an indirect effects on the mental ability. What is the
overall total effect of parental encouragement on the mental ability. One would also like the
SEM software to compute all these effects and their significance.
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_ Factors Affecting Mental Abilities: PROC CALIS Code

proc calis data=mental nobs=115 effpart; )
7" The EFFPART option analyzes

path I the effect partitioning in the
/* Structural Model */ Smodelz ... T %
SocialStatus ---> ParentalEncouragement FamilySize

AchievementMotivation,

FamilySize ---> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,

/* Measurement Model */

SocialStatus ---> 81 S2 S3 =1,
ParentalEncouragement ---> P1 P2 P3 =1,
AchievementMotivation ---> Al A2 A3 =1,
MentalAbility ---> M1 M2 M3 = 1.;

Ffitindex on(only)=[agfi srmsr rmsea bentlercfi] noindextype;

run;

- Gsas B

sees

Now, the PATH specification for the target model should be easy for you. You can
specify the measurement model and the structural model by the multiple-path syntax.
You can look at the path diagram and write down the paths in the PATH statement.
Notice that each path in the path diagram represents a direct effect of one variable on
another variable.

The only new option introduced here is the EFFPART option in the PROC CALIS
statement. EFFPART stands for effect partitioning. In other words, it partitions the total
effects of any variable on any other variable into direct and indirect effects. PROC CALIS
will compute these effects and the standardized version---all with standard error
estimates provided.
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_ Fit Summary

The model fit actually does not look too good for this simulated data. But this is not the
concern here. We want to study the effect partitioning, assuming that we are satisfied

with the model fit.

Fit Summary

Standardized RMSR (SRMSR) 0.0936
Adjusted GFI (AGFI) 0.7341
RMSEA Estimate 0.1431
Bentler Comparative Fit Index 0.8087
Not a very good model fit.
5}
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Factors Affecting Mental Abilities: Estimation Results

Parental
Encouragement

Social Status

| parental
. . Achievement | encouragement on the
Family Size L mental abilityl -
Motivation

* Marginally significant

Al A2 A3 * Significant
~ Fixed

Before diving into the results for the effect partitioning, | want to look at the estimates
shown in the path diagram. | want to throw in one more motivation to study direct and
indirect effects in a structural equation model.

In this path diagram, estimates are shown with their significance marked. Two asterisks
after an estimate means the estimate is statistically significant. One asterisk after an
estimate means that the estimate is marginally significant.

| want to focus on the effects of parental encouragement on mental ability. The direct
effect is -1.73. This means that parental encouragement has a negative effect on mental
ability. This sounds a little strange at the first glance. But if we look at the bigger picture
in the path diagram, we can understand why that is so. Notice that parental
encouragement has a positive effect on achievement motivation, which in turns has a
positive effect on mental ability. The whole picture suggests that purely parental
encouragement do not necessarily affect mental ability in a positive way. Sometimes,
the more encouragement would only add more pressure to the individual’s mental
performance---hence the negative direct effect on mental ability observed in the path
diagram result. However, when the parental encouragement can affect something more
internal of the individuals---namely, the individual’s achievement motivation, then it will
result in a higher mental ability score. Hence, there is a positive indirect effect of
parental encouragement on the mental ability.

In sum, an interesting question in this path diagram result is that what is the overall

total effect of parental encouragement on mental ability, given that it has a negative
direct effect and a positive indirect effect?
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_ Partitioning of the Effects: A Prerequisite

Stability Coefficient of Reciprocal Causation = 0

Stability Coefficient < 1

Total and Indirect Effects Converge

NOTE: The stability coefficient is 0, which is less
than one. The condition for converged total and
indirect effects is satisfied.

Before you can analyze direct and indirect effects, you should check whether a
prerequisite is satisfied. In order to study the effect partitioning legitimately, the so-
called stability coefficient must be less then 1. PROC CALIS provides such a check. When
you see these messages from the PROC CALIS output, you could proceed to examine

your effect partitioning results.
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_ Partitioning of the Effects: Total Effects

Total Effects

Effect / Std Error / t Value / p Value

FamilySize

Al -0.1287
0.0360

-3.5769

0.000348

A2 -0.1522
0.0420

-3.6274

0.000286

MentalAbility -0.1699
0.0572

-2.9696

0.002982

Parental Encouragement ]

Achievement
Motivation

1.0000

1.1821
0.1084
10.9012
<.0001

1.3196
0.4124
3.1995
0.001377

o]

Mental
Ability

0

Parental
Encouragement

1.5701
0.5176
3.0337
0.002416

1.8560
0.6051
3.0672
0.002161

0.3376
0.4045
0.8346
0.4039

SocialStatus

0.6523
0.0942
6.9258
<.0001

0.7710
0.1036
7.4398
<.0001

-, Details

0.4244
0.1280
3.3159
-000914

<

0.2516
0.0692
3.6356
0.000277

GSsas | B,

With the EFFPART option, PROC CALIS produces tables for total, direct, and indirect

effects separately. These tables could be large. | just annotate these results here. Some

results are not shown.

