
Chapter 1

Introduction to Structural Equation
Models

The design of this book is for Chapter 0 to be a self-contained discussion of regression with
measurement error, while this chapter introduces the classical structural equation models
in their full generality. So, this chapter may serve as a starting point for advanced read-
ers. These advanced readers may belong to two species — quantitatively oriented social
scientists who are already familiar with structural equation modeling, and statisticians
looking for a quick introduction to the topic at an appropriate level.

Also, readers of Chapter 0 will have noticed that the study of a particular model
typically involves a fair amount of symbolic calculation, particularly the calculation of
covariance matrices in terms of model parameters. While these calculations often yield
valuable insights, they become increasingly burdensome as the number of variables in-
creases, particularly when more than one model must be considered.

The solution is to let a computer do it. So starting with this chapter, many calculations
will be illustrated using Sage, an open source computer algebra package described in
Appendix B. The Sage parts will be interleaved with the rest of the text rather than fully
integrated. Typically, an example will include the result of a calculation without giving
a lot of detail, and then at an appropriate place for a pause, the Sage code will be given.
This will allow readers who are primarily interested in the ideas to skip material they
may find tedious.

1.1 Overview

Structural equation models may be viewed as an extension of multiple regression. They
generalize multiple regression in three main ways: there is usually more than one equa-
tion, a response variable in one equation can be an explanatory variable in another, and
structural equation models can include latent variables.

Multiple equations: Structural equation models are usually based upon more
than one regression-like equation. Having more than one equation is not really
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unique; multivariate regression already does that. But you will see that structural
equation models are more flexible than the usual multivariate linear model.

Variables can be both explanatory and response: This is an attractive feature.
Consider a study of arthritis patients, in which joint pain and mobility are measured
at several time points. Joint pain at one time period can lead to decreased physical
activity during the same period, which then leads to more pain at the next time
period. Level of physical activity at time t is both a response variable and a response
variable. Structural equation models are also capable of representing the back-and-
forth nature of supply and demand in Economics. Many other examples will be
given

Latent variables: Structural equation models may include random variables that
cannot be directly observed, and also are not error terms. This capability (combined
with relative simplicity) is their biggest advantage. It allows the statistican to admit
that measurement error exists, and to incorporate it directly into the statistical
model. The regression models with latent variables in Chapter 0 are special cases
of structural equation models.

There are some ways that structural equation models are different from ordinary linear
regression. These include random (rather than fixed) explanatory variable values, a bit
of specialized vocabulary, and some modest changes in notation. Tests and confidence
intervals are based on large-sample theory, even when normal distributions are assumed.
Also, structural equation models have a substantive1 as well as a statistical compontent;
closely associated with this is the use of path diagrams to represent the connections
between variables.

To the statistician, perhaps the most curious feature of structural equation mod-
els is that usually, the regression-like equations lack intercepts and the expected values
of all random variables equal zero. This happens because the models have been re-
parameterized in search of parameter identifiability. Details are given in the next section
(Section ).

Random explanatory variables Chapter 0 discusses the advantages of the traditional
regression model in which values of the explanatory variables are treated as fixed con-
stants, and the model is considered to be conditional on those values. But once we admit
that the variables we observe are contaminated by random measurement error, the virtues
of a conditional model mostly disappear. So in the standard structural equation models,
all variables are random variables.

Vocabulary Structural equation modeling has developed a specialized vocabulary, and
except for the term “latent variable,” much of it is not seen elsewhere in Statistics. But
the terminology can help clarify things once you know it, and also it appears in software
manuals and on computer output. Here are some terms and their definitions.

1Substantive means having to do with the subject matter. A good substantive model of water pollution
would depend on concepts from Chemistry and Hydrodynamics.
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• Latent variable: A random variable that cannot be directly observed, and also is
not an error term.

• Manifest variable: An observable variable. An actual data set contains only
values of the manifest variables. This book will mostly use the term “observable.”

• Exogenous variable: In the regression-like equations of a structural equation
model, the exogenous variabes are ones that appear only on the right side of the
equals sign, and never on the left side in any equation. If you think of Y being a
function of X, this is one way to remember the meaning of exogenous. All error
terms are exogenous variables.

• Endogenous variable: Endogenous variables are those that appear on the left
side of at least one equals sign. Endogenous variables depend on the exogenous
varables, and possibly other endogenous variables. Think of an arrow from an
exogenous variable to an endogenous variable. The end of the arrow is pointing at
the endogenous variable.

• Factor: This term has a meaning that actually conflicts with its meaning in main-
stream Statistics, particularly in experimental design. Factor analysis (not “facto-
rial” analysis of variance!) is a set of statistical concepts and methods that grew
up in Psychology. Factor analysis models are special cases of the general structural
equation model. A factor is an underlying trait or characteristic that cannot be
measured directly, like intelligence. It is a latent variable, period.

