
Chapter 0

Regression with measurement error

Introduction

This chapter attempts to accomplish two purposes. First, it is a self-contained introduc-
tion to linear regression with measurement error in the explanatory variables, suitable as
a supplement to an ordinary regression course. Second, it is an introduction to the study
of structural equation models in general. Without confronting the general formulation at
first, the student will learn why structural equation models are important and see what
can be done with them. Some of the ideas and definitions are repeated later in the book,
so that the theoretical treatment of structural equation modeling does not depend much
on this chapter. On the other hand, the material in this chapter will be used throughout
the rest of the book as a source of examples. It should not be skipped by most readers.

0.1 Regression: Conditional or Unconditional?

Consider the usual version of univariate multiple regression. For i = 1, . . . , n,

Yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βp−1xi,p−1 + εi,

where ε1, . . . εn are independent random variables with expected value zero and common
variance σ2, and xi,1, . . . xi,p−1 are fixed constants. For testing and constructing confidence
intervals, ε1, . . . εn are typically assumed normal.

Alternatively, the regression model may be written in matrix notation, as follows. Let

y = Xβ + ε, (1)

where X is an n×p matrix of known constants, β is a p×1 vector of unknown constants,
and ε is multivariate normal with mean zero and covariance matrix σ2In; the variance
σ2 > 0 is a constant.

Now please take a step back and think about this model, rather than just accepting it
without question. In particular, think about why the x variables should be constants. It’s
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true that if they are constants then all the calculations are easier, but in the typical appli-
cation of regression to observational1 data, it makes more sense to view the explanatory
variables as random variables rather than constants. Why? Because if you took repeated
samples from the same population, the values of the explanatory variables would be dif-
ferent each time. Even for an experimental study with random assignment of cases (say
dogs) to experimental conditions, suppose that the data are recorded in the order they
were collected. Again, with high probability the values of the explanatory variables would
be different each time.

So, why are the x variables a set of constants in the formal model? One response is
that the regression model is a conditional one, and all the conclusions hold conditionally
upon the values of the explanatory variables. This is technically correct, but consider the
reaction of a zoologist using multiple regression, assuming he or she really appreciated
the point. She would be horrified at the idea that the conclusions of the study would be
limited to this particular configuration of explanatory variable values. No! The sample
was taken from a population, and the conclusions should apply to that population, not
to the subset of the population with these particular values of the explanatory variables.

At this point you might be a bit puzzled and perhaps uneasy, realizing that you have
accepted something uncritically from authorities you trusted, even though it seems to be
full of holes. In fact, everything is okay this time. It is perfectly all right to apply a
conditional regression model even though the predictors are clearly random. But it’s not
so very obvious why it’s all right, or in what sense it’s all right. This section will give the
missing details. These are skipped in every regression textbook I have seen; I’m not sure
why.

Unbiased Estimation Under the standard conditional regression model (1), it is straight-

forward to show that the vector of least-squares regression coefficients β̂ is unbiased for
β (both of these are p × 1 vectors). This means that it’s unbiased conditionally upon
X = x. In symbols,

E{β̂|X = x} = β.

This applies to every fixed x matrix with linearly independent columns, a condition that
is necessary and sufficient for β̂ to exist. Assume that the joint probability distribution
of the random matrix X assigns zero probability to matrices with linearly dependent
columns (which is the case for continuous distributions). Using the double expectation
formula E{Y } = E{E{Y |X}},

E{β̂} = E{E{β̂|X}} = E{β] = β,

since the expected value of a constant is just the constant. This means that estimates
of the regression coefficients from the conditional model are still unbiased, even when the
explanatory variables are random.

1Observational data are just observed, rather than being controlled by the investigator. For example,
the average number of minutes per day spent outside could be recorded for a sample of dogs. In contrast
to observational data are experimental data, in which the values of the variable in question are controlled
by the investigator. For example, dogs could be randomly assigned to several different values of the
variable “time outside.” Based on this, some dogs would always be taken for longer walks than others.
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The following calculation might make the double expectation a bit clearer. The outer
expected value is with respect to the joint probability distribution of the explanatory
variable values – all n vectors of them; think of the n× p matrix X. To avoid unfamiliar
notation, suppose they are all continuous, with joint density f(x). Then

E{β̂} = E{E{β̂|X}}

=

∫
· · ·
∫
E{β̂|X = x} f(x) dx

=

∫
· · ·
∫
β f(x) dx

= β

∫
· · ·
∫
f(x) dx

= β · 1 = β.

Size α Tests Suppose Model (1) is conditionally correct, and we plan to use an F test.
Conditionally upon the x values, the F statistic has an F distribution when the null
hypothesis is true, but unconditionally it does not. Rather, its probability distribution is
a mixture of F distributions, with

Pr{F ∈ A} =

∫
· · ·
∫
Pr{F ∈ A|X = x}f(x) dx.

If the null hypothesis is true and the set A is the critical region for an exact size α F -test,
then Pr{F ∈ A|X = x} = α for every fixed set of explanatory variable values x. In that
case,

Pr{F ∈ A} =

∫
· · ·
∫
αf(x) dx

= α

∫
· · ·
∫
f(x) dx (2)

= α.

Thus, the so-called F -test has the correct Type I error rate when the explanatory variables
are random (assuming the model is conditionally correct), even though the test statistic
does not have an F distribution.

It might be objected that if the explanatory variables are random and we assume they
are fixed, the resulting estimators and tests might be of generally low quality, even though
the estimators are unbiased and the tests have the right Type I error rate. Now we will
see that given a fairly reasonable set of assumptions, this objection has no merit.

Denoting the explanatory variable values by X and the response variable values by Y,
suppose the joint distribution of X and Y has the following structure. The distribution
of X depends on a parameter vector θ1. Conditionally on X = x, the distribution of
Y depends on a parameter vector θ2, and θ1 and θ2 are not functionally related. For a
standard regression model this means that the distribution of the explanatory variables
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does not depend upon the values of β or σ2 in any way. This is surely not too hard to
believe.

Please notice that the model just described is not at all limited to linear regression. It
is very general, covering almost any conceivable regression-like method including logistic
regression and other forms of non-linear regression, generalized linear models and the like.

Because likelihoods are just joint densities or probability mass functions viewed as
functions of the parameter, the notation of Appendix A.6.5 may be stretched just a little
bit to write the likelihood function for the unconditional model (with X random) in terms
of conditional densities as

L(θ1,θ2,x,y) = fθ1,θ2(x,y)

= fθ2(y|x) fθ1(x)

= L2(θ2,x,y)L1(θ1,x) (3)

Now, take the log and partially differentiate with respect to the elements of θ2. The
marginal likelihood L1(θ1,x) disappears, and θ̂2 is exactly what it would have been for a
conditional model.

In this setting, likelihood ratio tests are also identical under conditional and uncondi-
tional models. Suppose the null hypothesis concerns θ2, which is most natural. Note that
the structure of (3) guarantees that the MLE of θ1 is the same under the null and alter-

native hypotheses. Letting θ̂0,2 denote the restricted MLE of θ2 under H0, the likelihood
ratio for the unconditional model is

λ =
L2(θ̂0,2,x,y)L1(θ̂1,x)

L2(θ̂2,x,y)L1(θ̂1,x)

=
L2(θ̂0,2,x,y)

L2(θ̂2,x,y)
,

which again is exactly what it would have been under a conditional model. While this
holds only because the likelihood has the nice structure in (3), it’s a fairly reasonable set
of assumptions.

Thus in terms of both estimation and hypothesis testing, the fact that explanatory
variables are usually random variables presents no difficulty, regardless of what the dis-
tribution of those explanatory variables may be. On the contrary, the conditional nature
of the usual regression model is a virtue. Notice that in all the calculations above, the
joint distribution of the explanatory variables is written in a very general way. It really
doesn’t matter what it is, because it disappears. So one might say that with respect to
the explanatory variables, the usual linear regression model is distribution free.

0.2 Covariance and Relationship

In spite of the virtues of the conditional regression model, in this book we will focus on
unconditional regression models, in which the explanatory variables are random. The
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reason is that ultimately, the explanatory variables themselves may be influenced by
other variables. The easiest way to represent this is to admit from the outset that they
are random variables.

Most of the models we will consider are linear in the explanatory variables as well as the
regression parameters, and so relationships between explanatory variables and response
variables are represented by covariances. To clarify this fundamental point, first note that
saying two random variables are “related” really just means that they are not independent.
A non-zero covariance implies lack of independence, and therefore a relationship of some
kind between the variables. Furthermore, if the random variables in question are normally
distributed (a common and very useful model), zero covariance is exactly the same thing
as independence.

More generally, consider two random variables X and Y whose joint distribution might
not be bivariate normal. Suppose there is a tendency for higher values of X to go with
higher values of Y , and for lower values of X to go with lower values of Y . This idea of
a “positive” relationship is pictured in the left panel of Figure 1. Since the probability
of an (x, y) pair is roughly proportional to the height of the surface, a large sample of
points will be most dense where the surface is highest2. On a scatterplot, the best-fitting
line will have a positive slope. The right panel of Figure 1 shows a negative relationship.
There, the best-fitting line will have a negative slope.

Figure 1: Relationship between X and Y
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Negative Relationship

The word “covariance” suggests that it is a measure of how X and Y vary together. To

2Presumably this is why it’s called a probability density function.
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see that positive relationships yield positive covariances and negative relationships yield
negative covariances, look at Figure 2.

Figure 2: Contour Plots
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µy

Positive Relationship

µx

µy

Negative Relationship

Figure 2 shows contour plots of the densities in Figure 1. Imagine you are looking down
at a density from directly above, and that the density has been cut into slices that are
parallel with the x, y plane. The ellipses are the cut marks. The outer ellipse is lowest,
the next one in is a bit higher, and so on. All the points on an ellipse (contour) are at
the same height. It’s like a topographic map of a mountainous region, except that the
contours on maps are not so regular.

The definition of covariance is

Cov(X, Y ) = E {(X − µx)(Y − µy)} =

∫ ∞
−∞

∫ ∞
−∞

(x− µx)(y − µy)f(x, y) dx dy

In the left panel of Figure 2, more of the probability is in the upper right and lower left,
and that is where (x − µx)(y − µy) is positive. The positive volume in these regions is
greater than the negative volume in the upper left and lower right, so that the integral
is positive. In the right-hand panel the opposite situation occurs, and the covariance is
negative. The pictures are just of one example, but the rule is general. Positive covariances
reflect positive relationships and negative covariances reflect negative relationships.
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0.3 The Centering Rule

Since relationships between variables are represented by covariances, there will be a lot
of variance and covariance calculations in this book. Anything that makes them easier
will be very welcome. To make the presentation self-contained, this section re-states the
Centering Rule given on page 127 of Appendix A. The idea is that because adding or
subtracting constants has no effect on variances and covariances, it is okay to replace
random variables by “centered” versions in which the expected value has been subtracted
off, and then calculate variances and covariances. Suppose E(X) = µx. Using a non-
standard but useful notation, the centered version of a random vector will be written
c

X= X− µx, so that E(
c

X) = 0, cov(X) = E(
c

X
c

X
>

), and cov(X,Y) = E(
c

X
c

Y
>

).
Consider the linear combination L = A1X1 + · · ·+ AmXm + b. The centered version

of L is obtained by dropping the constant vector b and centering all the variables. That

is,
c

L= A1

c

X1 + · · ·+ Am

c

Xm. Here is a full statement of the Centering Rule.

Let X1, . . . ,Xm and Y1, . . . ,Yk be random vectors, and

L1 = A1X1 + · · ·+ AmXm + b. We have
c

L1 = A1

c

X1 + · · ·+ Am

c

Xm, where
c

Xj = Xj − E(Xj) for j = 1, . . . ,m.

Similarly,

L2 = C1Y1 + · · ·+ CkYk + d and
c

L2 = C1

c

Y1 + · · ·+ Ck

c

Yk, where
c

Yj = Yj − E(Yj) for j = 1, . . . , k.

Then cov(L1) = E(
c

L1

c

L
>
1 ), cov(L2) = E(

c

L2

c

L
>
2 ), and cov(L1,L2) = E(

c

L1

c

L
>
2 ).

As an example, consider the calculation of cov(X + Y).

cov(X + Y) = cov(
c

X +
c

Y)

= E(
c

X +
c

Y)(
c

X +
c

Y)>

= E(
c

X +
c

Y)(
c

X
>

+
c

Y
>

)

= E(
c

X
c

X
>

) + E(
c

Y
c

Y
>

) + E(
c

X
c

Y
>

) + E(
c

Y
c

X
>

)

= cov(X) + cov(Y) + cov(X,Y) + cov(Y,X)

This is the matrix version of the formula V ar(X+Y ) = V ar(X)+V ar(Y )+2Cov(X, Y ).
Note that if X and Y are not 1 × 1, cov(X,Y) is not in general equal to cov(Y,X),
though cov(Y,X) = cov(X,Y)>.

The centering rule is useful in scalar variance-covariance calculations too. For exam-
ple, let X1, . . . , Xn be a random sample from a distribution with mean µ and variance
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σ2, and consider the task of showing that Cov(X,Xj −X) = 0, which is the key to prov-
ing the independence of X and S2 for the normal distribution, and the gateway to the
t distribution. Since X and Xj −X are both linear combinations,

Cov(X,Xj −X) = E

( c

X (
c

Xj −
c

X)

)
= E

(
c

Xj

c

X

)
− E

(
c

X
2

)

= E

(
c

Xj
1

n

n∑
i=1

c

X i

)
− V ar

(
X
)

= E

(
1

n

n∑
i=1

c

X i

c

Xj

)
− V ar

(
X
)

=
1

n

n∑
i=1

E
( c

X i

c

Xj

)
− σ2

n

=
1

n
E

(
c

X2
j

)
+

1

n

∑
i6=j

E
( c

X i

)
E
( c

Xj

)
− σ2

n

=
1

n
V ar(Xj) + 0− σ2

n

=
σ2

n
− σ2

n
= 0

This valuable calculation is long because all the details are shown. It is significantly
messier without centering.