This table is about the estimates of the total effects, their standard errors, t-values, and

significance levels.
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_ Partitioning of the Effects: Direct Effects

Direct Effects

Effect / Std Error / t Value / p Value

FamilySize
Al 0
A2 o
MentalAbi lity 0
Parental Encouragement ]

Achievement
Motivation

1.0000

1.1821
0.1084
10.9012
<.0001

1.3196
0.4124
3.1995
0.001377

o]

Mental
Ability

o]

Parental
Encouragement

0

-1.7343
0.9047
-1.9169
0.0553

SocialStatus

o]

o

0.2516
0.0692
3.6356
0.000277

Gsas

THE
POWER
TO KNOW,

This table is about the direct effects, their standard errors, t-values, and significance

levels.
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This table is about the indirect effects, their standard errors, t-values, and significance

levels.

Partitioning of the Effects: Indirect Effects

Indirect Effects
Effect / Std Error / t Value / p Value

Achievement Mental
FamilySize Motivation Ability
Al -0.1287 0 0
0.0360
-3.5769
0.000348

A2 -0.1522 0 0
0.0420
-3.6274
0.000286

-0.1699 o] 0
0.0572

-2.9696

0.002982

MentalAbi lity

ParentalEncouragement 0 0 0

Parental
Encouragement

1.5701
0.5176
3.0337
.002416

o

1.8560
0.6051
3.0672
002161

o

2.0719
1.0483
1.9763
0.0481

SocialStatus

6523
0942
9258
0001

Ao oo

7710
1036
4398
0001

AN OO

4244
1280
3159
0.000914

owoo

Gsas

THE
POWER
TO KNOW,
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Customized Effect Analysis

= The EFFPART option displays all logical possible effects
of the variables

= Columns: Five variables, each of which serves as a
predictor at least once:

o FamilySize

o AchivementMotivation

o0 MentalAbility

o ParentalEncouragement
0 SocialStatus

= Rows: Sixteen variables, each of which serves as an

outcome variable at least once (all variables except for
SocialStatus)

)
- GSsas .

When you have large tables like those shown in previous slides, you are likely to be
doing exploratory analysis without specific questions in your mind. The effect tables
could get very large and you might have a difficult time to look for the particular results
that you are interested in. For example, the columns of the effect tables consist of five
variables, each of which serves as a predictor at least once in the path diagram. These
five variables have direct or indirect effects on the row variables. The rows consist of
sixteen variables, each of which serves as an outcome variable at least once. In the
current path diagram, it includes all variables except for the SocialStatus variable.

However, if you have specific research questions in your mind, you are recommended to
do customized effect analysis that is supported by PROC CALIS.
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_ Customized Effect Analysis on the Structural Model

~~What are the fotal, .
e e T " What is the total effect

i effects of this remote
/" cause on other latent
/- ~.constructs?

i of parental
" encouragement on the
“-_mental_ability?

Parental
Encouragement

Social Status Mental Ability

-.29*

A

Achievement
Motivation

Family Size

In the beginning, we already have these motivating questions.

1.For the social status variable, What are the total, direct, and indirect effects of this
remote cause on other latent constructs, especially on the mental ability?
2.What is the total effect of parental encouragement on the mental ability?
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_ Factors Affecting Mental Abilities: Customized

Effect Analysis

proc calis data=mental nobs=115;
path
/* Structural Model */

FamilySize ---> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,

/* Measurement Model */

SocialStatus --> ParentalEncouragement FamilySize AchievementMotivation,

SocialStatus ---> 81 S2 S3 =1.,
ParentalEncouragement ---> P1 P2 P3 = 1.,
AchievementMotivation ---> Al A2 A3 =1,
i MentalAbility ---> M1 M2 M3 =1.; e
:’ effpart
‘ SocialStatus -> ParentalEncouragement AchievementMotivation

MentalAbility,
ParentalEncouragement -> MentalAbility;

run;

PROC CALIS supports the customized effect analysis. This can be done by the EFFPART

statement, as shown in the PROC CALIS code in this slide.

First, you want to study the effect partitioning of social status on these three variables:
parental encouragement, achievement motivation, and mental ability. Hence, you use the

following code in the EFFPART statement:

SocialStatus -> ParentalEncouragement AchievementMotivation

Second, you want to study the effect partitioning of parental encouragement on mental

ability. Hence, you use the following code in the EFFPART statement:

ParentalEncouragement -> MentalAbility;

MentalAbility,
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Effects of SocialStatus
Effect / Std Error / t Value / p Value
Total Direct Indirect
ParentalEncouragement 0.2516 0.2516 0
0.0692 0.0692
3.6356 3.6356
0.000277 .000277
AchievementMotivation .6523 0.2193 0.4330
~-Direct-and-indirect .0942 0.1147 0.1203
“—effects .9258 1.9125 3.5985
.0001 0.0558 0.000320
MentalAbility 0.4244 0 0.4244
~~Indirecteffect” - 0.1280 0.1280
~--only- 3.3159 3.3159
0.000914 0.000914
| & & |
Pt 9sas | K.

The effect partitioning results from PROC CALIS are shown in this slide and the next one.
The effects of social status on the three specific latent variables are shown in this table.

On the parental encouragement, social status has a direct effect only, which is positive
and significant.

On the achievement motivation, social status has both a direct and an indirect effects.
Both of these effects are significant. The total effect is the sum of the direct and indirect

effect. The total effect is also significant.

On the mental ability, social status has only an indirect effect, which is also significant.
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_ Effects of Parental Encouragement on Mental Ability

Effects of ParentalEncouragement
Effect / Std Error / t Value / p Value

Total Direct Indirect

MentalAbility 0.3376 -1.7343 2.0719
0.4045 0.9047 1.0483

0.8346 -1.9169 1.9763

0.4039 0.0553 0.0481

‘‘‘‘‘

i the mental ability, although the total effect is not
‘-.__significant.