Notation Several different but overlapping models and accompanying notation systems
are to be found in the many books and articles on structural equation modeling. The
present book introduces a sort of hybrid notation system, in which the symbols for param-
eters are mosly taken from the structural equation modeling literature, while the symbols
for random variables are based on common statistical usage. This is to make it easier
for statisticians to follow. The biggest change from Chapter 0 is that the symbol β is
no longer used for just any regression coefficient. It is reserved for links between latent
endgenous variables and other latent endgenous variables.

1.2 A general two-stage model

Independently for i = 1, . . . , n, let

Yi = α+ βYi + ΓXi + εi (1.1)

Fi =

(
Xi

Yi

)
Di = ν + ΛFi + ei,

where
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• Yi is a q × 1 random vector.

• α is a q × 1 vector of constants.

• β is a q × q matrix of constants with zeros on the main diagonal.

• Γ is a q × p matrix of constants.

• Xi is a p× 1 random vector with expected value µx and positive definite covariance
matrix Φx.

• εi is a q×1 random vector with expected value zero and positive definite covariance
matrix Ψ.

• Fi (F for Factor) is a partitioned vector with Xi stacked on top of Yi. It is a
(p + q) × 1 random vector whose expected value is denoted by µF , and whose
variance-covariance matrix is denoted by Φ.

• Di is a k × 1 random vector. The expected value of Di will be denoted by µ, and
the covariance matrix of Di will be denoted by Σ.

• ν is a k × 1 vector of constants.

• Λ is a k × (p+ q) matrix of constants.

• ei is a k × 1 random vector with expected value zero and covariance matrix Ω.

• Xi, εi and ei are independent.

Only D1, . . . ,Dn are observable. All the other random vectors are latent. But because
Ω = cov(ei) need not be strictly positive definite, error variances of zero are permitted.
This way, it is possible for a variable to be both exogenous and observable.

The distributions of Xi, εi and ei are either assumed to be independent and multi-
variate normal, or independent and unknown. When the distributions are normal, the
parameter vector θ consists of the unique elements of the parmeter matrices α, β, Γ,
µx, Φx, Ψ, ν, Λ and Ω. When the distributions are unknown, the parameter vector also
includes the three unknown probability distributions.

The two parts of Model (1.1) are called the Latent Variable Model and the Measure-
ment Model. The latent variable part is Yi = βYi + ΓXi + εi, and the measurement part
is Di = ΛFi + ei. The bridge between the two parts is the process of collecting the latent
exogenous vector Xi and the latent endogenous vector Yi into a “factor” Fi. This is not
a categorical explanatory variable, the usual meaning of factor in experimental design.
The terminology comes from factor analysis, a popular multivariate method in the social
sciences2.

2Harman’s (1967) authoritative classic Modern factor analysis [6] is almost guaranteed to be frustrating
for a statistician to read. Lawley and Maxwell’s (1971) Factor analysis as a statistical method is a welcome
antidote. Bastlevsky’s (1994) Statistical factor analysis and related methods [1] is a strong and more recent
treatment of the topic.
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Example: The Brand Awareness study A major Canadian coffee shop chain is
trying to break into the U.S. Market. They assess the following variables twice on a
random sample of coffee-drinking adults. Each variable is measured first in an in-person
interview, and then in a telephone call-back several days later, conducted by a different
interviewer. Thus, errors of measurement for the two measurements of each variable are
assumed to be independent. The variables are

• Brand Awareness (X1): Familiarity with the coffee shop chain

• Advertising Awareness (X2): Recall for advertising of the coffee shop chain

• Interest in the product category (X3): Mostly this was how much they say
they like coffee and doughnuts.

• Purchase Intention (Y1): Expressed willingness to go to an outlet of the coffeeshop
chain and make an order.

• Purchase behaviour (Y2): Reported dollars spent at the chain during the 2 months
following the interview.

All variables were measured on a scale from 0 to 100 except purchase behaviour, which is
in dollars.

Figure 1.1 shows a path diagram for these data. It is a picture of how some variables
are thought to influence other variables. The notation is standard. Straight arrows go
from exogenous variables to endogenous variables, and possibly from endogenous variables
to other endogenous variables. Correlations among exogenous variables are represented
by two-headed curved arrows. Observable variables are enclosed by rectangles or squares,
while latent variables are enclosed by ellipses or circles. Error terms are not enclosed by
anything.