0.4 Unconditional regression with observed variables

Example 0.4.1

Suppose that the covariance between two random variables arises from a regression. In-
dependently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (4)

where

• Xi is has expected value µx and variance φ > 0

• εi has expected value zero and variance σ2 > 0

• Xi and εi are independent.
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The pairs (Xi, Yi) have a joint distribution that is unspecified, except for the expected
value

E

(
Xi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx

β0 + β1µx

)
,

and variance-covariance matrix

cov

(
Xi

Yi

)
= Σ = [σi,j] =

(
φ β1φ
β1φ β2

1φ+ σ2

)
.

The Centering Rule of Section 0.3 (see Page 10) is useful for calculating the covariance
between the explanatory and response variables.

Cov(Xi, Yi) = Cov(
c

X i,
c

Y i)

= E(
c

X i

c

Y i)

= E
( c

X i (β1

c

X i +εi)
)

= β1E(
c

X2
i ) + E(

c

X i)E(εi)

= β1φ

Since φ is a variance it is greater than zero, the sign of the covariance is the sign of
the regression coefficient. Positive regression coefficients produce positive relationships,
negative regression coefficients produce negative relationships, and zero corresponds to no
relationship as measured by the covariance.

While the sign of the covariance (and hence the direction of the relationship) is de-
termined by β1, the magnitude of the covariance is jointly determined by the magnitude
of β1 and the magnitude of φ, the variance of Xi. Consequently the covariance of Xi and
Yi depends on the scale of measurement of Xi. If Xi is measured in centimeters instead
of meters, its variance is 1002 = 10, 000 times as great, and Cov(Xi, Yi) is ten thousand
times as great, as well. This makes raw covariances difficult to interpret, except for the
sign.

A solution is to put the variables on a standard common scale by looking at correlations
instead of covariances. Denoting the correlation of any two random variables X and Y
by Greek letter “rho,” which is a common notation,

ρxy =
Cov(X, Y )

SD(X)SD(Y )
(5)

=
E {(X − µx)(Y − µy)}√

V ar(X)
√
V ar(Y )

= E

{(
X − µx
σx

)(
Y − µy
σy

)}
.

That is, the correlation between two random variables is the covariance between versions of
the variables that have been standardized to have mean zero and variance one. Using (5),
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the correlation for the regression example is

ρ =
β1φ√

φ
√
β2

1φ+ σ2

=
β1

√
φ√

β2
1φ+ σ2

. (6)

This may not look like much, but consider the following. In any regression, the response
variable is likely to represent the phenomenon of primary interest, and explaining why
it varies from unit to unit is an important scientific goal. For example, if Yi is academic
performance, we want to know why some students do better than others. If Yi is the crime
rate in neighbourhood i, we want to know why there is more crime in some neighbourhood
than in others. If there were no variation in some phenomenon (it’s hard to think of
examples) there might still be something to explain, but it would not be a statistical
question. Because Xi and εi are independent,

V ar(Yi) = V ar(β1Xi + εi)

= β2
1V ar(Xi) + V ar(εi)

= β2
1φ+ σ2.

Thus the variance of Yi is separated into two parts3, the part that comes from Xi and the
part that comes from εi. The part that comes from Xi is β2

1φ, and the part that comes
from εi (that is, everything else) is σ2. From (6) the squared correlation between Xi and
Yi is

ρ2 =
β2

1φ

β2
1φ+ σ2

, (7)

the proportion of the variance in Yi that comes from Xi. This quantity does not depend
on the scale of Xi or the scale of Yi, because both variables are standardized.

Now consider multiple regression. In ordinary multiple regression (the conditional
model), one speaks of the relationship between and explanatory variable and the response
variable “controlling” for other variables in the model4. This really refers to the condi-
tional expectation of Y as a function of xj for fixed values of the other x variables, say
in the sense of a partial derivative. In unconditional regression with random explanatory
variables one talks about it in the same way, but the technical version is a bit different
and perhaps easier to understand.

Example 0.4.2

Independently for i = 1, . . . , n, let Yi = β0 + β1Xi,1 + β2Xi,2 + εi, where E(Xi,1) = µ1,
E(Xi,2) = µ2, E(εi) = 0, V ar(εi) = σ2, εi is independent of both Xi,1 and Xi,2, and

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
.

3The word “analysis” means splitting into parts, so this is literally analysis of variance.
4One can also speak of “correcting” for the other variables, or “holding them constant,” or “allowing”

for them, or “taking them into account.” These are all ways of saying exactly the same thing.
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Figure 3 shows a path diagram for this model. The explanatory and response variables are
all observed, so they are enclosed in boxes. The double-headed curved arrow between the
explanatory variables represents a possibly non-zero covariance. This covariance might
arises from interesting and important processes including common influences on the X
variables, but those processes are not part of the model. Curved double-headed arrows
represent unanalyzed covariances between explanatory variables.

The straight arrows from the explanatory to response variables represent direct influ-
ence, or at least that we are interested in predicting y from x rather than the other way
around. There is a regression coefficient β on each straight arrow, and a covariance φ12

on the curved double-headed arrow.

Figure 3: Unconditional multiple regression

X
1

X
2

Y

ε

β
1

β
2

φ
12

For this model, the covariance of Xi,1 and Yi is

Cov(Xi,1, Yi) = E(
c

X i,1

c

Y i)

= E
( c

X i,1 (β1

c

X i,1 +β2

c

X i,2 +εi)
)

= β1E(
c

X2
i,1) + β2E(

c

Xi,1

c

Xi,2) + E(
c

Xi,1)E(εi)

= β1φ11 + β2φ12.

This means that the relationship between X1 and Y has two sources. One is the direct
link from X1 to Y through the straight arrow represented by β1, and the other is through
the curved arrow between X1 and X2 and then through the straight arrow linking X2 to
Y . Even if β1 = 0, there still will be a relationship provided that X1 is related to X2 and
X2 is related to Y 5. Furthermore, β2φ12 may overwhelm β1φ11, so that the covariance
between X1 and Y may be positive even though β1 is negative.

5Yes, body weight may be positively related to income because men are bigger on average and they
tend to make more money for the same work.
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All this is true of the unconditional relationship between X1 and Y , but what if you
“control” for X2 by holding it constant at some fixed value? In the classical conditional
regression model the meaning of holding a variable constant is a bit subtle, because the
explanatory variable values are already constants. For unconditional regression the inter-
pretation is more straightforward. When the explanatory variables are all random, the
relationship between X1 and Y controlling for X2 simply refers to a conditional distri-
bution — the joint distribution of X1 and Y given X2 = x2. In this case the regression
equation is

Yi = β0 + β1Xi,1 + β2xi,2 + εi

= (β0 + β2xi,2) + β1Xi,1 + εi

= β′0 + β1Xi,1 + εi

The constant is simply absorbed into the intercept. It’s a little strange in that the
intercept is potentially different for i = 1, . . . , n, but that doesn’t affect the covariance.
Following the calculations in Example 0.4.1, the conditional covariance between Xi,1 and
Yi is β1φ11. Thus to test whether X1 is connected to Y controlling for X2 (or correcting
for it, or allowing for it or some such term), it is appropriate to test H0 : β1 = 0. If
the null hypothesis is rejected, the sign of the estimated regression coefficient guides
your conclusion as to whether the conditional relationship is positive or negative. These
considerations extend immediately to multiple regression.

In terms of interpreting the regression coefficients, it is helpful to decompose (analyze)
the variance of Yi.

V ar(Yi) = V ar(β1Xi,1 + β2Xi,2 + εi)

= β2
1φ11 + β2

2φ22 + 2β1β2φ12 + σ2

The explanatory variables contribute to the variance of the response individually through
their variances and squared regression coefficients, and also jointly through their regression
coefficients and their covariance. This joint effect is not an interaction in the ordinary
sense of the term; the model of Example 0.4.2 has no product term. The null hypothesis
H0 : β1 = 0 means that X1 does not contribute at all to the variance of Y , either directly
or through its covariance with X2.

Estimation

Here is some useful terminology, repeated from Appendix A.

Definition 0.4.1 Moments of a distribution are quantities such E(X), E(Y 2), V ar(X),
E(X2Y 2), Cov(X, Y ), and so on.

Definition 0.4.2 Moment structure equations are a set of equations expressing moments
of the distribution of the data in terms of the model parameters. If the moments involved
are limited to variances and covariances, the moment structure equations are called co-
variance structure equations.
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For the simple (one explanatory variable) regression model of Example 0.4.1, the moments

are the elements of the mean vector µ = E

(
Xi

Yi

)
, and the unique elements of the

covariance matrix Σ = cov

(
Xi

Yi

)
. The moments structure equations are

µ1 = µx (8)

µ2 = β0 + β1µx

σ1,1 = φ

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

In this model, the parameters are µx, φ, β0, β1, ψ, and also the unknown distribution
functions of Xi and εi. Our interest is in the Greek-letter parameters, especially β0 and
β1. Method of Moments estimates (See Section A.6.2 in Appendix A) can be obtained
by solving the moment structure equations (8) for the unknown parameters and putting
hats on the result. The moment structure equations form a system of 5 equations in five
unknowns, and may be readily be solved to yield

β0 = µ2 −
σ1,2

σ1,1

µ1 (9)

µx = µ1

φ = σ1,1

β1 =
σ1,2

σ1,1

ψ = σ2,2 −
σ2

1,2

σ1,1

.

Thus, even though the distributions of Xi and εi are unknown, we have nice consistent
estimators of the interesting part of the unknown parameter. Putting hats on the param-
eters in Expression 9,

β̂0 = y − σ̂1,2

σ̂1,1

x

µ̂x = µ̂1 = x

φ̂ = σ̂1,1

β̂1 =
σ̂1,2

σ̂1,1

ψ̂ = σ̂2,2 −
σ̂2

1,2

σ̂1,1

.

It is very standard to assume that Xi and εi are normally distributed. In this case, the
existence of the solution (9) tells us that the parameters of the normal version of this
regression model stand in a one-to-one-relationship with the mean and covariance matrix
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of the bivariate normal distribution posessed by the observable data. In fact, the two
sets of parameter values are 100% equivalent; they are just different ways of expressing
the same thing. For some purposes, the parameterization represented by the regression
model may be more informative.

Furthermore, the Invariance Principle of maximum likelihood estimation (see Sec-
tion A.6.3 in Appendix A) says that the MLE of a one-to-one function is just that func-
tion of the MLE. So, the Method of Moments estimates are also the Maximum Likelihood
estimates in this case.

The calculations just shown are important, because they are an easy, clear example of
what will be necessary again and again throughout the course. Here is the process:

• Calculate the moments of the distribution (usually means, variances and covari-
ances) in terms of the model parameters, obtaining a system of moment structure
equations.

• Solve the moment structure equations for the parameters, expressing the parameters
in terms of the moments.

When the second step is successful, putting hats on all the parameters in the solution
yields Method of Moments estimators, even when these do not correspond to the MLEs6.

It turns out that for any reasonable models, a unique solution for the parameters is
mathematically impossible. In such cases, successful parameter estimation by any method
is impossible as well. It is vitally important to verify the possibility of successful parameter
estimation before trying it for a given data set, and verification consists of a process like
the one you have just seen. Of course it is no surprise that estimating the parameters of
a regression model is technically possible.

Because the process is so important, let us take a look at the extension to multivariate
multiple regression — that is, to linear regression with multiple explanatory variables and
multiple response variables. This will illustrate the matrix versions of the calculations.

Example 0.4.3

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (10)

where

Yi is an q× 1 random vector of observable response variables, so the regression can
be multivariate; there are q response variables.

β0 is a q × 1 vector of unknown constants, the intercepts for the q regression equa-
tions. There is one for each response variable.

6When there are the same number of moment structure equations and a unique sulution for the parame-
trers exists, the Mothod of Moments estimators and MLEs coincide. When there are more equations than
parameters they no longer coincide in general, but still the process of “putting hats on everything” yields
Method of Moments estimators.
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Xi is a p × 1 observable random vector; there are p explanatory variables. Xi has
expected value µx and variance-covariance matrix Φ, a p×p symmetric and positive
definite matrix of unknown constants.

β1 is a q×p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

εi is the error term of the latent regression. It is an q × 1 multivariate normal
random vector with expected value zero and variance-covariance matrix Ψ, a q × q
symmetric and positive definite matrix of unknown constants. εi is independent of
Xi.

The parameter vector for this model could be written θ = (β0,µx,Φ,β1,Ψ, Fx, Fε), where
it is understood that the symbols for the matrices really refer to their unique elements.

Figure 4 depicts a model with three explanatory variables and two response variables.
The explanatory and response variables are all observed, so they are enclosed in boxes.
Double-headed curved arrows between the explanatory variable represent possible non-
zero covariances. The straight arrows from the explanatory to response variables represent
direct influence, or at least that we are interested in predicting y from x rather than the
other way around. There is a regression coefficient β on each arrow. The error terms
ε1 and ε2 represent all other influences on Y1 and Y2. Since there could be common
influences (omitted variables that affect both Y1 and Y2), the error terms are assumed to
be correlated. This is the reason for the curved double-headed arrow joining ε1 and ε2.

Figure 4: Multivariate multiple regression
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There is one regression equation for each response variable. In scalar form, the model
equations are

Yi,1 = β1,0 + β1,1Xi,1 + β1,2Xi,2 + β1,3Xi,3 + εi,1

Yi,2 = β2,0 + β2,1Xi,1 + β2,2Xi,2 + β2,3Xi,3 + εi,2.
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In matrix form,

Yi = β0 + β1 Xi + εi

(
Yi,1
Yi,2

)
=

(
β1,0

β2,0

)
+

(
β1,1 β1,2 β1,3

β2,1 β2,2 β2,3

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)

Note that in traditional linear regression, the regression coefficients β form a column
vector, while the explanatory variables (a row of the X matrix) are a row vector. Here it
is the other way around, in order to allow the random vector Xi to be a column vector.