This slide shows the effect partitioning of parental encouragement on mental ability.

The direct effect is negative, as shown previously in the path diagram. This direct effect
is marginally significant.

The indirect effect is positive and is statistical significant. This is a piece of “comforting”
information---parental encouragement does affect the mental ability positively, but only
through its effect on achievement motivation.

The total effect, which is the sum of direct and indirect effect, however, is not significant.

This example shows that SEM effect analysis can show some effect patterns that simply
cannot be analyzed by linear regression analysis adequately. The SEM effect analysis
provides something more detailed and refined regarding the totality of the theory. In
this regard, the customized effect analysis supported by PROC CALIS is very useful.
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_ Standardized Effects of Social Status

PROC CALIS also provides the standardized results for effect analysis. Standard errors, t-

Standardized Effects of SocialStatus
Effect / Std Error / t Value / p Value
Total Direct Indirect
ParentalEncouragement 0.6675 0.6675 0
0.0833 0.0833
8.0141 8.0141
<.0001 <.0001
AchievementMotivation 0.6990 0.2350 0.4640
0.0597 0.1207 0.1153
11.7105 1.9478 4.0231
<.0001 0.0514 <.0001
MentalAbility 0.4960 0 0.4960
0.0850 0.0850
5.8374 5.8374
<.0001 <.0001
9Sas | B
! h TO A

values, and p-values are also computed for the standardized effect estimates.
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_ Standardized Effects of Parental Encouragement
on Mental Ability

Standardized Effects of ParentalEncouragement
Effect / Std Error / t Value / p Value

Total Direct Indirect

MentalAbility 0.1487 -0.7639 0.9126
0.1705 0.3096 0.3487

0.8722 -2.4675 2.6171

0.3831 0.0136 0.008869

_______

standardized total effect on the mental ability,
although the standardized total effect is not

TG CAAT e
J

GSsas | B,

This slide shows the standardized effects of parental encouragement on mental ability.
The pattern is quite similar to the unstandardized version.
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Testing Hypotheses about the Measurement Model

vh vzf\ vh

S1 S2 S3 M1 M2 M3

Social Status Mental Ability

Testing specific hypotheses is an interesting topic. Here we look at some examples.

In the mental ability model, you have some indicator variables for the latent variables.
Two latent variables are selected to illustrate the testing of specific hypotheses.

For the mental ability factor, one might want to test the hypothesis that the loadings
(path coefficients) are the same for the M2 and M3 indicators. In the path diagram, r2
and r3 are labeled as the path coefficients. You want to test whether r2 and r3 are equal
within the model.

For the social status factor, you not only want to test the hypothesis that the loadings
(path coefficients) are the same for the three indicators, but you also want to see if their
corresponding error variances are the same in the population. In the path diagram, g2,
g3, vl, v2, and v3 are parameters of interest. You want to test simultaneously whether
g2, g3 are equal to 1 and v1, v2, and v3 are the same in the population.
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_ Specific Hypotheses

= Parallel items for measuring SocialStatus
Hl:g2=1
H2: g3=1
H3: vi=v2
H4: v2 =v3

= Equality of loadings for MentalAbility items M2 and M3
H5:r2=r3

= Sum of the loadings for M2 and M3 is two times as
much as the sum of the loadings for S1 and S2

H6: (r2 +r3)/(g2+g3)=2

The test of equal loadings and equal error variances for the social status items is a test
of parallel items. This could be stated more formally as the following four component
hypotheses H1, H2, H3, and H4, as shown in the slide. These four hypotheses need to be
tested simultaneously. Rejection of the simultaneous test means the items are not
parallel.

The test of equal loadings for the measurement indicators of the mental ability factor is
simpler. It is stated in H5. Rejection of H5 means that r2 and r3 are not equal in the
population.

Finally, you can invent any strange hypothesis that can be expressed as a continuous
function of the model parameters. For example, H6 states that the ratio of the sum of r2
and r3 to the sum of g2 and g3 is 2. This hypothesis may or may not make sense. But it is
included here to demonstrate the flexibility of PROC CALIS.

122



_ PROC CALIS Hypotheses Testing: h(6)=0

= Parallel items for measuring SocialStatus:
Hl:hl1=g2—1 =0
H2: h2=g3—1 =0
H3:h3=vl—v2 =0
H4: h4=v2—v3=0

= Equality of loadings for MentalAbility items M2 and M3
H5:h5=r2—r3=0

= Sum of the loadings for M2 and M3 is two times as
much as the sum of the loadings for S1 and S2

H6: h6 =2(g2 +93) — (r2+r3) =0

Before | show you the PROC CALIS code, it is useful to reformulate the hypotheses into
the forms that match the PROC CALIS input.

PROC CALIS tests hypotheses of the form h(8)=0, where h(8) is any continuous function
of the model parameters (for example, the error variances and the path coefficients in
the model).