The path diagram in Figure 1.1 expresses some very definite assertions about consumer
behaviour. For example, it says that brand awareness and advertising awareness affect
actual purchase only through purchase intention, while interest in the product may have a
direct effect on purchase behaviour, as well as an indirect effect through purchase intention
— perhaps reflecting impulse purchases. Such claims may be right or they may be wrong,
and some are testable. But the point is that the statistical model corresponding to the
typical path diagram has a strong subject matter component, and actually is a sort of
hybrid, occupying a position somewhere between the typical statistical model and an
actual theory about the data.

It is always possible to argue about how the path diagram should look, and it is
usually valuable as well. The more subject matter expertise that can be brought to the
discussion, the better. Often, the contest between two or more competing pictures will
be traceable to unresolved theoretical issues in the field. Will the data at hand allow a
formal statistical test to decide between the models? If not, is it possible to design a
study that will make such a comparison possible? Thus, the more technical statistical
expertise that can be brought to the discussion, the better.
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Figure 1.1: The Brand Awareness Study
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The measurement model — that is, the part relating the latent variables to the ob-
servable variables — should not escape scrutiny. The processes it represents are usually
not

It is usually not the reason the data were collected, but
Continuing with the Brand Awareness example, the model corresponding to Figure 1.1

may be written in scalar form as a system of simultaneous regression-like equations.
Independently for i = 1, . . . , n, let

Yi,1 = α1 + γ1Xi,1 + γ2Xi,2 + γ3Xi,3 + εi,1 (1.2)

Yi,2 = α2 + βYi,1 + γ4Xi,3 + εi,2

Wi,1 = ν1 + λ1Xi,1 + ei,1

Wi,2 = ν2 + λ2Xi,1 + ei,2

Wi,3 = ν3 + λ3Xi,2 + ei,3

Wi,4 = ν4 + λ4Xi,2 + ei,4

Wi,5 = ν5 + λ5Xi,3 + ei,5

Wi,6 = ν6 + λ6Xi,3 + ei,6

Vi,1 = ν7 + λ7Yi,1 + ei,7

Vi,2 = ν8 + λ8Yi,1 + ei,8

Vi,3 = ν9 + λ9Yi,2 + ei,9

Vi,4 = ν10 + λ10Yi,2 + ei,10,

where E(Xi,1 = µx1), E(Xi,2 = µx2), E(Xi,3 = µx3), the expected values of all error
terms equal zero, V ar(Xi,j) = φjj for j = 1, 2, 3, Cov(Xi,j, Xi,k) = φjk, V ar(ei,j) = ωj for
j = 1, . . . , 10, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2, and all the error terms are independent of
one another and of the Xi,j variables.

If the two measurements of each variable were deemed similar enough, it would be
possible to reduce the parameter space quite a bit, for example setting ν1 = ν2, λ1 = λ2,
and ω1 = ω2. The same kind of thing could be done for the other latent variables. Also,
the distributions could be assumed normal, or they could be left unspecified; in practice,
those are the two choices.

Setting up the problem in matrix form, we have p = 3 latent exogenous variables, q = 2
latent endogenous variables, and k = 10 observable variables, all of which are endogenous
in this example. Using parameter symbols from the scalar version, the equations of the
latent variable model are

Yi = α + β Yi + Γ Xi + εi(
Yi,1
Yi,2

)
=

(
α1

α2

)
+

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ1 γ2 γ3

0 0 γ4

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)
with

Φx = cov(Xi) =

 φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33

 and Ψ = cov(εi) =

(
ψ1 0
0 ψ2

)
.
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Collecting Xi and Yi into a single vector of “factors,”

Fi =

(
Xi

Yi

)
=


Xi,1

Xi,2

Xi,3

Yi,1
Yi,2

 .

Finally, the equations of the measurement model are

Di = ν + Λ Fi + ei

Wi,1

Wi,2

Wi,3

Wi,4

Wi,5

Wi,6

Vi,1
Vi,2
Vi,3
Vi,4


=



ν1

ν2

ν3

ν4

ν5

ν6

ν7

ν8

ν9

ν10


+



λ1 0 0 0 0
λ2 0 0 0 0
0 λ3 0 0 0
0 λ4 0 0 0
0 0 λ5 0 0
0 0 λ6 0 0
0 0 0 λ7 0
0 0 0 λ8 0
0 0 0 0 λ9

0 0 0 0 λ10




Xi,1

Xi,2

Xi,3

Yi,1
Yi,2

 +



ei,1
ei,2
ei,3
ei,4
ei,5
ei,6
ei,7
ei,8
ei,9
ei,10


with

Ω = cov(ei) =



ω1 0 0 0 0 0 0 0 0 0
0 ω2 0 0 0 0 0 0 0 0
0 0 ω3 0 0 0 0 0 0 0
0 0 0 ω4 0 0 0 0 0 0
0 0 0 0 ω5 0 0 0 0 0
0 0 0 0 0 ω6 0 0 0 0
0 0 0 0 0 0 ω7 0 0 0
0 0 0 0 0 0 0 ω8 0 0
0 0 0 0 0 0 0 0 ω9 0
0 0 0 0 0 0 0 0 0 ω10


Given a verbal description of a data set, the student should be able to write down a path
diagram, and translate freely between the path diagram, the model in scalar form and
the model in matrix form. Three three ways of expressing the model are equivalent, and
some software3 will allow a model to be specified using only a built-in drawing program.
This can be appealing to users who don’t like equations and Greek letters, but for larger
models the process can be very tedious.