Returning to the general case of Example 0.4.3, the observable data are the random

vectors Di =

(
Xi

Yi

)
, for i = 1, . . . , n. The notation indicates that Di is a partitioned

random vector, with Xi stacked directly on top of Yi. Using the notation E(Di) = µ and
cov(Di) = Σ, one may write µ and Σ as partitioned matrices (matrices of matrices).

µ =

(
E(Xi)
E(Yi)

)
=

(
µ1

µ2

)
and

Σ = V

(
Xi

Yi

)
=

(
cov(Xi) cov(Xi,Yi)

cov(Xi,Yi)
> cov(Yi)

)
=

(
Σ11 Σ12

Σ>12 Σ22

)
As in the univariate case, the maximum likelihood estimators may be obtained by

solving the moment structure equations for the unknown parameters. The moment struc-
ture equations are obtained by calculating expected values and covariances in terms of
the model parameters. All the calculations are immediate except possibly

Σ12 = cov(Xi,Yi)

= cov(
c

Xi,
c

Yi)

= E
( c

Xi (β1

c

Xi +εi)
>
)

= Φβ>1

Thus, the moment structure equations are

µ1 = µx (11)

µ2 = β0 + β1µx
Σ11 = Φ

Σ12 = Φβ>1
Σ22 = β1Φβ

>
1 + Ψ.
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Solving for the parameter matrices is routine.

β0 = µ2 −Σ>12Σ
−1
11 µ1 (12)

µx = µ1

Φ = Σ11

β1 = Σ>12Σ
−1
11

Ψ = Σ22 −Σ>12Σ
−1
11 Σ12

As in the univariate case, the Method of Moments estimates are obtained by putting hats
on all the parameters in Expression (12). If the distributions of Xi and εi are multivariate
normal, the Invariance Principle reveals that Method of Moments estimates are also the
maximum likelihood estimates.

0.5 Omitted Variables

Some very serious problems arise when standard regression methods are applied to non-
experimental data. Note that regression methods are applied to non-experimental data
all the time, and we teach students how to do it in almost every Statistics class where
regression is mentioned. But without an understanding of the technical issues involved,
the usual applications can be misleading.

The problems do not arise because the explanatory variables are random. As we saw
in Section 0.1, that’s fine. The problems arise because the random explanatory variables
have non-zero correlations with other explanatory variables that are missing from the
regression equation and are related to the response variable. In this section, we will see
how omitting important explanatory variables from a regression equation can cause the
error term to be correlated with the explanatory variables that remain, and how that can
produce incorrect results.

To appreciate the issue, it is necessary to understand what the error term in a regres-
sion equation really represents. When we write something like

Yi = β0 + β1Xi,1 + εi, (13)

we are saying that Xi,1 contributes to Yi, but there are also other, unspecified influences.
Those other influences are all rolled together into εi.

The words “contributes” and “influences” are used deliberately. They should be setting
off alarm bells, because they imply a causal connection between Xi and Yi. Regression
models with random explanatory variables are applied mostly to observational data, in
which explanatory variables are merely recorded rather than being manipulated by the
investigator. The correlation-causation issue applies. That is, if X and Y are related,
there is in general no way to tell whether X is influencing Y , or Y is influencing X, or if
other variables are influencing both X and Y .

It could be argued that a conditional regression model (the usual model in which
the explanatory variable values are fixed constants) is just a convenient way to represent
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dependence between X and Y by specifying a generic, more or less reasonable conditional
distribution for Y given X = x. In this case, the correlation-causation issue can be
set aside, and taken up when it is time to interpret the results. But if the explanatory
variables are explicitly random, it is harder to avoid the obvious. In the simple regression
model (13), the random variable Yi is a function of the random variables Xi and εi. It
is being directly produced by them. If this is taken seriously as a scientific model as
well as a statistical model7, it is inescapably causal; it is a model of what affects what.
That’s why the straight arrows in path diagrams are directional. The issue of whether X
is influencing Y , or Y is influencing X or both is a modelling issue that will mostly be
decided based on subject-matter theory.

It is natural to ask whether the data can be used to decide which way the arrows
should be pointing. The answer is that sometimes it can, and sometimes it can’t. We
will return to this issue later in the book. In the meantime, regression models with
random explanatory variables, like the general structural equation models that are their
extensions, will be recognized as causal models.

Again, Equation (13) says that Xi is influencing Yi. All other influences are repre-
sented εi. It is common practice to assume that Xi,1 and εi are independent, or at least
uncorrelated. But that does not mean the assumption can be justified in practice. Prepare
yourself for a dose of reality.

Example 0.5.1

Suppose that the variables X2 and X3 have an impact on Y and are correlated with X1,
but they are not part of the data set. The values of the response variable are generated
as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi, (14)

independently for i = 1, . . . , n, where εi ∼ N(0, σ2). The explanatory variables are
random, with expected value and variance-covariance matrix

E

 Xi,1

Xi,2

Xi,3

 =

 µ1

µ2

µ3

 and cov

 Xi,1

Xi,2

Xi,3

 =

 φ11 φ12 φ13

φ22 φ23

φ33

 ,

where εi is independent of Xi,1, Xi,2 and Xi,3. Values of the variables Xi,2 and Xi,3 are
latent, and are not included in the data set.

Figure 5 shows a path diagram of this situation. Because the explanatory variables
Xi,2 and Xi,3 are not observable, they are latent variables, and so they are enclsed by
ovals in the path diagram. Their covariances with Xi,1 and each other are represented by
two-headed curved arrows.

7In structural equation modelling, the models are both statistical models and primitive scientific
models of the data. Once the general linear structural model is introduced, you will see that regression
is a special case.
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Figure 5: Omitted explanatory variables
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Since X2 and X3 are not observed, they are absorbed by the intercept and error term.

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi

= (β0 + β2µ2 + β3µ3) + β1Xi,1 + (β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β′0 + β1Xi,1 + ε′i.

The primes just denote a new β0 and a new ε; the addition and subtraction of β2µ2 +
β3µ3 serve to make E(ε′i) = 0. And of course there could be any number of omitted
variables. They would all get swallowed by the intercept and error term, the garbage bins
of regression analysis.

Notice that although the original error term εi is independent of Xi,1, the new error
term ε′i is not.

Cov(Xi,1, ε
′
i) = Cov(Xi,1, β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= E
( c

X i,1 (β2

c

X i,2 +β3

c

X i,3 +εi)
)

= β2φ12 + β3φ13 (15)

So, when explanatory variables are omitted from the regression equation and those ex-
planatory variables have non-zero covariance with variables that are in the equation, the
result is non-zero covariance between the error term and the explanatory variables in the
equation8.

Response variables are almost always affected by more than one explanatory variable,
and in observational data, explanatory variables usually have non-zero covariances with
one another. So, the most realistic model for a regression with just one explanatory

8The effects of the omitted variables could offset each other. In this example, it is possible that
β2φ12 + β3φ13 = 0, but that is really too much to hope.
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variable should include a covariance between the error term and the explanatory variable.
The covariance comes from the regression coefficients and covariances of some unknown
number of omitted variables; it will be represented by a single quantity because there is
no hope of estimating all those parameters individually. We don’t even know how many
there are.

We have arrived at the following model, which will be called the true model in the
discussion that follows. It may not be the ultimate truth of course, but for observational
data it is almost always closer to the truth than the usual model. Independently for
i = 1, . . . , n,

Yi = β0 + β1Xi + εi, (16)

where E(Xi) = µx, V ar(Xi) = σ2
x, E(εi) = 0, V ar(εi) = σ2

ε , and Cov(Xi, εi) = c. A
path diagram of the true model is given in Figure 6. The covariance c is indicated on the
curved arrow connecting the explanatory variable and the error term. Consider a data

Figure 6: Omitted explanatory variables have been swallowed by ε
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set consisting of pairs (X1, Y1), . . . , (Xn, Yn) coming from the true model, and the interest
is in the regression coefficent β1. Who will try to estimate the parameters of the true
model? Almost no one. Practically everyone will use ordinary least squares, as described
in countless Statistics textbooks and implemented in countless computer programs and
statistical calculators.

The model underlying ordinary least squares is Yi = β0 +β1xi+εi, where x1, . . . , xn are
fixed constants, and conditionally on x1, . . . , xn, the error terms ε1, . . . , εn are independent
normal random variables with mean zero and variance σ2. It may not be immediately
obvious, but this model implies independence of the explanatory variable and the error
term. It is a conditional model, and the distribution of the error terms is the same for
every fixed set of values x1, . . . , xn. Using a loose but understandable notation for densities
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and conditional densities,

f(εi|xi) = f(εi)

⇔ f(εi, xi)

f(xi)
= f(εi)

⇔ f(εi, xi) = f(εi)f(xi),

which is the definition of independence. So, the usual regression model makes a hidden
assumption. It assumes that any explanatory variable that is omitted from the equation
has zero covariance with the variables that are in the equation.

Surprisingly, this does not depend on the assumption of any particular distribution for
the error terms. All you need is the stipulation E(εi) = 0 in a fixed-x regression model.
It’s worth doing this in generality, so consider the multivariate multiple regression model
of Example 0.4.3 on page 17:

Yi = β0 + β1Xi + εi.

If the Xi values are considered fixed constants, the statement E(εi) = 0 actually means
E(εi|Xi = xi) = 0 for all p× 1 constant vectors xi in the support of Xi. Then,

E(εi) = E{E(εi|Xi)} = E{0} = 0,

and

cov(Xi, εi) = E(Xiε
>
i )− E(Xi)E(εi)

>

= E(Xiε
>
i )− 0

= E{E(Xiε
>
i |Xi)}.

The inner expected value is a multiple integral or sum with respect to the conditional
distribution of εi given Xi, so Xi may be moved through the inner expected value sign.
To see this, it may help to write the double expectation in terms of integrals of a general
kind9. Continuing the calculation,

E{E(Xiε
>
i |Xi)} =

∫ (∫
xε>dP

ε|X(ε)

)
dP

X
(x)

=

∫
x

(∫
ε>dP

ε|X(ε)

)
dP

X
(x)

= E{XiE(ε>i |Xi)}
= E{Xi0

>}
= E{0}
= 0

9These are Lebesgue integrals with respect to probability measures and conditional probability mea-
sures. They include multiple sums and Reimann integrals as special cases.
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Unconditional (random X) regression models typically assume zero covariance between
error terms and explanatory variables. It is now clear that conditional (fixed x) regression
models smuggle this same assumption in by making the seemingly reasonable and harmless
assertion that E(εi) = 0.

Zero covariance between error terms and explanatory variables means that any poten-
tial explanatory variable not in the model must have zero covariance with the explanatory
variables that are in the model. Of course this is almost never realistic without random
assignment to experimental conditions, so that almost every application of regression
methods to non-experimental data makes an assumption that cannot be justified. Now
we will see the consequences.

For a simple regression, both ordinary least squares and an unconditional regression
model like the true model on Page 23 with c = 0 lead to the same standard formula:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=

∑n
i=1(Xi −X)(Yi − Y )/n∑n

i=1(Xi −X)2/n

=
σ̂x,y
σ̂2
x

,

where σ̂x,y is the sample covariance between X and Y , and σ̂2
x is the sample covariance

of X. These are maximum likelihood estimates of Cov(X, Y ) and V ar(X) respectively
under the assumption of normality, and if the divisors were n−1 instead of n, they would
be unbiased.

By the consistency of the sample variance and covariance (see Section A.5 in Ap-
pendix A), σ̂x,y converges to Cov(X, Y ) and σ̂2

x converges to V ar(X) as n → ∞. Under
the true model,

Cov(X, Y ) = Cov(Xi, β0 + β1Xi + εi) = β1σ
2
x + c.

So by a continuity argument (Slutsky lemmas 7c and 7a) in Section A.5),

β̂1 =
σ̂x,y
σ̂2
x

a.s.→ β1 +
c

σ2
x

. (17)

Since the estimator is converging to quantity that is off by a fixed amount, it is reasonable
to call it asymptotically biased. Thus, while the usual teaching is that sample regression
coefficients are unbiased estimators, we see here that β̂1 is biased as n→∞. Regardless
of the true value β1, the estimate β̂1 could be absolutely anything, depending on the value
of c, the covariance between Xi and εi. The only time β̂1 behaves properly is when c = 0.

What’s going on here is that the calculation of β̂1 is based on a model that is mis-
specified. That is, it’s not the right model. The right model is what we’ve been calling
the true model. And to repeat, the true model is the most reasonable model for simple
regression, at least for most non-experimental data.
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The lesson is this. When a regression model fails to include all the explanatory variables
that contribute to the response variable, and those omitted explanatory variables have
non-zero covariance with variables that are in the model, the regression coefficients are
inconsistent. In other words, with more and more data they do not approach the right
answer. Instead, they get closer and closer to a specific wrong answer.

If you think about it, this fits with what happens frequently in practical regrssion
analysis. When you add a new explanatory variable to a regression equation, the coeffi-
cients of the variables that are already in the equation do not remain the same. Almost
anything can happen. Positive coefficients can turn negative, negative ones can turn posi-
tive, statistical significance can appear where it was previously absent or disappear where
it was previously present. Now you know why.

Notice that if the values of one or more explanatory variables are randomly assigned,
the random assignment guarantees that these variables are independent of any and all
variables that are omitted from the regression equation. Thus, the variables in the equa-
tion have zero covariance with those that are omitted, and all the trouble disappears. So,
well-controlled experimental studies are not subject to the kind of problems described here.