The hypotheses in the previous slide could all be rewritten in this required form, as
shown in this slide. With these forms, you are ready to specify those hypotheses in
PROC CALIS.
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Testing Specific Hypotheses about the Measurement
Model Using PROC CALIS

proc calis data=mental nobs=115;
path
SocialStatus ---> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize -—--> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,
SocialStatus -—-> 5152 S3 = 1. 02 83.%{  specify g2, g3, r2, r3, v, v2,
ParentalEncouragement ---> P1 P2 P3 = 1.
AchievementMotivation ---> Al A2 A3 =
; MentalAbility -—-> M1 M2 M3 =
"\\ pvar S1-S3 = vi1-v3; 7 Use the SIMTEST statement ™,
simtest parallel social items=[hl h2 h3 h4]; y/ To test simultaneously ‘
i testfunc h5_equal_load_m2_m3 h6_proportional_sum; oo Lo e
O = = = = = .- 1 TESTFUNC statement to test
hi=g2 -1; % .individual hypotheses. .
he =90 - L; 1,—~-Us*e’fhe’S’AS’progrfdmmmg ~~~~~~~~ .
h3 = vl - v2; statements to define the ‘
h4 = v2 - v3; i1 parametric functions in the ;
| h5_equal_load m2_m3 = r2 - r3; - g
h6_proportional_sum = 2*(g2 + g3) - (r2 + r3); T
run;

First, you have to label or name the parameters in the correct locations of the model
specification. For example, g2 and g3 are the path coefficients for S2 and S3, respectively; and r2
and r3 are the path coefficients for M2 and M3, respectively. Notice that you did not name these
parameters in the preceding model specifications. Naming these parameters were optional
because you did not reference them. However, because you are going to refer to these
parameters in the hypothesis testing, you must name or label them in the respective locations
now. Similarly, the error variances for S1-S3 are named as v1-v3, as shown in the PVAR
statement.

The main tools for testing specific hypothesis in PROC CALIS are the SIMTESTS and the TESTFUNC
statements.

The SIMTEST statement enables you to test simultaneous hypotheses like the parallel hypothesis
with four component hypotheses. Here we have h1, h2, h3, and h4, all of which are treated just
as the names of the hypotheses that are defined later.

The TESTFUNC statement enables you to test individual hypotheses like the equality of loadings
and the proportionality hypotheses described previously. Here | use long names such as
h5_equal_load_m2_m3 and h6_proportional_sum to remind me of the nature of the target
hypotheses.

Now | use the so-called SAS programming statements to define the hypotheses: h1-h4,
h5_equal _load_m2_m3, and h6_proportional_sum. The SAS programming statements are just
like common mathematical equations. These six SAS programming statements define the
parametric functions in the target hypotheses. PROC CALIS tests all parametric functions
equaling zero.
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_ Individual Tests of Parametric Functions:
TESTFUNC Results

Tests for Parametric Functions

Parametric Standard

Function Value Error t Value p Value
h5_equal_load_m2_m3 0.04147 0.24290 0.17072 0.8644
h6_proportional_sum -0.27995 1.02816 -0.27228 0.7854

Both individual hypotheses are supported.

The TESTFUNC specification produces the results shown in this table.

You fail to reject the equality of loadings for M2 and M3 because the p-value is bigger
than 0.05. So, the equality of the loadings is supported.

You also fail to reject the proportional sum hypothesis (p-value=0.79).
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_ Tests for Parallel Social Status Items:

SIMTESTS Results

Simultaneous Parametric Function
Test Function Value

parallel_social_items

hl 0.19873
h2 -0.25004
h3 -0.24067
h4 -0.64108

Simultaneous Tests

DF

PR REPA

Chi-Square

24.23862
3.57013
8.37521
0.17774
1.49312

p Value

<.0001
0.0588
0.0038
0.6733
0.2217

the equality of error variances is supported.

Overall parallelism hypothesis is not supported for the SocialStatus items, although

The SIMTESTS statement specification produces the output shown in this table.

For the parallel hypothesis, the simultaneous test is rejected (p <.0001). The parallel

item hypothesis is not supported.

PROC CALIS also provides individual tests for the component hypotheses. This would be
useful for doing an ad hoc analysis to probe what fails the simultaneous hypothesis. For
example, both hl and h2 are at least marginally significant. But h3 and h4 are not
significant. Recall that h1 and h2 are about the equality of the loadings (path coefficients)
while h3 and h4 are about the equality of error variances. The current results show that

the items might have the same error variances but not the same loadings in the

population.
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Model Modifications
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_ When the Model Does Not Fit Well ...

Fit Summary
Chi-Square 196.7455
Chi-Square DF 59
Pr > Chi-Square <.0001
Standardized RMSR (SRMSR) 0.0936
Adjusted GFI (AGFI) 0.7341
RMSEA Estimate 0.1431
Bentler Comparative Fit Index 0.8087

= Large SRMSR and RMSEA
= Small AGFI and CFI

* Model modification: suggests ways to improve the model
fit

= Lagrange multiplier (LM) tests: which parameters you can
add to significantly decrease the model fit chi-square value

The mental ability model did not fit well. The SRMSR and the RMSEA are large, while the
AGFI and the CFl are small. When you encounter a bad model fit, it would jeopardize
your interpretations of the model parameters, effect analysis, hypothesis testing, and
etc.