1.3 Review of identifiability

The general two-stage model (1.1) of Section 1.2 is very general indeed — so much so,
that its parameters are seldom identifiable without additional restrictions. Choosing

3The ones I know of are Amos and JMP.
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these restrictions wisely is an essential part of structural equation modeling. In fact, it
turns out that almost everything that makes structural equation modeling distinct from
other large-sample statistical methods can be traced to issue of parameter identifiability.
For the convenience of readers starting with Chapter 1, this section collects material on
identifiability from Chapter 0. Readers of Chapter 0 are also encouraged to look it over.
The presentation is intended to be terse. For more detail, please see Chapter 0.

Definition 0.10.2 (Page 50) Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If
no two points in Θ yield the same probability distribution, then the parameter θ is said
to be identifiable. On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2 , the
parameter θ is not identifiable.

Theorem 1 (Page 51) If the parameter vector is not identifiable, consistent estimation
for all points in the parameter space is impossible.

Definition 0.10.3 (Page 51)The parameter is said to be identifiable at a point θ0 if no
other point in Θ yields the same probability distribution as θ0.

Definition 0.10.4 (Page 51) The parameter is said to be locally identifiable at a point
θ0 if there is a neighbourhood of points surrounding θ0, none of which yields the same
probability distribution as θ0.

Definition 0.10.5 (Page 52) Let g(θ) be a function of the parameter vector. If g(θ0) 6=
g(θ) implies Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at
the point θ0.

Theorem 2 (Page 52) Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set of
points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

Moment structure equations give moments of the distribution of the observable data in
terms of model parameters. In this course, moments are limited to expected values, vari-
ances and covariances. If it is possible to solve uniquely for the parameter vector in terms
of the these quantities, then the parameter vector is identifiable. Even when a multivari-
ate normal distribution is not assumed, in practice “identifiable” means identifiable from
the moments — usually the variances and covariances.
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Figure 1.2: A sequence of re-parameterizations

Truth ≈ Original Model → Surrogate Model 1 → Surrogate Model 2 → . . .

Rule 1 (The Parameter Count Rule, page 53) Suppose identifiability is to be decided
based on a set of moment structure equations. If there are more parameters than equa-
tions, the parameter vector is identifiable on at most a set of volume zero in the parameter
space.

1.4 Models: Original and Surrogate

Overview

It is taken for granted that even the best scientific models are not “true” in any ultimate
sense. At best, they are approximations of how nature really works. And this is even
more true of statistical models. As Box and Draper (1987, p. 424) put it, “Essentially
all models are wrong, but some are useful.” [4] But in structural equation modeling, the
models used in practice are usually not even the approximate versions that the scientist
or statistician has in mind. Instead, they are re-parameterized versions of the intended
models. This explains some features that may seem odd at first.

Figure 1.2 is a picture of the process4. Underlying everything is the true state of
nature, the real process that gave rise to the observable data in our possession. We can
scarcely even imagine what it is, but undoubtedly it’s non-linear, and involves a great
many unmeasured variables. So we start with a model based on the general two-stage
model (original2stage) of Section 1.2. It is not the truth and we know it’s not the truth,
but we still hope it roughly approximates the truth in a useful way, at least within the
range of the observed data.

As primitive as the original model is compared to the real truth, its parameters are
still not identifiable. So we re-parameterize, producing a new model whose parameters are
functions of the parameters of the original model. Such a model will be called a surrogate
model because it stands for the original model, and tries to do the job of the original
model. Like a surrogate mother, it may not be as good as a the real thing, but it will
have to do.

As indicated in Figure 1.2, re-parameterization may happen in more than one step. For
the classical structural equation models presented in this book, the first re-parameterization
results in a centered surrogate model with no intercepts, and all expected values equal to
zero. This was described in Chapter 0 for regression with measurement error.