Actually, the calculations in this section support a familiar point, the correlation-
causation issue, which is often stated more or less as follows. If A and B are related to
one another, one cannot necessarily infer that A affects B. It could be that B affects A,
or that some third variable C is affecting both A and B. To this we can now add the
possibility that the third variable C affects B and is merely correlated with A.

Variables like C are often called confounding variables, or more rarely, lurking vari-
ables. The usual advice is that the only way to completely rule out their action is to
randomly assign subjects in the study to the various values of A, and then assess the
relationship of A to B. Again, now you know why.

It should be pointed out that while the correlation-causation issue presents grave
obstacles to interpreting the results of observational studies, there is no problem with
pure prediction. If you have a data set with x and y values and your interest is predicting
y from the x values for a new set of data, a regression equation will be useful, provided
that there is a reasonably strong relationship between x and y. From the standpoint
of prediction, it does not really matter whether y is related to x directly, or indirectly
through unmeasured variables that are related to x. You have x and not the unmeasured
variables, so use it. An example would be an insurance company that seeks to predict
the amount of money that you will claim next year (so they can increase your premiums
accordingly now). If it turns out that this is predictable from the type of music you
download, they will cheerfully use the information, and not care why it works.

Also, the convergence of β̂1 to the wrong answer in (17) may be misleading, but it does
not necessarily yield the wrong conclusion. In much of the social and biological sciences,
the theories are not detailed and sophisticated enough to make predictions about the
actual values of regression coefficients, just whether they should be positive, negative or
zero. So, if the variable being tested and the omitted variables are pulling in the same
direction (that is, if β1 and c in Model (16) on Page 23 are either both positive or both
negative), the study will come to the “right” conclusion. The trouble is that you can’t
tell, because you don’t even know what the omitted variables are. All you can do is hope,
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and that’s not a recipe for good science.

Trying to fit the true model We have seen that serious trouble arises from adopting
a mis-specified model with c = Cov(Xi, εi) = 0, when in fact because of omitted variables,
c 6= 0. It is natural, therefore, to attempt estimation and inference for the true model
Yi = β0 + β1Xi + εi (see Page 23) in the case where c = Cov(Xi, εi) need not equal
zero. For simplicity, assume that Xi and εi have a bivariate normal distribution, so that
the observable data pairs (Xi, Yi) for i = 1, . . . , n are a random sample from a bivariate
normal distribution with mean vector µ and variance-covariance matrix Σ.

It is straightforward to calculate µ and Σ from the equation and assumptions of the
true model (16). The result is

µ =

(
µ1

µ2

)
= E

(
Xi

Yi

)
=

(
µx

β0 + β1µx

)
(18)

and

Σ =

(
σ11 σ12

σ12 σ22

)
= cov

(
Xi

Yi

)
=

(
σ2
x β1σ

2
x + c

β1σ
2
x + c β2

1σ
2
x + 2β1c+ σ2

ε

)
. (19)

This shows the way in which the parameter vector θ = (µx, σ
2
x, β0, β1, σ

2
ε , c) determines µ

and Σ, and hence the probability distribution of the data.
Our primary interest is in β1. Because the data pairs (Xi, Yi) come from a bivariate

normal distribution, all you can ever learn from the data are the approximate values of µ
and Σ. With larger and larger samples, all you get is better and better approximations
of µ and Σ. That’s all there is to know. But even if you knew µ and Σ exactly, could
you know β1? Formulas (18) and (19) yield a system of five equations in six unknown
parameters.

µ1 = µx

µ2 = β0 + β1µx

σ11 = σ2
x (20)

σ12 = β1σ
2
x + c

σ22 = β2
1σ

2
x + 2β1c+ σ2

ε

The problem of recovering the parameter values from µ and Σ is exactly the problem
of solving these five equations in six unknowns. µx = µ1 and σ2

x = σ11 are easy. The
remaining 3 equations in 4 unknowns have infinitely many solutions. That is, infinitely
many sets of parameter values yield exactly the same distribution of the sample data.
Distinguishing among them based on sample data is impossible in principle.

To see this in detail, substitute µ1 for µx and σ11 for σ2
x in (20), obtaining

µ2 = β0 + β1µ1

σ12 = β1σ11 + c (21)

σ22 = β2
1σ11 + 2β1c+ σ2

ε
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Letting the moments µj and σij remain fixed, we will now write the other parameters as
functions of c, the covariance between Xi and εi. Then, moving c will move the other
parameters (except for µx = µ1 and σ2

x = σ11), tracing out a one-dimensional subset of
the 6-dimensional parameter space where

• All the equations in (20) are satisfied,

• The values of µ and Σ remain constant, and

• The distribution of (Xi, Yi)
> is N2(µ,Σ).

First solve for β1 in the second equation, obtaining β1 = σ12−c
σ11

. Substituting this expres-
sion for β1 and simplifying, we are able to write all the other model parameters in terms
of c, as follows.

µx = µ1

σ2
x = σ11

β0 = µ2 − µ1

(
σ12 − c
σ11

)
(22)

β1 =
σ12 − c
σ11

σ2
ε = σ22 +

c2 − σ2
12

σ11

The parameters µx and σ2
x are constant functions of c, while β0 and β1 are linear functions,

and σ2
ε is a quadratic function. The equations (22) define a one-dimensional surface in

the six-dimensional parameter space, a kind of curved thread in R6. Moving c from −∞
to ∞ traces out the points on the thread. Importantly, as c ranges from −∞ to +∞ the
regression coefficient β1 ranges from +∞ to −∞. This means that β1 might be positive,
it might be negative, or it might be zero. But you really can’t tell, because all real values
of β1 on the surface yield the same population mean and population variance-covariance
matrix, and hence the same distribution of the sample data. There is no way to distinguish
between the possible values of β1 based on sample data.

One technical detail needs to be resolved. Can c really range from −∞ to ∞? If not,
the possible values of β1 would be restricted as well. Two conditions need to be checked.
First, the covariance matrix of (Xi, εi)

> has a non-negative determinant by the Cauchy-
Schwarz inequality. For the bivariate normal density to exist (not a bad assumption), the
determinant must be non-zero, and hence strictly positive. Second, σ2

ε must be greater
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than zero. For points on the thread, the first condition is∣∣∣∣ σ2
x c
c σ2

ε

∣∣∣∣ = σ2
xσ

2
ε − c2

= σ11

(
σ22 +

c2 − σ2
12

σ11

)
− c2

= σ11σ22 + c2 − σ2
12 − c2

= σ11σ22 − σ2
12

= |Σ| > 0.

This imposes no restriction on c at all. We also need to check whether σ2
ε > 0 places any

restriction on c for points on the thread.

σ2
ε > 0

⇔ σ22 +
c2 − σ2

12

σ11

> 0

⇔ σ11σ22 + c2 − σ2
12 > 0

⇔ |Σ|+ c2 > 0,

which is true since |Σ| > 0. Again, the inequality places no restriction on c.
Let me beat this point into the ground a bit, because it is important. Since the

data are bivariate normal, their probability distribution corresponds uniquely to the pair
(µ,Σ). All you can ever learn from any set of sample data is the probability distribution
from which they come. So all you can ever get from bivariate normal data, no matter
what the sample size, is a closer and closer approximation of µ and Σ. If you cannot find
out whether β1 is positive, negative or zero from µ and Σ, you will never be able to make
reasonable estimates or inferences about it from any set of sample data.

What would happen if you tried to estimate the parameters by maximum likelihood?
For every µ ∈ R2 and every 2×2 symmetric positive definite Σ, there is a surface (thread)

in R6 defined by (22). This includes (µ̂, Σ̂). On that particular thread, the likelihood is
highest. Picture a surface with a curvy ridge at the top. The surface has infinitely many
maxima, all at the same height, forming a connected set. If you take partial derivatives of
the log likelihood and set them all equal to zero, there will be infinitely many solutions. If
you do numerical maximum likelihood, good software will find a point on the ridge, stop,
detect that the surface is not fully concave down there, and complain. Less sophisticated
software will just find a point on the ridge, and stop. The stopping place, that is, the
maximum likelihood estimate, depends entirely on where the numerical search starts.

To summarize, if explanatory variables are omitted from a regression equation and
those variables have non-zero covariance c with explanatory variables that are not omitted,
the result is non-zero covariance between explanatory variables and the error term. And,
if there is a non-zero covariance between the error term an an explanatory variable in a
regression equation, the false assumption that c = 0 can easily lead to false results. But
allowing c to be non-zero means that infinitely many parameter estimates will be equally
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plausible, given any set of sample data. In particular, no set of data will be able to
provide a basis for deciding whether regression coefficients are positive, negative or zero.
The problem is fatal if all you have is Xi and Yi.

The trouble here is lack of parameter identifiability. If a parameter is a function of
the distribution of the observable data, it is said to be identifiable. The idea is that the
parameter is potentially knowable if you knew the distribution of the observable data. If
the parameter is not knowable based on the data, they naturally there will be trouble
with estimation and inference. Parameter identifiability is a central theme of this book,
and will be taken up again in Section 0.10 on Page 48.

0.6 Instrumental Variables as a Solution to Omitted

Variables

The method of instrumental variables was introduced by the economist Phillip Wright in
the appendix a 1928 book The Tariff on Animal and Vegetable Oils [17]. See also the
historical account by Stock and Trebbi [13]. An instrumental variable is a variable that
is correlated with an explanatory variable, but is not correlated with any error terms
and has no direct connection to the response variable. In Econometrics, the instrumental
variable usually influences the explanatory variable. An instrumental variable is usually
not the main focus of attention; it’s just a tool.

Example 0.6.1

Suppose we want to know the contribution of income to credit card debt. Because of
omitted variables, the model

Yi = α + βXi + εi,

is guaranteed to fail. Many things influence both income and credit card debt, such as
personal style of money management, education, number of children, expenses caused by
illness . . . . The list goes on. As a result, Xi and εi have non-zero covariance. The least
squares estimate of β is inconsistent, and so is every other possible estimate10. We can’t
possibly measure all the variables that affect both income and debt; we don’t even know
what they all are. Instead, let’s add an instrumental variable.

Definition 0.6.1 An instrumental variable for an explanatory variable is another ran-
dom variable that has non-zero covariance with the explanatory variable, and no direct
connection with any other variable in the model.

Focus the study on real estate agents in many cities, and include median price of resale
home for each agent along with income and credit card debt. Median price of resale home
qualifies an an instrumental variable according to the definition. Since real estate agents

10This is strictly true if the data are normal. For non-normal data something might be possible, but
one would have to know the specific non-normal distribution.
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typically receive a percentage of the selling price, it is definitely related to income. Also,
housing prices are determined by external economic forces that have little to do with
all the personal, individual-level variables that affect income and debt. So, we have the
following:

• Wi is median price of resale home in agent i’s district.

• Xi is annual income of real estate agent i.

• Yi is agent i’s credit card debt.

The model equations are

Xi = α1 + β1Wi + εi1

Yi = α2 + β2Xi + εi2,

and Figure 7 shows the path diagram. The main interest is in β2, the link between income
and credit card debt. The covariance between ε1 and ε2 represents all the omitted variables

Figure 7: W is median price of resale home, X is income, Y is credit card debt
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that affect income and credit card debt.
Denoting the expected value of the data vector Di = (Wi, Xi, Yi)

> by µ = [µj] and its
covariance matrix by Σ = [σij], we have

Σ =

W X Y

W σ2
w β1σ

2
w β1β2σ
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X · β2
1σ

2
w + σ2

1 β2(β2
1σ

2
w + σ2

1) + c

Y · · β2
1β

2
2σ

2
w + β2

2σ
2
1 + 2β2c+ σ2

2

(23)

The lower triangle of the covariance matrix is omitted to make it less cluttered. The
notation in (23) is self-explanatory except possibly for V ar(εi1) = σ2

1 and V ar(εi2) = σ2
2.
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It is immediately apparent that the critical parameter β2 can be recovered from Σ by
β2 = σ13

σ12
, provided β1 6= 0. A nice Method of Moments estimator in terms of the sample

covariances is β̂2 = σ̂13
σ̂12

.

The requirement that β1 6= 0 is no problem, because W is a good instrumental variable.
Median resale price is certainly related to the income of real estate agents, and furthermore
the relationship is guaranteed to be positive. This is a feature of good a instrumental
variable. Its relationship to the explanatory variable should be clear, and so obvious that
it is hardly worth investigating. The usefulness of the instrumental variable is in the light
it casts on relationships that are not so obvious.

In this example, the instrumental variable worked beautifully. All the model parame-
ters that appear in Σ can be recovered by simple substitution, µz = µ1, and then α1 and
α2 can be recovered from µ2 = E(Xi) and µ3 = E(Yi) respectively. The function from
(α1, α2, β1, β2, µw, σ

2
w, σ

2
1, σ

2
2, c) to (µ,Σ) is one-to one. Method of Moments estimates

are readily available, and they are consistent by the continuity of the functions involved.
Under the additional assumption of multivariate normality, the Method of Moments esti-
mates are also maximum likelihood by the invariance principle.

To test the central null hypothesis H0 : β2 = 0, fancy software is not required. The
covariance σ13 equals zero if and only if β2 = 0, and they have the same sign because we
are convinced that β1 > 0. So it is necessary only to test the correlation between housing
price and real estate agents’ credit card debt. Under the normal assumption, the usual
test is exact and a large sample is not required. If the normal assumption is worrisome,
the non-parametric test associated with the Spearman rank correlation coefficient is a
permutation test carried out on ranks, and an exact small-sample p-value is available
even though some software produces a large-sample approximation by default.