Model modification is a statistical technique that suggests ways to improve your model
fit. The most common model modification technique is done through the so-called
Lagrange multiplier (LM) tests. Essentially, the LM tests suggest which parameters you
could add to the model to significantly lower the model fit chi-square value. When the
model fit chi-square is lowered, most other fit indices (but not all, especially those
parsimonious indices that take model complexity into account) might also improve.
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_ Using the MODIFICATION Option

proc calis data=mental nobs:115§}5&}¥€E£E{SH§“
Y =
SocialStatus ---> ParentalEncouragement FamilySize
AchievementMotivation,
FamilySize -—-> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,
SocialStatus --->8S1S2S3 =1.,
ParentalEncouragement ---> P1 P2 P3 =1
AchievementMotivation ---> Al A2 A3 =1.,
MentalAbility ---> M1 M2 M3 =1
run;

The option you can use to do model modification in PROC CALIS is the MODIFICATION

option in the PROC CALIS statement. You can simply add this option to the PROC CALIS
statement when you run your model. This example shows that the LM tests for model

modification is requested for the original mental ability model, which does not have a

very good model fit.
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LM Tests for Paths

Rank Order of the 10 Largest LM Stat for Path Relations

Parm
To From LM Stat Pr > ChiSq Change
P2 P1 56.19414 <.0001 -0.73639
P1 P2 56.19349 <.0001 -0.72904
A2 M2 19.17647 <.0001 0.22842
A2 ParentalEncouragement 18.57947 <.0001 -2.31463
A2 MentalAbility 17.20340 <.0001 0.95581
ParentalEncouragement Al 17.04464 <.0001 0.27042
Al ParentalEncouragement 15.86099 <.0001 1.88904
FamilySize A2 14.43548 0.0001 -1.14590
Al MentalAbility 13.88705 0.0002 -0.75314
A2 P3 12.96818 0.0003 -0.57151
Adding the P2 <--- P1 (or P1 <--- P2) path reduces your model fit chi-square by 56 approximately.
Adding the A2 <--- M2 path reduces your model fit chi-square by 19 approximately.

PROC CALIS output several tables for the LM tests. The results are shown in different
tables, according the type of the parameters. This table shows the ranking of LM
statistics for adding the (single-headed) paths into the mental ability model. It gives you
the ten paths that can improve the model fit chi-square statistic the most.

The top one is the pl ---> p2 path. The LM statistic 56.19 means that if you include this
path into the model, you can expect to reduce the model fit chi-square by about 56. This
is a substantial improvement because you can get this big improvement by just losing
one degree of freedom. The second one is the p2 ---> p1 path. Essentially, this will give
the same amount of model improvement as the first path. The third one is not that
dramatic, but still give you a substantial improvement. Adding the M2 ---> A2 path
reduces the model fit chi-square by 19.

Do you want to add these paths into your model? Let us discuss this after we examine
more results about the LM tests.
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LM Tests for Error Variances and Covariances

Rank Order of the 10 Largest LM Stat for Error Variances and Covariances
Error Error Parm
of of LM Stat Pr > ChiSq Change
P2 P1 56.19312 <.0001 -1.96473
ParentalEncouragement Al 12.26622 0.0005 0.46050
ParentalEncouragement A2 12.08031 0.0005 -0.48351
FamilySize A2 11.22650 0.0008 -1.88205
M2 A2 10.26408 0.0014 1.55895
S2 S1 7.78117 0.0053 1.55314
MentalAbility A2 7.48800 0.0062 0.78161
AchievementMotivation Al 6.95709 0.0083 -0.52904
P2 A3 6.54315 0.0105 0.76007
A3 A2 6.21429 0.0127 -0.67173

Adding the error covariance (P2 <---> P1) reduces your model fit chi-square by
56 approximately.

This table shows the LM tests (statistics) for the error variances and covariances. On the
top of the list is the covariance between the errors of P2 and P1. Adding the covariance
between the errors of these two variables reduces the model fit chi-square statistic by
56. This is actually the same improvement that we have seen for adding either the P2 ---
>Plor

P1 ---> P2 path. The next one in the list has a much less improvement. The LM statistic is
only 12.26.

For this particularly model, these two tables are all that PROC CALIS produces for the LM
statistics. The question now is which parameter or parameters you want to add to the
model. This could not be answered by just looking at the LM statistics. But it might also
involve some judgment about how reasonable the added parameters are. Do these
added parameters render your model un-interpretable, or even contradictory to your
theoretical claims, despite the fact that they improve your model fit substantially?
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Notes on the LM Statistics

= Chi-square reductions are linear approximations
= Chi-square reductions are not additive

= Modifications suggested might not be substantively
meaningful

)
- GSsas .

Before giving an answer to the current model modification analysis, some important
general points about the LM statistics are discussed.

First, the model fit chi-square reductions as indicated by the LM test statistics are only
linear approximations. This means that if you actually refit the model by adding the
suggested parameter, the actual chi-square reduction might be more or less.

Second, the chi-square reductions as suggested by the LM test statistics are not additive.
That means that you cannot add two or more parameters into the model and expect the
actual reduction in the new model is exactly the sum of the corresponding LM statistics.
Usually, the actual reduction would be smaller (although it could be larger).

Last but not least, modification suggested by the LM statistics might not be
substantively meaningful.

All these three points are important in deciding which parameter you want to add to the
current mental ability model for improving the model fit.
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Adding Error Covariance between P1 and P2

£

S1 S2 S3 P1 P2 P3 M1 M2 M3

Parental
Encouragement

Social Status Mental Ability

Achievement

Sl Motivation

Al A2 A3

Considering the top suggestions from the results of the LM test statistics, | would add
the covariance between P1 and P2. The added parameter is shown in the path diagram.