But typically, the parameters of the centered surrogate model are still not identifiable,
and there is another re-parameterization, leading to a second level surrogate model. The

4Thanks to Michael Li for this way of expressing the idea.
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process can continue. At each step, the parameter vector of the new model is a function
of of the parameters of the preceding model, and typically the function is not one-to-one.
Otherwise, identifiability would not change. At each stage, the dimension of the new
parameter space is less, so the re-parameterization represents a restriction, or collapsing
of the original parameter space. The end result is a model whose parameters are identi-
fiable functions of the original parameter vector. The goal is for those functions to be as
informative as possible about the parameters of the original model.

Two features of the original model deserve special mention. The first is that usually,
the original model is already a restricted version of Model (original2stage), even before it
is re-parameterized to produce a surrogate model. The restrictions in question arise from
substantive modeling considerations rather than from a search for identifiability. So, in
the Brand Awareness example of Section 1.2, the parameter matrices have many elements
fixed at zero. These represent theoretical assertions about consumer psychology. They
may be helpful in making the remaining free parameters identifiable, but that is not their
justification.

A second notable feature of the original model is that expected values are non-zero
in general, and all the equations are regression-like equations with intercepts, and with
slopes that do not necessarily equal one. Any deviation from this standard needs to be
justified on substantive grounds, not on grounds of simplicity or convenience. Otherwise,
it’s a surrogate model and not an original model. The distinction is important, because
most structural equation models used in practice are surrogate models, and a good way to
understand them is to trace the connection between their parameters and the parameters
of the original models from which they are are derived.

Consider a simple additive model for measurement error, like (24) on page 34:

W = X + e.

Immediately it is revealed as a surrogate model, because there is no intercept and the
slope is set to one – a choice that would be hard to justify on modeling grounds most of
the time. For example, X might be actual calories consumed during the past week, and W
might be number of reported calories based on answers to a questionnaire. Undoubtedly,
the true relationship between these variables is non-linear. In an original (though not
exactly true) model, the relationship would be approximated by

W = ν + λX + e.

With this example in mind, it is clear that most of the models given in Chapter 0 (and
all the models in Chapter 0 with identifiable parameters) are actually surrogate models.
This might be a bit unsettling because you did not realize that you were being tricked, or
it might be reassuring because some models that struck you as unrealistic may actually
be better than they seem.

The centered surrogate model

The first stage of re-parameterization may be done in full generality. The argument
begins with a demonstration that the means and intercepts of the original model are not
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identifiable. Please bear in mind that as a practical consideration, “identifiable” means
identifiable from the moments – the expected values and variance-covariance matrix of
the observable data.

Starting with the latent variable part of the two-stage original model (1.1), it is helpful
to write the endogenous variables solely as functions of the exogenous variables, and not
of each other. Notice how the subscript i has been dropped from the random vectors to
reduce notational clutter. This is typical in the structural equation model literature.

Y = α+ βY + ΓX + ε

⇔ Y − βY = α+ ΓX + ε

⇔ IY − βY = α+ ΓX + ε

⇔ (I− β)Y = α+ ΓX + ε

⇔ (I− β)−1(I− β)Y = (I− β)−1 (α+ ΓX + ε)

⇔ Y = (I− β)−1 (α+ ΓX + ε) (1.3)

The preceding calculation assumes that the matrix I−β has an inverse. Surprisingly, the
existence of (I−β)−1 is guaranteed by the model. The proof hinges on the specifications
that X and ε are independent, and that Ψ = cov(ε) is positive definite.

Theorem 3 Model (1.1) implies the existence of (I− β)−1.

Proof Y = α+ βY + ΓX + ε yields (I− β)Y = α+ ΓX + ε. Suppose (I− β)−1 does
not exist. Then the rows of I − β are linearly dependent, and there is a q × 1 non-zero
vector of constants a with a>(I− β) = 0. So,

0 = a>(I− β)Y = a>α+ a>ΓX + a>ε

⇒ V ar(0) = V ar(a>ΓX) + V ar(a>ε)

⇒ 0 = a>ΓΦxΓ
>a + a>Ψa.

But the quantity on the right side is strictly positive, because Ψ is positive definite. Thus,
the assumption that I−β is singular leads to a contradiction. This shows that (I−β)−1

must exist if the model holds. �

Sometimes, the surface defined by |I− β| = 0 is interior to the parameter space, and
yet cannot belong to the parameter space because of the other model specifications. Thus
it forms an unexpected hole in the parameter space. The pinwheel Model () on page
whatever provides an example.