The instrumental variable method saved the day in this example, but it does not solve
the problem of omitted variables in every case, or even in most cases. This is because
good instrumental variables are not easy to find. They will not just happen to be in the
data set, except by a miracle. They really have to come from another universe, and still
have a strong, clear connection to the explanatory variable. Data collection has to be
planned, with a model that admits the existence of omitted variables explicitly in mind.

Measurement Error All models are inexact representations of reality, but I must
admit that the model in Figure 7 is seriously wrong. Our interest is in how true income
affects true credit card debt. But these variables are not observed. What we have in
the data file are reported income and reported credit card debt. For various reasons that
the reader can easily supply, the truth and what people report about financial details are
not the same thing. When we record median price of a resale home, that’s unlikely to
be perfectly accurate either. As we will see later in this chapter, measurement error in
the explanatory variables presents serious problems for regression analysis in general. We
will also see that instrumental variables can help with measurement error as well as with
omitted variables, but first it is helpful to introduce the topic of measurement error in an
organized way.
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0.7 The Idea of Measurement Error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error.

One might think that for experimentally manipulated variables like the amount of drug
administered in a biological experiment, laboratory procedures would guarantee that for
all practical purposes, the amount of drug a subject receives is exactly what you think
it is. But Alison Fleming (University of Toronto Psychology department) pointed out to
me that when hormones are injected into a laboratory rat, the amount injected is exactly
right, but due to tiny variations in needle placement, the amount actually reaching the
animal’s bloodstream can vary quite a bit. The same thing applies to clinical trials of drugs
with humans. We will see later, though, that the statistical consequences of measurement
error are not nearly as severe with experimentally manipulated variables, assuming the
study is well-controlled in other respects.

Random variables that cannot be directly observed are called latent variables. The ones
we can observe are sometimes called “manifest,” but here they will be called “observed”
or “observable,” which is also a common usage. Upon reflection, it is clear that most of
the time, we are interested in relationships among latent variables, but at best our data
consist only of their imperfect, observable counterparts. One is reminded of the allegory
of the cave in Plato’s Republic, where human beings are compared to prisoners in a cave,
with their heads chained so that they can only look at a wall. Behind them is a fire,
which casts flickering shadows on the wall. They cannot observe reality directly; all they
can see are the shadows.

A simple additive model for measurement error

Measurement error can take many forms. For categorical variables, there is classification
error. Suppose a data file indicates whether or not each subject in a study has ever had
a heart attack. Clearly, the latent Yes-No variable (whether the person has truly had a
heart attack) does not correspond perfectly to what is in the data file, no matter how
careful the assessment is. Mis-classification can and does occur, in both directions.

Here, we will put classification error aside because it is technically difficult, and focus
on a very simple form of measurement error that applies to continuous variables. There
is a latent random variable X that cannot be observed, and a little random shock e that
pushes X up or down, producing an observable random variable W . That is,

W = X + e (24)

Let’s say E(X) = µ, E(e) = 0, V ar(X) = σ2
x, V ar(e) = σ2

e , and Cov(X, e) = 0. Because
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X and e are uncorrelated,

V ar(W ) = V ar(X) + V ar(e) = σ2
x + σ2

e .

Without further information, it is impossible to tell how much of the variance in the
observable variable W comes from variation in the true quantity of interest, and how
much comes from random noise.

In psychometric theory11, the reliability12 of a measurement is defined as the squared
correlation of the true score with the observed score. Here the “true score” is X and the
“observed score” is W . Recalling the definition of a correlation,

Corr(X, Y ) =
Cov(X, Y )

SD(X)SD(Y )
,

we have the reliability of the measurement W equal to

ρ2 =

(
Cov(X,W )

SD(X)SD(W )

)2

=

(
σ2
x√

σ2
x

√
σ2
x + σ2

e

)2

=
σ4
x

σ2
x(σ

2
x + σ2

e)

=
σ2
x

σ2
x + σ2

e

. (25)

That is, the reliability of a measurement is the proportion of the measurement’s variance
that comes from the true quantity being measured, rather than from measurement error13.

A reliability of one means there is no measurement error at all, while a reliability of zero
means the measurement is pure noise. In the social sciences, reliabilities above 0.9 could be
called excellent, from 0.8 to 0.9 good, and from 0.7 to 0.8 acceptable. Frequently, responses
to single questions have reliabilities that are much less than this. To see why reliability
depends on the number of questions that measure the latent variable, see Exercise ?? at
the end of this section.

11Psychometric theory is the statistical theory of psychological measurement. The bible of psychometric
theory is Lord and Novick’s (1968) classic Statistical theories of mental test scores [10]. It is not too
surprising that measurement error would be acknowledged and studied by psychologists. A large sector
of psychological research employs “measures” of hypothetical constructs like neuroticism or intelligence
(mostly paper-and-pencil tests), but no sensible person would claim that true value of such a trait is
exactly the score on the test. It’s true there is a famous quote “Intelligence is whatever an intelligence
test measures.” I have tried unsuccessfully to track down the source of this quote, and I now suspect that
it is just an illustration of a philosophic viewpoint called Logical Positivism (which is how I first heard
it), and not a serious statement about intelligence measurement.

12Reliability has a completely unrelated meaning in survival analysis, and I believe yet another meaning
in statistical quality control.

13It’s like the proportion of variance in the response variable explained by a regression, except that
here the explanatory variable is the latent true score. Compare Expression (7) on Page 13.
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Figure 8: Two independent measurements of a latent variable
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Since reliability represents quality of measurement, estimating it is an important goal.
Using the definition directly is seldom possible. Reliability is the squared correlation
between a latent variable and its observable counterpart, but by definition, values of the
latent variable cannot be observed. On rare occasions and perhaps with great expense,
it may be possible to obtain perfect or near-perfect measurements on a subset of the
sample; the term gold standard is sometimes applied to such measurements. In that
case, the reliability of the usual measurement can be estimated by a squared sample
correlation between the usual measurement and the gold standard measurement. But even
measurements that are called gold standard are seldom truly free of measurement error.
Consequently, reliabilities that are estimated by correlating imperfect gold standards and
ordinary measurements are biased downward: See Exercise ?? at the end of this section.
It is clear that another approach is needed.

Test-retest reliability Suppose that it is possible to make the measurement of W
twice, in such a way that the errors of measurement are independent on the two occasions.
We have

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and X, e1

and e2 are all independent. Because V ar(e1) = V ar(e2), W1 and W2 are called equivalent
measurements. That is, they are contaminated by error to the same degree. Figure 8 is a
path diagram of this model.

It turns out that the correlation between W1 and W2 is exactly equal to the reliability,
and this opens the door to reasonable methods of estimation. The calculation (like many
in this book) is greatly simplified by using the Centering Rule of Section 0.3 (see Page 10).
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Corr(W1,W2) =
Cov(W1,W2)

SD(W1)SD(W2)

=
E(

c

W1

c

W2)√
σ2
x + σ2

e

√
σ2
x + σ2

e

=
E(

c

X +e1)(
c

X +e2)

σ2
x + σ2

e

=
E(

c

X
2

)) + 0 + 0 + 0

σ2
x + σ2

e

=
σ2
x

σ2
x + σ2

e

, (26)

which is the reliability.

The calculation above is the basis of test-retest reliability14, in which the reliability of
a measurement such as an educational or psychological test is estimated by the sample
correlation between two independent administrations of the test. That is, the test is given
twice to the same sample of individuals, ideally with a short enough time between tests
so that the trait does not really change, but long enough apart so they forget how they
answered the first time.

Correlated measurement error Suppose participants remembered their wrong an-
swers or lucky guesses from the first time they took a test, and mostly gave the same
answer the second time. The result would be a positive correlation between the measure-
ment errors e1 and e2. Omitted variables (see Section 0.5) like level of test anxiety for
educational tests or desire to make a favourable impression for attitude questionnaires can
also produce a positive covariance between errors of measurement. Whatever the source,
positive covariance between e1 and e2 is an additional source of positive covariance be-
tween W1 and W2 that does not come from the latent variable X being measured. The
result is an inflated estimate of reliability and an unduly rosy picture of the quality of
measurement.

We will return more than once to the issue of correlated errors of measurement. For
now, just notice how careful planning of the data collection (in this case, the time lag

14Closely related to test-retest reliability is alternate forms reliability, in which you correlate two
equivalent versions of the test. In split-half reliability, you split the items of the test into two equivalent
subsets and correlate them. There are also internal consistency estimates of reliability based on corre-
lations among items. Assuming independent errors of measurement for split half reliability and internal
consistency reliability is largely a fantasy, because both measurements are affected in the same way by
short-term situational influences like mood, amount of sleep the night before, noise level, behaviour of
the person administering the test, and so on.
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between the two administrations of the test) can eliminate or at least reduce the correla-
tion between errors of measurement. In general, the best way to take care of correlated
measurement error is with good research design.

Sample Test-retest Reliability Again, suppose it is possible to measure a variable of
interest twice, in such a way that the errors of measurement are uncorrelated and have
equal variance. Then the reliability may be estimated by doing this for a random sample
of individuals. Let X1, . . . , Xn be a random sample of latent variables (true scores), with
E(Xi) = µ and V ar(Xi) = σ2

x. Independently for i = 1, . . . , n, let

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where E(ei,1) = E(ei,2) = 0, V ar(ei,1) = V ar(ei,2) = σ2
e , and Xi, ei,1 and ei,2 are all inde-

pendent for i = 1, . . . , n. Then the sample correlation between the pairs of measurements
is

Rn =

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√∑n

i=1(Wi,1 −W 1)2

√∑n
i=1(Wi,2 −W 2)2

=

∑n
i=1Wi,1Wi,2 − nW 1W 2√∑n

i=1W
2
i,1 − nW

2

1

√∑n
i=1 W

2
i,2 − nW

2

2

=
( 1
n

∑n
i=1 Wi,1Wi,2) − W 1W 2√

( 1
n
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i=1W

2
i,1)−W 2

1

√
( 1
n

∑n
i=1 W

2
i,2)−W 2

2

, (27)

where the subscript on the sample correlation coefficient Rn emphasizes that it is a func-
tion of the sample size n. By the Strong Law of Large Numbers (see Appendix A.5), we
have the following:

1

n

n∑
i=1

Wi,1Wi,2
a.s.→ E(Wi,1Wi,2) = Cov(Wi,1,Wi,2) + E(Wi,1)E(Wi,2) = σ2

x + µ2

W 1
a.s.→ E(Wi,1) = µ

W 2
a.s.→ E(Wi,2) = µ

1

n

n∑
i=1

W 2
i,1

a.s.→ E(W 2
i,1) = V ar(Wi,1) + (E{Wi,1})2 = σ2

x + σ2
e + µ2

1

n

n∑
i=1

W 2
i,2

a.s.→ E(W 2
i,2) = V ar(Wi,2) + (E{Wi,2})2 = σ2

x + σ2
e + µ2.
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Now, since Rn is a continuous function of the various sample moments in (27) and almost
sure convergence can be treated like an ordinary limit,

Rn
a.s.→ σ2

x + µ2 − µ2√
σ2
x + σ2

e + µ2 − µ2
√
σ2
x + σ2

e + µ2 − µ2

=
σ2
x

σ2
x + σ2

e

= ρ2.

So Rn is a strongly consistent estimator of the reliability. That is, for a large enough
sample size, Rn will get arbitrarily close to the true reliability, and this happens with
probability one.

0.8 Ignoring measurement error

Standard regression models make no provision at all for measurement error, so when
such models are applied to real data, we are effectively ignoring any measurement error
that may be present – pretending it’s not there. This section will show that the result
can be a real disaster, featuring incorrect estimates of regression parameters and Type I
error probabilities approaching one as the sample size increases. Much of this material,
including the history of the topic (warnings go back to at least 1936) can be found in a
2009 paper by Brunner and Austin [5].

Measurement error in the response variable

While ignoring measurement error in the explanatory variables can have very bad con-
sequences, it turns out that under some conditions, measurement error in the response
variable is a less serious problem.

Example 0.8.1

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Vi = ν + Yi + ei,

where V ar(Xi) = σ2
x, V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Figure 9 is a path diagram of this model.
In Example 0.8.1, the explanatory variable Xi is observable, but the response variable

Yi is latent. Instead of Yi, we can see Vi, which is Yi plus a piece of random noise, and also
plus a constant ν that represents the difference between the expected value of the latent
random variable and the expected value of its observable counterpart. This constant term
could be called measurement bias. For example, if Y is true amount of exercise in minutes
and V is reported exercise, the measurement bias ν is population mean exaggeration, in
minutes.
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Figure 9: Measurement error in the response variable
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Since Yi cannot be observed, Vi is used in its place, and the data analyst fits the naive
model

Vi = β0 + β1Xi + εi.

Studying Mis-specified Models The “naive model” above is an example of a model
that is mis-specified. That is, the model says that the data are being generated in a
particular way, but this is not how the data are actually being produced. Generally
speaking, correct models will usually yield better results than incorrect models, but it’s
not that simple. In reality, most statistical models are imperfect. The real question is
how much any given imperfection really matters. As Box and Draper (1987, p. 424) put
it, “Essentially all models are wrong, but some are useful.” [4]

So, it is not enough to complain that a statistical model is incorrect, or unrealistic.
To make the point convincingly, one must show that by being wrong in a particular way,
the model can yield results that are misleading. To do this, it is necessary to have a
specific true model in mind; typically the so-called true model is one that is obviously
more believable than the model being challenged. Then, one can examine estimators
or test statistics based on the mis-specified model, and see how they behave when the
true model holds. We have already done this in Section 0.5 in connection with omitted
variables; see Example 0.5.1 starting on Page 21.

Under the true model of Example 0.8.1 (measurement error in the response variable
only), we have Cov(X, Y ) = β1σ

2
x and V ar(X) = σ2

x. Then,

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=
σ̂x,y
σ̂2
x

a.s.→ Cov(X, Y )

V ar(X)

=
β1σ

2
x

σ2
x

= β1.
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That is, measurement error in the response variable causes no asymptotic bias. Even when
the model is mis-specified by assuming that the response variable is measured without
error, the ordinary least squares estimate of the slope is consistent. There is a general
lesson here about mis-specified models. Mis-specification (using the wrong model) is not
always a problem; sometimes everything works out fine.