Basically, all the top LM suggestions --- the P2 ---> P1 and P1 ---> P2 paths, and the error
covariance between P1 and P2 are just different manifestations of the same lack of fit
about a covariance element in the original model. That is, the covariance between P1
and P2 was not well-explained by the original model. Adding either of these will lead to
a better fitting of the covariance between P1 and P2. In addition, adding either of these
will give you an approximate model fit chi-square improvement of 56. But, you would
not get three times of this amount by adding all these three. In fact, if you were to add
all these three parameters, it is very likely that your model is not identified, meaning
that you would not get unique estimates.

Among the top three choices, the error covariance is chosen because the interpretation
of added error covariance is a little “cleaner.” P1 and P2 are measurement indicators of
the same factor (Parental Encouragement). The error covariance interpretation is that
these two indicators have some sort of correlation that is unexplained by their common
factor. The added error covariance represents the covariance explained by some
unknown sources. However, if | were to add either the P1 ---> P2 or P2 ---> P1 paths, it
would create some conflicts with purported common factor structure for the two
indicator variables.

Note that the current conclusion is based on a very general argument that aims at
preserving the original factor-variable structure. It is not a universal principle. In practice,
you have to also consider the substantive grounds of the added parameters.
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_ Adding Covariance between the Errors of P1 and P2

proc calis data=mental nobszllSﬂ&%ﬁjﬁééiEéﬁgj
path
SocialStatus ---> ParentalEncouragement FamilySize
AchievementMotivation,
FamilySize -—-> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,
SocialStatus ---> 81 S2 S3 =1.
ParentalEncouragement ---> P1 P2 P3 =1.,
AchievementMotivation ---> A1 A2 A3 =1._,
MentalAbility ---> M1 M2 M3 = 1.;
(heov P1 p2; |
run;

9Ssas | K.

Now that | have decided to add the covariance between P1 and P2, | refit the model by
adding the PCOV statement specification for the two variables, as shown in the SAS
code in this slide. | also use the MODIFICATION option one more time to see if there
could be any further suggested improvements.
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Before and After Adding the Error Covariance

between P1 and P2

Before ... After...
Fit Summary Fit Summary

Chi-Square 196.7455 Chi-Square 110.6388
Chi-Square DF 59 Chi-Square DF 58
Pr > Chi-Square <.0001 Pr > Chi-Square <.0001
Standardized RMSR (SRMSR) 0.0936 Standardized RMSR (SRMSR) 0.0661
Adjusted GFI (AGFI) 0.7341 Adjusted GFI (AGFI) 0.8062
RMSEA Estimate 0.1431 RMSEA Estimate 0.0892
Bentler Comparative Fit Index 0.8087 Bentler Comparative Fit Index 0.9269

Improve the model fit chi-square a
lot more than 56.

Before you add the error covariance between P1 and P2, your model fit chi-square was
about 197. After adding the covariance, the model fit chi-square is about 111. This
improvement is actually larger than what the LM statistic suggested, which was 56.

| GSas|Be

88 @

Other fit indices also improve. The SRMSR and the RMSEA are now close to be
acceptable. The AGFI and the CFl are boosted to higher levels.
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_ A New Set of LM Tests for Paths

Rank Order of the 10 Largest LM Stat for Path Relations

Parm
To From LM Stat Pr > ChiSq Change
A2 M2 23.93741 <.0001 0.23830
A2 ParentalEncouragement 22.22260 <.0001 -2.30398
A2 MentalAbility 21.70998 <.0001 0.90790
Al ParentalEncouragement 19.34281 <.0001 1.96513
Al MentalAbility 18.10545 <.0001 -0.75752
ParentalEncouragement Al 17.30632 <.0001 0.32504
Al M2 15.06992 0.0001 -0.17617
A2 FamilySize 15.06786 0.0001 -0.17675
FamilySize A2 14.29265 0.0002 -0.89658
AchievementMotivation Al 11.75569 0.0006 -0.35962

Adding the A2 <--- M2 path now reduces your model fit chi-square
by 24 (was 19 before adding the error covariance).

The new set of LM tests for paths suggests the addition of the M2 ---> A2 path. The LM
statistic is about 24. If you compare this result with the first LM results regarding the
same path, you notice that the LM statistics changes as the fitted model changes.
Previously, the same path had an LM statistic of 19. This illustrates the nonlinearity and
non-additivity of the LM statistics.
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_ A New Set of LM Tests for Error Variances
and Covariances
Rank Order of the 10 Largest LM Stat for Error Variances and Covariances

Error Error Parm
of of LM Stat Pr > ChiSq Change
ParentalEncouragement A2 14.11717 0.0002 -0.53966
ParentalEncouragement Al 14.00823 0.0002 0.51242
FamilySize A2 13.96827 0.0002 -1.98162
M2 A2 11.86015 0.0006 1.65462
AchievementMotivation Al 11.75570 0.0006 -0.57402
MentalAbility A2 10.30441 0.0013 0.86542
P1 Al 9.02987 0.0027 0.53357
S2 S1 8.94243 0.0028 1.66876
MentalAbility FamilySize 8.05365 0.0045 2.49300
MentalAbility AchievementMotivation 6.94045 0.0084 0.98947

§>‘ TO KNOW.

There is also a new set of LM tests for adding error covariances.