Now that the existence of (I − β)−1 is established, Expression (1.3) may be used to
calculate expected values, variances and covariances. Expressing the results of routine
calculations as partitioned matrices,
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ν + ΛµF = E(Fi) =

(
E(Xi)
E(Yi)

)
=

(
µx

(I− β)−1 (α+ Γµx)

)
(1.4)

µ = E(Di) = ν + ΛµF

Φ = cov(Fi) =

(
cov(Xi) cov(Xi,Yi)

cov(Yi)

)
=

(
Φx ΦxΓ

>(I− β)−1T

(I− β)−1
(
ΓΦxΓ

> + Ψ
)

(I− β)−1T

)
Σ = cov(Di) = ΛΦΛ> + Ω

Now the parameter matrices may be divided into three categories: those appearing only
in µ = E(Di), those appearing only in Σ = cov(Di), and those appearing in both µ and
Σ.

Appearing only in µ µx,α,ν

Appearing only in Σ Φx,Ψ,Ω

Appearing in both β,Γ,Λ

Clearly, the parameters appearing only in µ must be identified from the k mean
structure equations or not at all. But even assuming the best case scenario in which β,Γ
and Λ can be identified from Σ and thus may be considered known, this requires the
solution of k equations in k + p + q unknowns. Since the equations are linear, there is
no need to invoke the Parameter Count Rule5. For every fixed set of (β,Γ,Λ) values,
infinitely many sets (µx,α,ν) yield the same vector of expected values µ. Thus, the
means and intercepts in the model are not identifiable.

Not much is lost, because usually the matrices β, Γ and Λ are of primary interest, and
these (or useful functions of them) may potentially be recovered from Σ. So the standard
solution is to re-parameterize, replacing the parameter set (Φx,Ψ,Ω,β,Γ,Λ,µx,α,ν)
with (Φx,Ψ,Ω,β,Γ,Λ,κ), where κ = µ = ν + ΛµF . Then κ is treated as a nuisance
parameter to be estimated with the vector of sample means where technically necessary,
but otherwise ignored.

A useful way to express the re-parameterization is to re-write the equations of Model (1.1),
centering all the random vectors. Starting with the latent variable part,

Yi = (I− β)−1 (α+ ΓXi + εi)
= (I− β)−1 (α+ ΓXi − Γµx + Γµx + εi)

⇔ Yi − (I− β)−1 (α+ Γµx) = (I− β)−1 (Γ(Xi − µx) + εi)

⇔
c

Yi = (I− β)−1(Γ
c

Xi +εi)

⇔ (I− β)
c

Yi = Γ
c

Xi +εi

⇔
c

Yi = β
c

Yi +Γ
c

Xi +εi,

5A system of linear equations with more unknowns than equations has either infinitely many solutions
or none at all. The option of no solutions is ruled out because the pair (µ,Σ) is actually the image of
one particular set of parameter matrices in the parameter space. More details about mappings between
the parameter space and the moment space are given in Chapter 4.
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where putting a c above a random vector means it has been centered by subtracting off
its expected value. Automatically we have

c

Fi= Fi − µF =

( c

Xi
c

Yi

)
.

For the measurement part of the model,

Di = ν + ΛFi + ei
= ν + ΛFi −ΛµF + ΛµF + ei

⇔ Di − (ν + ΛµF ) = Λ(Fi − µF ) + ei

⇔
c

Di = Λ
c

Fi +ei.

Thus, a centered version of Model (1.1) is 100% equivalent to the original. A surrogate
for Model (1.1) is obtained by simply dropping the letter c over the random vectors, and
writing

Yi = βYi + ΓXi + εi (1.5)

Fi =

(
Xi

Yi

)
Di = ΛFi + ei,

where E(Xi) = 0, and all other specifications are as in Model (1.1). This will be called
the Centered Surrogate Model. It is a good substitute for the original because

• It hides the nuisance parameters µx, α and ν, which can’t be identified anyway,
and are essentially discarded by a re-parameterization.

• The remaining parameter matrices are identical to those of the original model.

• The covariance matrix Σ of the observable data (given in Expression 1.4) is identical
to that of the original model.

• Special cases of Σ that are used in applications easier to calculate.

It must be emphasized that (1.5) is not a realistic model for almost any actual data set,
because most variables don’t have zero expected value6. Rather, it’s a substitute for a
re-parameterized version of the original Model (1.1), one that’s more convenient to work
with. This explains why structural equation models are usually written in centered form,
with zero means and no intercepts, and why some structural equation modeling software
does not even allow for models with means and intercepts.

6Some authors suggest that the observable data have been centered by subtracting off sample means,
so that they do have expected value zero. That would explain why ν + ΛµF = 0, but not why µF is
necessarily equal to zero.
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Figure 1.3: Blood pressure path model

X - Y1����
ε1
�
��

Y2����-

ε2
�
��

V1 V2 V3

6

@
@
@I

�
�
��

e1

?

e2

?

e3

?