Let’s see why the naive model works so well here. The response variable under the
true model may be re-written

Vi = ν + Yi + ei

= ν + (β0 + β1Xi + εi) + ei

= (ν + β0) + β1Xi + (εi + ei)

= β′0 + β1Xi + ε′i (28)

What has happened here is a re-parameterization (not a one-to-one reparameterization),
in which the pair (ν, β0) is absorbed into β′0, and V ar(εi + ei) = σ2

ε + σ2
e is absorbed into

a single unknown variance that will probably be called σ2. It is true that ν and β0 will
never be knowable separately, and also σ2

ε and σ2
e will never be knowable separately. But

that really doesn’t matter, because the true interest is in β1.
In this book and in standard statistical practice, there are many models in which

the response variable appears to be measured without error. But error-free measurement
is a rarity at best, so these models should be viewed as re-parameterized versions of
models that do acknowledge the reality of measurement error in the response variable. A
critical feature of these re-parameterized models is that the measurement error is assumed
independent of everything else in the model. When this fails, there is usually trouble.

Measurement error in the explanatory variable

Example 0.8.2

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Wi = Xi + ei,

where V ar(Xi) = σ2
x, V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Figure 10 is a path diagram of the model.
Unfortunately, the explanatory variable Xi cannot be observed; it is a latent variable.

So instead Wi is used in its place, and the data analyst fits the naive model

Yi = β0 + β1Wi + εi.

Under the naive model of Example 0.8.2, the ordinary least squares estimate of β1 is

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2
=
σ̂w,y
σ̂2
w

.
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Figure 10: Measurement error in the explanatory variable
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Now regardless of what model is correct, σ̂w,y
a.s.→ Cov(W,Y ) and σ̂2

w
a.s.→ V ar(W )15, so

that by the continuous mapping property of ordinary limits16, β̂1
a.s.→ Cov(W,Y )

V ar(W )
.

Let us assume that the true model holds. In that case,

Cov(W,Y ) = β1σ
2
x and V ar(W ) = σ2

x + σ2
e .

Consequently,

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2

=
σ̂w,y
σ̂2
w

a.s.→ Cov(W,Y )

V ar(W )

= β1

(
σ2
x

σ2
x + σ2

e

)
. (29)

So when the fuzzy explanatory variable Wi is used instead of the real thing, β̂1 con-
verges not to the true regression coefficient, but to the true regression coefficient multiplied
by the reliability of Wi. That is, it’s biased, even as the sample size approaches infin-
ity. It is biased toward zero, because reliability is between zero and one. The worse the
measurement of X, the more the asymptotic bias.

What happens to β̂1 in (29) is sometimes called attenuation, or weakening, and in
this case that’s what happens. The measurement error weakens the apparent relationship
between X1 and Y . If the reliability of W can be estimated from other data (and psychol-
ogists are always trying to estimate reliability), then the sample regression coefficient can

15This is true because sample variances and covariances are strongly consistent estimators of the cor-
responding population quantities; see Section A.5 in Appendix A.

16Almost sure convergence acts like an ordinary limit, applying to all points in the underlying sample
space, except possibly a set of probability zero. If you wanted to do this problem strictly in terms of
convergence in probability, you could use the Weak Law of Large Numbers and then use Slutsky Lemma 7a
of Appendix A.5.
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be “corrected for attentuation.” Sample correlation coefficients are sometimes corrected
for attenuation too.

Now typically, social and biological sientists are not really interested in point estimates
of regression coefficients. They only need to know whether they are positive, negative
or zero. So the idea of attenuation sometimes leads to a false sense of security about
measurement error. It’s natural to think that all it does is to weaken what’s really there,
so if you can reject the null hypothesis and conclude that a relationship is present even
with measurement error, you would have reached the same conclusion if the explanatory
variables had not been measured with error.

Unfortunately, it’s not so simple. The reasoning above is okay if there is just one
explanatory variable, but we will see that with two or more explanatory variables the
effects of measurement error are far more serious and potentially misleading.

Two Explanatory Variables

In Example 0.8.2, we saw that measurement error in the explanatory variable causes the
estimated regression coefficient β̂1 to be biased toward zero as n → ∞. Bias toward
zero weakens the apparent relationship between X and Y ; and if β1 = 0, there is no
asymptotic bias. So for the case of a single explanatory variable measured with error, the
sample relationships still reflect population relationships, with the sample relationships
being weaker because of inexact measurement. But this only holds for regression with
a single explanatory variable. Measurement error causes a lot more trouble for multiple
regression. In this example, there are two explanatory variables, both measured with
error.

Example 0.8.3

Independently for i = 1, . . . , n,

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,

where where E(Xi,1) = µ1, E(Xi,2) = µ2, E(εi) = E(ei,1) = E(ei,2) = 0, V ar(εi) = σ2,
V ar(ei,1) = ω1, V ar(ei,2) = ω2, the errors εi, ei,1 and ei,2 are all independent, Xi,1 is
independent of εi, ei,1 and ei,2, Xi,2 is independent of εi, ei,1 and ei,2, and

V ar

(
Xi,1

Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

Figure 11 shows the path diagram.
Again, because the actual explanatory variables Xi,1 and Xi,2 are latent variables that

cannot be observed, Wi,1 and Wi,2 are used in their place. The data analyst fits the naive
model

Yi = β0 + β1Wi,1 + β2Wi,2 + εi.
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Figure 11: Two explanatory variables measured with error
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An attractive feature of multiple regression is its ability to represent the relationship
of one or more explanatory variables to the response variable, while controlling for other
explanatory varables. In fact, this is the biggest appeal of multiple regression and similar
methods for non-experimental data. In Example 0.8.3, our interest is in the relationship
of X2 to Y controlling for X1. The main objective is to test H0 : β2 = 0, but we are also
interested in the estimation of β2.

We will try the same approach that worked for Example 0.8.2, calculating β̂2 assuming
the naive model, and then examining how β̂2 behaves as n → ∞ when the true model
holds. We want to express β̂2 in terms of sample variances and covariances, because they
converge to the corresponding population variances and covariances as n→∞, and it is
easy to calculate population variances and covariances under the true model. To keep the
calculations fairly simple, it is helpful to center the explanatory variables and the response
variable by subtracting off sample means. That is, Wi,1 is replaced by (Wi,1 −W 1), Wi,2

is replaced by (Wi,2 −W 2), and Yi is replaced by (Yi − Y ).

Think of fitting a plane to a 3-dimensional scatterplot, in such a way that the sum of
squared vertical distances from the points to the plane is minimized. Clearly, subtracting
off means does not alter the relative positions of the points, nor does it affect the orienta-
tion (slopes) of the best-fitting plane. All it does is to shift the axies, so that the origin is
the point (W 1,W 2, Y ) and the equation of the best-fitting plane has no intercept. Then,

the familar formula β̂ = (X>X)−1X>Y (but with W instead of X) will yield the desired
regression coefficients.
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Adopting a notation that will be used throughout the book, denote one of the n vectors
of observable data by Di. Here,

Di =

 Wi,1

Wi,2

Yi

 .

Then, let Σ = [σi,j] = cov(Di). Corresponding to Σ is the sample variance covariance

matrix Σ̂ = [σ̂i,j], with n rather than n − 1 in the denominators. To make this setup
completely explicit,

Σ = cov

 Wi,1

Wi,2

Yi

 =

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


Calculating the regression coefficients is straightforward.

W>W =

( ∑n
i=1(Wi,1 −W 1)2

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)∑n

i=1(Wi,1 −W 1)(Wi,2 −W 2)
∑n

i=1(Wi,2 −W 2)2

)
= n

(
σ̂1,1 σ̂1,2

σ̂1,2 σ̂2,2

)
W>Y =

( ∑n
i=1(Wi,1 −W 1)(Yi − Y )∑n
i=1(Wi,2 −W 2)(Yi − Y )

)
= n

(
σ̂1,3

σ̂2,3

)
Then with a bit of simplification17,

β̂ = (W>W)−1W>Y =

(
β̂1

β̂2

)
=


σ̂22σ̂13−σ̂12σ̂23
σ̂11σ̂22−σ̂2

12

σ̂11σ̂23−σ̂12σ̂13
σ̂11σ̂22−σ̂2

12

 .

Because sample variances and covariances are strongly consistent estimators of the corre-
sponding population quantities,

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

. (30)

This convergence holds provided that the denominator σ11σ22−σ2
12 6= 0. The denominator

is a determinant:

σ11σ22 − σ2
12 =

∣∣∣∣V ( Wi,1

Wi,2

)∣∣∣∣ .
It will be non-zero provided at least one of

cov

(
Xi,1

Xi,2

)
and cov

(
ei,1
ei,2

)
17Okay, I admit it’s brutal. I used Sage; see Appendix B
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is positive definite – not a lot to ask.
The convergence of β̂2 in Expression 30 applies regardless of what model is correct.

To see what happens when the true model of Example 0.8.3 holds, we calculate the Σ,
the common variance-covariance matrix of the observable data vectors.

Σ = cov

 Wi,1

Wi,2

Yi


=

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


=

 ω1 + φ11 φ12 β1φ11 + β2φ12

φ12 ω2 + φ22 β1φ12 + β2φ22

β1φ11 + β2φ12 β1φ12 + β2φ22 β2
1φ11 + 2 β1β2φ12 + β2

2φ22 + ψ


Subsituting into expression 30 and simplifying18, we obtain

β̂2
a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

=
(β1ω1φ12 + β2ω1φ22 + β2φ11φ22 − β2φ

2
12)

(ω1ω2 + ω1φ22 + ω2φ11 + φ11φ22 − φ2
12)

= β2 +
β1ω1φ12 + β2ω2(φ11 − ω1)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

(31)

By the asymptotic normality of the sample variance-covariance matrix (see Appendix A.5),

β̂2 has a distribution that is approximately normal for large samples, with approximate
mean given by expression (31). Thus, it makes sense to call the second term in (31)
the asymptotic bias. It is also the amount by which the estimate of β2 will be wrong as
n→∞.

Clearly, this situation is much more serious than the bias toward zero detected for
the case of one explanatory variable. With two explanatory variables, the bias can be
positive, negative or zero depending on the values of other unknown parameters.

In particular, consider the problems associated with testing H0 : β2 = 0. The purpose
of this test is to determine whether, controlling for X1, X2 has any relationship to Y . The
supposed ability of multiple regression to answer questions like this is the one of the main
reasons it is so widely used in practice. So when measurement error makes this kind of
inference invalid, it is a real problem.

Suppose that the null hypothesis is true, so β2 = 0. In this case, Expression (31)
becomes

β̂2
a.s.→ β1ω1φ12

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

.

Recall that β1 is the link between X1 and Y , ω1 = V ar(e1) is the variance of measurement
error in X1, and φ12 is the covariance between X1 and X2. Thus, when H0 : β2 = 0 is
true, β̂2 converges to a non-zero quantity unless

18It’s a lot easier with Sage or some other computer algebra software
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• There is no relationship between X1 and Y , or

• There is no measurement error in W1, or

• There is no correlation between X1 and X2.

Brunner and Austin [5] have shown that whether H0 is true or not, the standard error

of β̂2 goes to zero, and when the large-sample target of β̂2 is non-zero, the p-value goes
almost surely to zero. That is, the probability of making a Type I error goes to one
because of measurement error in an explanatory variable — not the one being tested, but
the one for which one is “controlling.”

0.9 Modeling measurement error

It is clear that ignoring measurement error in regression can yield conclusions that are
very misleading. But as soon as we try building measurement error into the statisti-
cal model, we encounter a technical issue that will occupy a central role in this book:
parameter identifiability. For comparison, first consider a regression model without mea-
surement error, where everything is nice. This is not quite the standard model, because
the explanatory variables are random variables. General principles arise right away, so
definitions will be provided as we go.

A first try at including measurement error

The following is basically the true model of Example 0.8.2, with everything normally
distributed. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (32)

Wi = ν +Xi + ei,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0

• Xi, ei, εi are all independent.

The intercept term ν could be called “measurement bias.” If Xi is true amount of exercise
per week and Wi is reported amount of exercise per week, ν is the average amount by
which people exaggerate.
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Data from Model (32) are just the pairs (Wi, Yi) for i = 1, . . . , n. The true explanatory
variable Xi is a latent variable whose value cannot be known exactly. The model implies
that the (Wi, Yi) are independent bivariate normal with

E

(
Wi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx + ν

β0 + β1µx

)
,

and variance covariance matrix

V

(
Wi

Yi

)
= Σ = [σi,j] =

(
φ+ ω β1φ
β1φ β2

1φ+ ψ

)
.

There is a big problem here, and the moment structure equations reveal it.

µ1 = µx + ν (33)

µ2 = β0 + β1µx

σ1,1 = φ+ ω

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

It is impossible to solve these five equations for the seven model parameters19. That is,
even with perfect knowledge of the probability distribution of the data (for the multivari-
ate normal, that means knowing µ and Σ, period), it would be impossible to know the
model parameters.

To make the problem clearer, look at the table below. It shows two diferent set of
parameter values θ1 and θ2 that both yield the same mean vector and covariance matrix,
and hence the exact same distribution of the observable data.

µx β0 ν β1 φ ω ψ
θ1 0 0 0 1 2 2 3
θ2 0 0 0 2 1 3 1

Both θ1 and θ2 imply a bivariate normal distribution with mean zero and covariance
matrix

Σ =

(
4 2
2 5

)
,

and thus the same distribution of the sample data.
No matter how large the sample size, it will be impossible to decide between θ1 and

θ2, because they imply exactly the same probability distribution of the observable data.
The problem here is that the parameters of Model (32) are not identifiable. This calls for
a brief discussion of identifiability, a topic of central importance in structural equation
modeling.