You might want to improve your model further by adding some parameters from these
two LM tables, although | will not attempt to do more here.
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_ Customized LM Tests

= Principled modification process

» Restrict the set of parameters of interest for
the LM tests

Model modification by using the MODIFICATION option is kind of “blind-search”
procedure that you try to improve your model without any definite directions. As
discussed before, the LM test statistics might not give you suggestions that are
substantively meaningful.

However, in some occasions you might want to restrict your attention to certain set of
potential paths or parameters in your model, rather than all possible parameter space
searched by the MODIFICATION option.

If you want to do such a principled modification process, you can use the customized LM
tests supported in PROC CALIS.
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Customized LM Tests by Using the LMTESTS

Statement
proc calis data=mental nobs=115;
path
SocialStatus ---> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize  ---> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,
SocialStatus ---> 81 S2 S3 = 1.
ParentalEncouragement ---> P1 P2 P3 =1.,
AchievementMotivation ---> Al A2 A3 =1._,
MentalAbility ---> M1 M2 M3 = 1.;
Imtests{corr_errz[coverrj{path:[LV—>LV LVm>MV]F
run; ) h
~Explore The se¥ oF LM tests called ™, Explore the set of LW 7ests called “path s which ™™
: “corr_err," which contains all the i contains all potential latent variable paths (LV->
i potential error covariance i LV) and measurement paths (LV -> MV) fo be
‘._parameters (COVERR) to be freed. .~ *.._ freed. ~

The customized LM tests define sets of parameters of interest so that your model
modification process (or LM statistics output) would be limited to those sets of
parameters. PROC CALIS provides the LMTESTS statement syntax to achieve the
customized LM tests.

The mental ability model is used again. This time | define two sets of parameters of
interest. The first set of LM tests is called “corr_err” (it is just a name you assign). This
set of parameters contains the parameter region COVERR, which is a keyword that
denotes all error covariances in the model. The second set of LM tests is called “path”—
a name you assign. This set of parameters do not exhaust all paths in the model. It
contains the parameter regions LV->LV and LV->MV, which are keywords that denotes
the latent variable (LV) to latent variable (LV) paths and the latent variable (LV) to
manifest variable (MV) paths, respectively. Therefore, this customized set “path”
excludes paths from observed variables to observed variables, or from observed
variables to latent variables so that the factor structures of the model could not be
potentially destroyed by adding these paths. The LM tests for these paths are simply not
included in the results for the “path” set.
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_ Customized LM Tests for Error Covariances

This table shows the customized LM tests of the “CORR_ERR” set. Essentially, this table
is the same as one of the standard tables produced with the MODIFICATION option

because both tables have the same parameter region “COVERR.”

Rank Order of the 10 Largest LM Stat for Set corr_err

Parm
Type Varl Var2 LM Stat Pr > ChiSq Change
COVERR P2 P1 56.19312 <.0001 -1.96473
COVERR ParentalEncouragement Al 12.26622 0.0005 0.46050
COVERR ParentalEncouragement A2 12.08031 0.0005 -0.48351
COVERR FamilySize A2 11.22650 0.0008 -1.88205
COVERR M2 A2 10.26408 0.0014 1.55895
COVERR S2 Ss1 7.78117 0.0053 1.55314
COVERR MentalAbility A2 7.48800 0.0062 0.78161
COVERR AchievementMotivation Al 6.95709 0.0083 -0.52904
COVERR P2 A3 6.54315 0.0105 0.76007
COVERR A3 A2 6.21429 0.0127 -0.67173

GSas | M.
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_ Customized LM Tests for Paths

Type

DV_DV
DV_DV
DV_DV
DV_DV
DV_DV
DV_DV
DV_DV
DV_DV
DV_DV
DV_DV

Rank Order of the 10 Largest LM Stat for Set path

Varl Var2

A2 ParentalEncouragement
A2 MentalAbility

Al ParentalEncouragement
Al MentalAbility

S2 MentalAbility

S3 AchievementMotivation
S2 AchievementMotivation
ParentalEncouragement MentalAbility
ParentalEncouragement AchievementMotivation
FamilySize AchievementMotivation

LM Stat

18

15
13

8
6
6
5
5
5

.57947
17.
-86099
.88705
.97262
.27192
.19233
.57439
.33788
.33730

20340

Pr > ChiSq

O O O 0O O O O A A A

.0001
.0001
.0001
.0002
.0027
.0123
.0128
.0182
.0209
.0209

Parm
Change

-2.31463
0.95581
1.88904

-0.75314

-0.38910
0.32436

-0.40928
0.29376
0.39218

-1.20671

The second customized set of LM tests suggests that adding the dependent variable (DV)
to dependent variable (DV) path A2 <--- ParentalEncouragement improves the model fit
the most amongst all paths in the “path” set. The chi-square improvement is about 19,

The measurement path A2 <--- ParentalEncouragement reduces the

model fit chi-square by 19.

which is statistically significant.

S

SaS | K.
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_ Adding a Path from Parental Achievement to A2

S1 S2 S3 P1 P2 P3 M1 M2 M3
1. 1.