An additional re-parameterization

In general, the parameters of the centered surrogate model are still not identifiable. In
particular cases, even after restricting the parameters based on modeling considerations,
further technical restrictions are necessary to obtain a model whose parameters are iden-
tifiable. Like centering, these restrictions should be viewed as re-parameterizations, and
the models that result should be viewed as surrogates for the original model. But unlike
centering, which does not affect the parameters appearing in the covariance matrix, the
second level of re-parameterization affects the meaning of the remaining parameters in
an important way. General principles will be developed in later chapters, but here is a
simple example to illustrate the idea.

Example 1.4.1 Blood Pressure

Patients with high blood pressure are randomly assigned to different dosages of a blood
pressure medication. There are many different dosages, so dosage may be treated as
a continuous variable. Because the exact dosage is known, this exogenous variable is
observed without error. After one month of taking the medication, the level of the drug
in the patient’s bloodstream is measured once (with error, of course), by an independent
lab. Then, two measurements of the patient’s blood pressure are taken in the doctor’s
office. The measurements are taken on different days and by different technicians, but
with exacly the same equipment and following exactly the same measurement protocol.
Thus, the two blood pressure readings are thought to be equivalent as well as having
independent measurement errors.

Figure 1.3 shows a path diagram of the model, with X representing drug dosage, Y1

representing true blood level of the drug, and Y2 representing the patient’s average resting
blood pressure.

The original model for this problem may be written in scalar form as follows. Inde-
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pendently for i = 1, . . . , n,

Yi,1 = α1 + γXi + εi,1 (1.6)

Yi,2 = α2 + βYi,1 + εi,2

Vi,1 = ν1 + λ1Yi,1 + ei,1

Vi,2 = ν2 + λ2Yi,2 + ei,2

Vi,3 = ν2 + λ2Yi,2 + ei,3,

where E(Xi) = µx, V ar(Xi) = φ, all error terms are independent with expected values
equal to zero, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2, V ar(ei,1) = ω1, and V ar(ei,2) = V ar(ei,3) =
ω2. The equal intercepts, slopes and intercepts for V2 and V3 are modeling restrictions,
based on the belief that V2 and V3 really are equivalent measurements.

In a typical application, this model would be presented in centered form, with the
coefficients λ1 and λ2 both set equal to one, perhaps with a reference to “setting the
scales” of the latent variables7. Here is a more detailed account of what is going on.

The first step is to re-parameterize by a change of variables in which each variable is
transformed by subtracting off its expected value, and then any notational evidence if the
transformation is suppressed. The result is a centered surrogate model like (1.5). Before
further re-parameterization, let us verify that the parameters of the centered model are
not identifiable. It passes the test of the Parameter Count Rule, because the covariance
matrix contains ten parameters and has ten unique elements. So there are ten covariance
structure equations in ten unknowns.

The covariance matrix Σ = [σij] of the observable variables Di = (Xi, Vi,1, Vi,2, Vi,3)>

is 
φ γλ1φ βγλ2φ βγλ2φ(

γ2φ+ ψ1

)
λ21 + ω1

(
γ2φ+ ψ1

)
βλ1λ2

(
γ2φ+ ψ1

)
βλ1λ2(

β2γ2φ+ β2ψ1 + ψ2

)
λ22 + ω2

(
β2γ2φ+ β2ψ1 + ψ2

)
λ22(

β2γ2φ+ β2ψ1 + ψ2

)
λ22 + ω2

 . (1.7)

The model imposes three three equality constraints on the covariance matrix: σ13 = σ14,
σ23 = σ24 and σ33 = σ34. This effectively reduces the number of covariance structure
equations by three, so that to show identifiability it would be necessary to solve seven
equations in ten unknowns8. By the parameter count rule, a unique solution is impossible
except possibly on a set of volume zero in the parameter space. So the parameter vector
is not identifiable.

If this argument is not entirely convincing, the table below gives a numerical example
of two different parameter vectors (with γ, β, λ1 and λ2 all non-zero) that yield the same
covariance matrix.

7See for example Bollen, get reference from language paper.
8This idea is a bit subtle. The σij quantities should be viewed as images of a single, fixed point θ0 in

the parameter space. So if the model implies σ13 = σ14 because they both equal βγλ2φ, it means that σ13
and σ14 both represent the same real number. At this point, parameter symbols like β and γ represent
fixed constants too, because they are elements of θ0. But then when the attempt is made to recover θ0
from Σ(θ0) by solving equations, parameter symbols like β and γ are treated as variables, while the σij
quantities remain fixed constants. Chapter 4 discusses mappings back and forth between the parameter
space and the moment space.
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γ β λ1 λ2 ψ1 ψ2 φ ω1 ω2

θ1 2 4 1 1 4 16 1 1 1
θ2 1 2 2 4 1 1 1 1 1

Both parameter vectors yield the covariance matrix

Σ =


1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145

 .