19That’s a strong statement, and a strong Theorem is coming to justify it.
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Figure 12: Two parameters values yielding the same probability distribution
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0.10 Parameter Identifiability

The Basic Idea Suppose we have a vector of observable data D = (D1, . . . , Dn), and
a statistical model (a set of assertions implying a probability distribution) for D. The
model depends on a parameter θ, which is usually a vector. If the probability distribution
of D corresponds uniquely to θ, then we say that the parameter vector is identifiable.
But if any two different parameter values yield the same probability distribution, then
the parameter vector is not identifiable. In this case, the data cannot be used to decide
between the two parameter values, and standard methods of parameter estimation will
fail. Even an infinite amount of data cannot tell you the true parameter values.

Definition 0.10.1 A Statistical Model is a set of assertions that partly20 specify the
probability distribution of a set of observable data.

Definition 0.10.2 Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If no two points
in Θ yield the same probability distribution, then the parameter θ is said to be identifiable.
On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2, the parameter θ is not
identifiable.

A good example of non-identifiability appears in Section 0.5 on omitted variables in re-
gression. There, the correct model has a set of infinitely many parameter values leading
to exactly the same probability distribution for the observed data.

Theorem 1 If the parameter vector is not identifiable, consistent estimation for all points
in the parameter space is impossible.

In Figure 12, θ1 and θ2 are two distinct sets of parameter values for which the distribution
of the observable data is the same.
Let Tn be a estimator that is consistent for both θ1 and θ2. What this means is that if θ1

is the correct parameter value, eventually as n increases, the probability distribution of

20Suppose that the distribution is assumed known except for the value of a parameter vector θ. So the
distribution is “partly” specified.
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Tn will be concentrated in the circular neighborhood around θ1. And if θ1 is the correct
parameter value, it the probability distribution will be concentrated around θ2.

But the probability distribution of the data, and hence of Tn (a function of the data)
is identical for θ1 and θ2. This means that for a large enough sample size, most of Tn’s
probability distribution must be concentrated in the neighborhood around θ1, and at the
same time it must be concentrated in the neighborhood around θ2. This is impossible,
since the two regions do not overlap. Hence there can be no such consistent estimator Tn.

Theorem 1 says why parameter identifiability is so important. Without it, even an
infinite amount of data cannot reveal the values of the parameters.

Surprisingly often, whether a set of parameter values can be recovered from the mo-
ments depends on where in the parameter space those values are located. That is, the
parameter vector may be identifiable at some points but not others.

Definition 0.10.3 The parameter is said to be identifiable at a point θ0 if no other point
in Θ yields the same probability distribution as θ0.

If the parameter is identifiable at at every point in Θ, it is identifiable, or globally (as
opposed to locally) identifiable.

Definition 0.10.4 The parameter is said to be locally identifiable at a point θ0 if there
is a neighbourhood of points surrounding θ0, none of which yields the same probability
distribution as θ0.

Obviously, local identifiability at a point is a necessary condition for global identifiability
there.

It is possible for individual parameters (or other functions of the parameter vector) to
be identifiable even when the entire parameter vector is not.

Definition 0.10.5 Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ) implies
Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the point θ0.

For example, let D1, . . . , Dn be i.i.d. Poisson random variables with mean λ1 + λ2,
where λ1 > 0 and λ1 > 0. The parameter is the pair θ = (λ1, λ2). The parameter is not
identifiable because any pair of λ values satisfying λ1 + λ2 = c will produce exactly the
same probability distribution. Notice also how maximum likelihood estimation will fail
in this case; the likelihood function will have a ridge, a non-unique maximum along the
line λ1 + λ2 = D, where D is the sample mean. The function g(θ) = λ1 + λ2, of course,
is identifiable.

The failure of maximum likelihood for the Poisson example is very typical of situations
where the parameter is not identifiable. Collections of points in the parameter space yield
the same probability distribution of the observable data, and hence identical values of
the likelihood. Usually these form connected sets of infinitely many points, and when
a numerical likelihood search reaches such a higher-dimensional ridge or plateau, the
software checks to see if it’s a maximum, and (if it’s good software) complains loudly
because the maximum is not unique. The complaints might take unexpected forms, like a



50 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

statement that the Hessian has negative eigenvalues. But in any case, maximum likelihood
estimation fails.

The idea of a function of the parameter vector covers a lot of territory. It includes
individual parameters and sets of parameters, as well as things like products and ratios of
parameters. Look at the moment structure equations (33) that come from the regression
Model (32). If σ1,2 = 0, this means β1 = 0, because φ is a variance, and is greater than
zero. Also in this case ψ = σ2,2 and β0 = µ2. So, the function g(θ) = (β0, β1, ψ) is
identifiable at all points in the parameter space where β1 = 0.

Recall how for the regression Model (32), the moment structure equations (33) consist
of five equations in seven unknown parameters. It was shown by a numerical example
that there were two different sets of parameter values that produced the same mean vector
and covariance matrix, and hence the same distribution of the observable data. Actually,
infinitely many parameter values produce the same distribution, and it happens because
there are more unknowns than equations. Theorem 2 is a strictly mathematical theorem21

that provides the necessary details.

Theorem 2 Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set
of points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

The following corollary to Theorem 2 is the fundamental necessary condition for pa-
rameter identifiability. It will be called the Parameter Count Rule.

Rule 1 Suppose identifiability is to be decided based on a set of moment structure equa-
tions. If there are more parameters than equations, the parameter vector is identifiable on
at most a set of volume zero in the parameter space.

When the data are multivariate normal (and this will frequently be assumed), then
the distribution of the sample data corresponds exactly to the mean vector and covariance
matrix, and to say that a parameter value is identifiable means that is can be recovered
from elements of the mean vector and covariance matrix. Most of the time, that involves
trying to solve the moment structure equations or covariance structure equations for the
model parameters.

Even when the data are not assumed multivariate normal, the same process makes
sense. Classical structural equation models, including models for regression with mea-
surement error, are based on systems of simultaneous linear equations. Assuming simple

21The core of the proof may be found in Appendix 5 of Fisher (1966).
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random sampling from a large population, the observable data are independent and iden-
tically distributed, with a mean vector µ and a covariance matrix Σ that may be written
as functions of the model parameters in a straightforward way. If it is possible to solve
uniquely for a given model parameter in terms of the elements of µ and Σ, then that
parameter is a function of µ and Σ, which in turn are functions of the probability dis-
tribution of the data. A function of a function is a function, and so the parameter is a
function of the probability distribution of the data. Hence, it is identifiable.

Another way to reach this conclusion is to observe that if it is possible to solve for the
parameters in terms of moments, simply “putting hats on everything” yields Method of
Moments estimator. These estimators, though they may be less than ideal in some ways,
will still usually be consistent by the Law of Large Numbers and continuous mapping.
Theorem 1 tells us consistency would be impossible if the parameters were not identifiable.

To summarize, we have arrived at the standard way to check parameter identifiability
for any linear simultaneous equation model, not just measurement error regression. First,
calculate the expected value and covariance matrix of the observable data, as a function of
the model parameters. If it is possible to solve uniquely for the model parameters in terms
of the means, variances and covariances of the observable data, then the model parameters
are identifiable.

If two distinct parameter vectors yield the same pair (µ,Σ) and the distribution is mul-
tivariate normal, the parameter vector is clearly not identifiable. When the distribution is
not multivariate normal this conclusion does not necessarily follow; the parameters might
be recoverable from higher moments, or possibly from the moment-generating function or
characteristic function.

But this would require knowing exactly what the non-normal distribution of the data
might be. When it comes to analyzing actual data using linear models like the ones in this
book, there are really only two alternatives. Either the distribution is assumed22 normal,
or it is acknowledged to be completely unknown. In both cases, parameters will either be
identifiable from the mean and covariance matrix (usually just the covariance matrix), or
they will not be identifiable at all.

The conclusion is that in practice, “identifiable” means identifiable from the moments.
This explains why the Parameter Count Rule (Rule 1) is frequently used to label param-
eters “not identifiable” even when there is no assumption of normality.

0.11 Double measurement

Consider again the model of Expression (32), a simple regression with measurement error
in the single explanatory variable. This is a tiny example of something that occurs all
too frequently in practice. The statistician or scientist has a data set that seems relevant
to a particular topic, and a model for the observable data that is more or less reasonable.
But the parameters of the model cannot be identified from the distribution of the data.
In such cases, valid inference is very challenging, if indeed it is possible at all.

22Even when the the data are clearly not normal, methods – especially likelihood ratio tests – based
on a normal model can work quite well. For example,
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The best way out of this trap is to avoid getting trapped in the first place. Plan the
statistical analysis in advance, and ensure identifiability by collecting the right kind of
data. Double measurement is a straightforward way to get the job done. The key is to
measure the explanatory variables twice, preferably using different methods or measuring
instruments.

A scalar example

Instead of measuring the explanatory variable only once, suppose we had a second, inde-
pendent measurement; “independent” means that the measurement errors are statistically
independent of one another. Perhaps the two measurements are taken at different times,
using different instruments or methods. Then we have the following model. Independently
for i = 1, . . . , n, let

Wi,1 = ν1 +Xi + ei,1 (34)

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei,1 is normally distributed with mean zero and variance ω1 > 0

• ei,2 is normally distributed with mean zero and variance ω2 > 0

• Xi, ei,1, ei,2 and εi are all independent.

The model implies that the triples Di = (Wi,1,Wi,2, Yi)
> are multivarate normal with

E(Di) = E

 Wi,1

Wi,1

Yi

 =

 µx + ν1

µx + ν2

β0 + β1µx

 ,

and variance covariance matrix

cov(Di) = Σ = [σi,j] =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β2
1φ+ ψ

 . (35)

Here are some comments.

• There are now nine moment structure equations in nine unknown parameters. This
model passes the test of the Parameter Count Rule, meaning that identifiability is
possible, but not guaranteed.
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• Notice that the model dictates σ1,3 = σ2,3. This model-induced constraint upon Σ
is testable. If H0 : σ1,3 = σ2,3 were rejected, the correctness of the model would be
called into question23. Thus, the study of parameter identifiability leads to a useful
test of model fit.

• The constraint σ1,3 = σ2,3 allows two solutions for β1 in terms of the moments:
β1 = σ13/σ12 and β1 = σ23/σ12. Does this mean the solution for β1 is not “unique?”
No; everything is okay. Because σ1,3 = σ2,3, the two solutions are actually the same.
If a parameter can be recovered from the moments in any way at all, it is identifiable.

• For the other model parameters appearing in the covariance matrix, the additional
measurement of the explanatory variable also appears to have done the trick. It is
easy to solve for φ, ω1, ω2 and ψ in terms of σi,j values. Thus, these parameters are
identifiable.

• On the other hand, the additional measurement did not help with the means and
intercepts at all. Even assuming β1 known because it can be recovered from Σ, the
remaining three linear equations in four unknowns have infinitely many solutions.
There are still infinitely many solutions if ν1 = ν2.

Maximum likelihood for the parameters in the covariance matrix would work up to a
point, but the lack of unique values for µx, ν1, ν2 and β0 would cause numerical problems.
A good solution is to re-parameterize the model, absorbing µx+ν1 into a parameter called
µ1, µx + ν2 into a parameter called µ2, and β0 + β1µx into a parameter called µ3. The
parameters in µ = (µ1, µ2, µ3)> lack meaning and interest24, but we can estimate them
with the vector of sample means D and focus on the parameters in the covariance matrix.

Here is the multivariate normal likelihood from Appendix A.4, simplified so that it’s
clear that the likelihood depends on the data only through the MLEs D and Σ̂. This is
just a reproduction of expression (A.19).

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (D− µ)>Σ−1(D− µ)

}
Notice that if Σ is positive definite then so is Σ−1, and so for any positive definite Σ
the likelihood is maximized when µ = D. In that case, the last term just disappears.
So, re-parameterizing and then letting µ̂ = D leaves us free to conduct inference on the
model parameters in Σ.

23Philosophers of science agree that falsifiability – the possibility that a scientific model can be chal-
lenged by empirical data – is a very desirable property. The Wikipedia has a good discussion under
Falsifiability — see http://en.wikipedia.org/wiki/Falsifiable. Statistical models may be viewed as primi-
tive scientific models, and should be subject to the same scrutiny. It would be nice if scientists who use
statistical methods would take a cold, clear look at the statistical models they are using, and ask “Is this
a reasonable model for my data?”

24If Xi is true amount of exercise, µx is the average amount of exercise in the population; it’s very
meaningful. Also, the quantity ν1 is interesting; it’s the average amount people exaggerate how much
they exercise using Questionnaire One. But when you add these two interesting quantities together, you
get garbage. The parameter µ in the re-parametrerized model is a garbage can.

http://en.wikipedia.org/wiki/Falsifiable
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Just to clarify, after re-parameterization and estimation of µ with Dn, the likelihood
function may be written

L(θ) = |Σ(θ)|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ(θ)−1)

}
, (36)

where θ is now a vector of just those parameters appearing in the covariance matrix.
This formulation is general. For the specific case of the double measurement Model (34),
θ = (φ, ω1, ω2, β1, ψ)>, and Σ(θ) is given by Expression (35). Maximum likelihood esti-
mation is numerical, and the full range of large-sample likelihood methods described in
Section A.6.3 of Appendix A is available.

The Double Measurement Design in Matrix Form

Now consider the general case of regression with measurement error in both the explana-
tory variables and the response variables, beginning with a model in which all random
variables have expected value zero and there are no intercepts. One can think of this
as writing the model in centered form; imagine the letter c over all the random vectors
that are not error terms. Centering the model makes it easier to calculate variances and
covariances, and imagining the letter c over the random vectors saves a lot of typesetting.