Social Status FEIGIE! Mental Ability
Encouragement

R Achievement
Sl Motivation
i
Al A2 A3
~ Ggsas &

Adding the first path suggested by the second set of customized set is represented by
the path diagram shown above. The path in red shows that A2, which is an indicator of
Achievement Motivation, is now also an indicator of Parental Encouragement. Although
the factor-variable functional relationship is preserved in this suggested path diagram,
A2 becomes factorially-complex. The also implies that A2 might not have been a good

(unique) measure of achievement motivation.
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_ Adding the ParentalEncouragement ---> A2 path

proc calis data=mental nobs=115;
path

SocialStatus ---> ParentalEncouragement FamilySize AchievementMotivation,
FamilySize ---> AchievementMotivation,
ParentalEncouragement ---> AchievementMotivation MentalAbility,
AchievementMotivation ---> MentalAbility,
SocialStatus ---> 8182 83 =1.,
ParentalEncouragement ---> P1 P2 P3§A2§ =1,
AchievementMotivation ---> Al A2 A3 =1.,
MentalAbility -—=> M1 M2 M3 =1.;

run;

GSsas | B,

Nonetheless, you add this new path for A2, as shown in the above PROC CALIS code. All
you need to do is to add A2 as one of the observed indicators of the
ParentalEncouragement factor.
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Before and After Adding the
ParentalEncouragement ---> A2 Path

Before ... After...
Fit Summary Fit Summary

Chi-Square 196.7455 Chi-Square 168.2618
Chi-Square DF 59 Chi-Square DF 58
Pr > Chi-Square <.0001 Pr > Chi-Square <.0001
Standardized RMSR (SRMSR) 0.0936 Standardized RMSR (SRMSR) 0.0896
Adjusted GFI (AGFI) 0.7341 Adjusted GFI (AGFI) 0.7675
RMSEA Estimate 0.1431 RMSEA Estimate 0.1291
Bentler Comparative Fit Index 0.8087 Bentler Comparative Fit Index 0.8468

The model fit improves quite a bit.

These two tables compare the fit indices before and after adding the
ParentalEncouragement ---> A2 path. The model fit chi-square actually drops more than
19, which was suggested by the LM statistic in the preceding results. All other fit indices
improve quite a bit too.

Finally, a caution about all model modification: you should validate your newly-
established model by new data. The reason is that the model modification process is
subject to the capitalization on chance. Using a principled modification process by the
customized LM tests might not avoid the chance problem completely. Confirmation
from new data is always recommended.
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More About PROC CALIS ....

= Many other different modeling languages: COSAN,
FACTOR, LINEQS, MSTRUCT, and RAM — All
support multiple-group analysis and mean
structures

= Other estimation methods (default ML): GLS,
WLS (ADF), ULS, DWLS, and FIML

= Standardized solutions with standard error
estimates

» Analysis of missing patterns (SAS/STAT 9.3)

In this workshop, | mostly use the PATH modeling language to fit SEM. | also briefly
mentioned the LISMOD as an interface for the LISREL model. There are actually quite a
few more modeling language in PROC CALIS: COSAN, FACTOR, LINEQS, MSTRUCT, and
RAM. All of these languages support multiple-group analysis and mean structure
analysis.

| have also used the default ML (maximum likelihood) estimation method in this
workshop, but PROC CALIS supports many other estimation methods as well: GLS
(generalize least squares), WLS (weighted least squares), ULS (unweighted least squares),
DWLS (diagonally-weighted least squares), and FIML (full information maximum
likelihood).

| have only used unstandardized results in most examples, but PROC CALIS also provide
standardized solutions with standard error estimates.

Finally, analysis of missing patterns will be available with the FIML method in SAS/STAT
9.3. | hope to add more functionalities to PROC CALIS in the future.
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_ Glossary

Manifest — Observed variables (measured variables) in the data set.

Latent — Unobserved variables.

Endogenous — Dependent /mediating variables; at least one single-headed arrow points to it;
used as an outcome variable in an equation; can also be a predictor variable in other
equations.

Exogenous — Independent variables; no single-headed arrows point to it; never used as an
outcome variable in the model; used only as a predictor in the model.

Factor — A latent (unmeasured) variable that is treated as a hypothetical construct
(systematic source) in the model.

Error — An exogenous term for uncertainty (unsystematic source) associated with an
endogenous manifest variable (or any endogenous variable, in a more general definition).

Disturbance — An exogenous term for uncertainty (unsystematic source) associated with an
endogenous latent variable.

Path diagram representation

— Rectangles: Observed / manifest variables.

— Ovals / circles : Latent variables (factors, errors, and disturbances). Errors and
disturbances are not necessarily put into ovals/circles.

()
3
3
i
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_ Glossary

— Single-headed arrows: Directed paths, direct effects, path coefficients; specified in the
PATH statement.

— Double-headed arrows that point to individual variables: Variance parameters of
exogenous variables or error variance parameters of endogenous variables; specified in
the PVAR statement.

— Double-headed arrows that point to two distinct variables: Covariance parameters
between exogenous variables or error covariance parameters between endogenous
variables; specified in the PCOV statement.

Fit assessment

— model fit chi-square statistic: Nonsignificance means that the theoretical model is
supported; not a very practical index because it almost always rejects all approximating
models that are practically useful.

— AGFI (adjusted goodness-of-fit index) and Bentler’s CFI (comparative fit index): Two
popular fit indices that indicate good model fit when their values are above 0.9.

— SRMR (standardized root mean square residual) and RMSEA (root mean squared error
approximation): Two popular fit indices that indicate good model fit when their values
are below 0.05.

— AIC, CAIC, and SBC: Information criteria for comparing competing models. The smaller
the better.

§»Sas TO KNOW,
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