Independently for i = 1, . . . , n, let

Wi,1 = Xi + ei,1 (37)

Vi,1 = Yi + ei,2

Wi,2 = Xi + ei,3,

Vi,2 = Yi + ei,4,

Yi = βXi + εi

where

Yi is a q × 1 random vector of latent response variables. Because q can be greater
than one, the regression is multivariate.

β is an q×p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

Xi is a p×1 random vector of latent explanatory variables, with expected value zero
and variance-covariance matrix Φ, a p × p symmetric and positive definite matrix
of unknown constants.

εi is the error term of the latent regression. It is a q×1 random vector with expected
value zero and variance-covariance matrix Ψ, a q×q symmetric and positive definite
matrix of unknown constants.

Wi,1 and Wi,2 are p × 1 observable random vectors, each representing Xi plus
random error.
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Vi,1 and Vi,2 are q×1 observable random vectors, each representing Yi plus random
error.

ei,1, . . . , ei,1 are the measurement errors in Wi,1,Vi,1,Wi,2 and Vi,2 respectively.
Joining the vectors of measurement errors into a single long vector ei, its covariance
matrix may be written as a partitioned matrix

cov(ei) = V


ei,1
ei,2
ei,3
ei,4

 =


Ω11 Ω12 0 0

Ω>12 Ω22 0 0
0 0 Ω33 Ω34

0 0 Ω>34 Ω44

 = Ω.

In addition, the matrices of covariances between Xi, εi and ei are all zero.

The main idea of the Double Measurement Design is that every variable is measured
by two different methods. Errors of measurement may be correlated within measurement
methods25, but not between methods. So for example, farmers who overestimate their
number of pigs may also overestimate their number of cows. On the other hand, if
the number of pigs is counted once by the farm manager at feeding time and on another
occasion by a research assistant from an areal photograph, then it would be fair to assume
that the errors of measurement for the different methods are uncorrelated.

In symbolic terms, ei,1 is error in measuring the explanatory variables by method one,
and ei,2 is error in measuring the response variables by method one. cov(ei,1) = Ω11 need
not be diagonal, so method one’s errors of measurement for the explanatory variables
may be correlated with one another. Similarly, cov(ei,2) = Ω22 need not be diagonal, so
method one’s errors of measurement for the response variables may be correlated with one
another. And, errors of measurement using the same method may be correlated between
the explanatory and response variables. For method one, this is represented by the matrix
cov(ei,1, ei,2) = Ω12. The same pattern holds for method two. On the other hand, ei,1
and ei,2 are each uncorrelated with both ei,3 and ei,4.

To emphasize an important practical point, the matrices Ω11 and Ω33 must be of
the same dimension, just as Ω22 and Ω44 must be of the same dimension – but none of
the corresponding elements have to be equal. In particular, the corresponding diagonal
elements may be unequal. This means that measurements of a variable by two different
methods do not need to be equally precise.

The model is depicted in Figure 13. It follows the usual conventions for path diagrams
of structural equation models. Straight arrows go from exogenous variables (that is,
explanatory variables, those on the right-hand side of equations) to endogenous varables
(response variables, those on the left side). Correlations among exogenous variables are
represented by two-headed curved arrows. Observable variables are enclosed by rectangles
or squares, while latent variables are enclosed by ellipses or circles. Error terms are not
enclosed by anything.

25This is almost unavoidable anyway. The ability of the double measurement model to admit the
existence of correlated measurement error and still be identifiable is a great virtue.
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Figure 13: The Double Measurement Model
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Proof of parameter identifiability The following is typical of easier proofs for struc-
tural equation models. The goal is to solve for the model parameters in terms of elements
of the variance-covariance matrix of the observable data. This shows the parameters are
functions of the distribution, so that no two distinct parameter values could yield the
same distribution of the observed data.

Collecting Wi,1, Vi,1, Wi,2 and Vi,2 into a single long data vector Di, we write its
variance-covariance matrix as a partitioned matrix:

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 ,

where the covariance matrix of Wi,1 is Σ11, the covariance matrix of Vi,1 is Σ22, the
matrix of covariances between Wi,1 and Vi,1 is Σ12, and so on.

Now we express all the Σij sub-matrices in terms of the parameter matrices of Model (37)
by straightforward variance-covariance calculations. Students may be reminded that
things go smoothly if one substitutes for everything in terms of explanatory variables
and error terms before actually starting to calculate covariances. For example,

Σ12 = cov(Wi,1,Vi,1)

= E(Wi,1V
>
i,1)

= E
(
(Xi + ei,1)(Yi + ei,2)>

)
= E

(
(Xi + ei,1)(βXi + εi + ei,2)>

)
= E

(
(Xi + ei,1)(X>i β

> + ε>i + e>i,2)
)

= E(XiX
>
i β
> + Xiε

>
i + Xie

>
i,2 + ei,1X

>
i β
> + ei,1ε

>
i + ei,1e

>
i,2)

= E(XiX
>
i )β> + E(Xi)E(ε>i ) + E(Xi)E(e>i,2) + E(ei,1)E(X>i )β> + E(ei,1)E(ε>i ) + E(ei,1e

>
i,2)

= Φβ> + 0 + 0 + 0 + 0 + Ω12.

In this manner, we obtain the partitioned covariance matrix of the observable data Di =
(W>

i,1,V
>
i,1,W

>
i,2,V

>
i,2)> as

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 (38)

=


Φ + Ω11 Φβ> + Ω12 Φ Φβ>

βΦβ> + Ψ + Ω22 βΦ βΦβ> + Ψ

Φ + Ω33 Φβ> + Ω34

βΦβ> + Ψ + Ω44


The equality (38) corresponds to a system of ten matrix equations in nine matrix un-
knowns. The unknowns are the parameter matrices of Model (37): Φ, β, Ψ, Ω11, Ω22,
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Ω33, Ω44, Ω12, and Ω34. In the solution below, notice that once a parameter has been
identified, it may be used to solve for other parameters without explicitly substituting in
terms of Σij quantities. Sometimes a full explicit solution is useful, but to show identifi-
ability all you need to do is show that the moment structure equations can be solved.

Φ = Σ13 (39)

β = Σ23Φ
−1 = Σ>14Φ

−1

Ψ = Σ24 − βΦβ>

Ω11 = Σ11 −Φ

Ω22 = Σ22 − βΦβ> −Ψ

Ω33 = Σ33 −Φ

Ω44 = Σ44 − βΦβ> −Ψ

Ω12 = Σ12 −Φβ>

Ω34 = Σ34 −Φβ>

This shows that the parameters of Model (37) are identifiable, so that if data are collected
following the double measurement recipe, then the data analysis may proceed with no
worries about parameter identifiability.

Notice in the covariance structure equations (38), that Σ14 = Σ>23. As in the scalar
example of Section 0.11 (see page 52), this constraint on the covariance matrix Σ arises
from the model, and provides a way to test whether the model is correct. These pq
equalities are not the only ones implied by the model. Because Σ13 = Φ, the p × p
matrix of covariances Σ13 is actually a covariance matrix, so it is symmetric. This implies
p(p− 1)/2 more equalities.

Intercepts

Now Model (37) is expanded to include intercepts and non-zero expected values. We will
see that this leads to complications that are seldom worth the trouble, and the classical
centered models with zero expected value and no intercepts are usually preferable. Let

Wi,1 = ν1 + Xi + ei,1

Vi,1 = ν2 + Yi + ei,2

Wi,2 = ν3 + Xi + ei,3

Vi,2 = ν4 + Yi + ei,4,

Yi = α+ βXi + εi

where α, ν1, ν2, ν3 and ν4 are vectors of constants, and E(Xi) = µx. Everything else is
as in Model (37).The terms ν1 . . . ,ν4 are called measurement bias. For example, of one
of the elements of Wi,1 is reported amount of exercise, the corresponding element of ν1

would be the average amount by which people exaggerate how much they exercise.
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Again, the observable data Wi,1, Vi,1, Wi,2 and Vi,2 are collected into a data vector
Di, with expected value µ and covariance matrix Σ. The pair (µ,Σ) is a function of
the probability distribution of Di. If the parameter matrices of Model (40) are functions
of µ and Σ, then they are also functions of the distribution of Di, and thus they are
identifiable.

Since the addition of constants has no effect on variances or covariances, the contents
of Σ are given by (38), as before. The expected value µ is the partitioned vector

µ =


µ1

µ2

µ3

µ4

 =


E(Wi,1)
E(Vi,1)
E(Wi,2)
E(Vi,2)

 =


ν1 + µx
ν2 +α+ βµx
ν3 + µx
ν4 +α+ βµx

 . (40)

To demonstrate the identification of Model (40), one would need to solve the equations
in (40) uniquely for ν1, ν2, µx and α. Even with β considered known and fixed because
it is identified in (39), this is impossible in most of the parameter space, because (40)
specifies 2m+ 2p additional equations in 3m+ 3p additional unknowns.

It is tempting to assume the measuremant bias terms ν1 . . . ,ν4 to be zero; this would
allow identification of α and µx. Unfortunately, it is doubtful that such an assumption
could be justified very often in practice. Most of the time, all we can do is identify the
parameter matrices that appear in the covariance matrix, and also the functions µ1 . . . ,µ4

of the parameters as given in equation (40). This can be viewed as a re-parameterization
of the model.

Estimation and testing

Normal model As in the scalar example of Section 0.11, the (collapsed) expected val-
ues are estimated by the corresponding vector of sample means, and then set aside. With
multivariate normal distributions for all the random vectors in the model, the resulting
likelihood is again (36) on page 54. The full range of large-sample likelihood methods is
then available. Maximum likelihood estimates are asymptotically normal, and asymptotic
standard errors are convenient by-products of the numerical minimization as described
in Section A.6.3 of Appendix A; most software produces them by default. Dividing an
estimated regression coefficient by its standard error gives a Z-test for whether the coeffi-
cient is different from zero. My experience is that likelihood ratio tests can substantially
outperform both these Z-tests and the Wald tests that are their generalizations, especially
when there is a lot of measurement error, the explanatory variables are strongly related
to one another, and the sample size is not huge.

Distribution-free In presenting models for regression with measurement error, it is
often convenient to assume that everything is multivariate normal. This is especially true
when giving examples of models where the parameters are not identifiable. But normality
is not necessary. Suppose Model (37) holds, and that the distributions of of the latent
explanatory variables and error terms are unknown, except that they possess covariance
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matrices, with ei,1 and ei,2 having zero covariance with ei,3 and ei,4. In this case the
parameter of the model could be expressed as θ = (β, Φ, Ψ, Ω, FX, Fε, Fe), where FX,
Fε and Fe are the (joint) cumulative distribution functions of Xi, εi and ei respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension,
but that presents no conceptual difficulty. The probability distribution of the observed
data is still a function of the parameter vector, and to show identifiability, we would have
to be able to recover the parameter vector from the probability distribution of the data.
While in general we cannot recover the whole thing, we certainly can recover a useful
function of the parameter vector, namely β. In fact, β is the only quantity of interest;
the remainder of the parameter vector consists only of nuisance parameters, whether it is
of finite dimension or not.

To make the reasoning explicit, the covariance matrix Σ is a function of the probability
distribution of the observed data, whether that probability distribution is normal or not.
The calculations leading to (39) still hold, showing that β is a function of Σ, and hence
of the probability distribution of the data. Therefore, β is identifiable.

This is all very well, but can we actually do anything without knowing what the dis-
tributions are? Certainly! Looking at (39), one is tempted to just put hats on everything
to obtain Method-of-Moments estimators. However, we can do a little better. Note that
while Φ = Σ12 is a symmetric matrix in the population and Σ̂12 converges to a symmetric
matrix, Σ̂12 will be non-symmetric for any finite sample size (with probability one if the
distributions involved are continuous). A better estimator is obtained by averaging pairs
of off-diagonal elements:

Φ̂M =
1

2
(Σ̂13 + Σ̂

>
13),

where the subscript M indicates a Method-of-Moments estimator. Using the second line
of (39), a reasonable though non-standard estimator of β is

β̂M =
1

2

(
Σ̂
>
14 + Σ̂23

)
Φ̂
−1

M (41)

Consistency follows from the Law of Large Numbers and a continuity argument. All this
assumes the existence only of second moments and cross-moments. With the assumption
of fourth moments (so that sample variances possess variances), the multivariate Central
Limit Theorem provides a routine26 basis for large-sample interval estimation and testing.

However, there is no need to bother. Research on the robustness of the normal model
for structural equation models (Amemiya, Fuller and Pantula, 1987; Anderson and Ru-
bin, 1956; Anderson and Amemiya, 1988; Anderson, 1989; Anderson and Amemiya, 1990;
Browne, 1988; Browne and Shapiro, 1988; Satorra and Bentler, 1990) shows that proce-
dures for (such as likelihood ratio and Wald tests) based on a multivariate normal model
are asymptotically valid even when the normal assumption is false. And Satorra and
Bentler (1990) describe Monte Carlo work suggesting that normal-theory methods gener-
ally perform better than at least one method (Browne, 1984) that is specifically designed
to be distribution-free. Since the methods suggested by the estimator (41) are similar

26Okay, I admit there is a fairly long story here.
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to Browne’s weighted least squares approach, they are also likely to be inferior to the
standard normal-theory tools.

It is important to note that while the normal-theory tests and confidence intervals for
β can be trusted when the data are not normal, this does not extend to the other model
parameters. For example, if the vector of latent variables Xi is not normal, then normal-
theory inference about its covariance matrix will be flawed. In any event, the method of
choice is maximum likelihood, with interpretive focus on the regression coefficients in β
rather than on the other model parameters.

0.12 Instrumental Variables as a Solution to Mea-

surement Error

This material is in the shop for repairs.
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