By Definition 0.10.2, the parameter vector is not identifiable.
The next step is to re-examine the model equations in (surrogate) centered form,

Yi,1 = γXi + εi,1 (1.8)

Yi,2 = βYi,1 + εi,2

Vi,1 = λ1Yi,1 + ei,1

Vi,2 = λ2Yi,2 + ei,2

Vi,3 = λ2Yi,2 + ei,3

and carry out the standard re-parameterization that yields λ1 = λ2 = 1, purchasing
identifiability. Expressing the re-parameterization as a change of variables will make it
easier to trace the connection between the parameters of the original model and those
of the re-parameterized model. First note that on modeling grounds, we are sure that
λ1 > 0 and λ2 > 0.

Let Y ′i,1 = λ1Yi,1 and Y ′i,2 = λ2Yi,2. The primes just denote a new (transformed)
random variable. Then from the first equation of (1.8),

Y ′i,1 = (λ1γ)Xi + λ1εi,1

= γ′Xi + ε′i,1.

From the second equation of (1.8),

Y ′i,2 = λ2βYi,1 + λ2εi,2

= λ2β
λ1

λ1

Yi,1 + λ2εi,2

=

(
λ2β

λ1

)
Y ′i,1 + λ2εi,2

= β′Y ′i,1 + ε′i,2.

Putting it all together, the equations of the second level surrogate model are

Y ′i,1 = γ′Xi + ε′i,1 (1.9)

Y ′i,2 = β′Y ′i,1 + ε′i,2
Vi,1 = Y ′i,1 + ei,1

Vi,2 = Y ′i,2 + ei,2

Vi,3 = Y ′i,2 + ei,3,
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where

γ′ = λ1γ (1.10)

ψ′1 = V ar(ε′i,1) = λ2
1ψ1

β′ =
λ2β

λ1

ψ′2 = V ar(ε′i,2) = λ2
2ψ2

λ′1 = 1

λ′2 = 1.

The only parameters of the original model that are unaffected are ω1 and ω2.
The primes are now suppressed, resulting in a model that looks like (1.8) with λ1 =

λ2 = 1. The parameters of this model have the same names as some parameters of the
original model, but actually they are functions of those parameters and other parameters
(λ1 and λ2, in this case) that have been made invisible by the re-parameterization. In
terms of the new parameters, the covariance matrix Σ is

φ γφ βγφ βγφ
γφ γ2φ+ ω1 + ψ1 (γ2φ+ ψ1)β (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ω2 + ψ2 β2γ2φ+ β2ψ1 + ψ2

βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2 β2γ2φ+ β2ψ1 + ω2 + ψ2

 . (1.11)

It is easy to solve for the new parameters in terms of the variances and covariances σij,
showing that the functions of the original parameters given in (1.7) are identifiable.

Moreover, because the covariance matrix (1.11) is just the covariance matrix (1.7)
written in a different notation, the second level surrogate model (1.9) imposes the same
constraints on the covariance matrix that the original and centered surrogate models do.
These include the equality constraints σ13 = σ14, σ23 = σ24 and σ33 = σ34. As described in
Chapter 5, treating these constraints as a null hypothesis provides a way of testing model
correctness. Rejection of that null hypothesis would cast doubt on the original model.

The meanings of the parameters of the surrogate model are clear from the identities
in (1.10). The crucial parameters γ and β are multiplied by constants that are not just
unknown, they are un-knowable except for being positive. Thus, it will be possible to make
reasonable inference about whether these regression coefficients are positive, negative or
zero. But parameter estimation as such is a meaningless exercise. It is useful only as an
intermediate step in the construction of hypothesis tests.

Actually, not much is lost here. It may be impossible to estimate the the parameters
of interest9, but recall Figure 1.2. The straight-line relationships of the original model
are at best approximations of the non-linear functions that occur in nature. So one may
hope that conclusions about the signs of regression coefficients will apply to whether the

9One might hope that in a different re-parameterization, γ and β might appear unaltered as parameters
in the new model. But the numerical example shows that γ and β are not identifiable, and hence by
Theorem 1, consistent estimation of them is out of the question.
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true relationship is monotone increasing or monotone decreasing. This hope is all you
ever have with linear regression.

So on the surface, setting λ1 = λ2 = 1 looks like either an arbitrary restriction of the
parameter space, or a measurement model that is very difficult to defend. But in fact
it is a very good re-parameterization, resulting in a surrogate model whose parameters
are not only identifiable, but also reflect what can be known about the parameters of the
original model. It is very helpful to express the re-parameterization in terms of a change
of variables, because that reveals how the apparent suppression of λ1 and λ2 caused them
to appear in the remaining model parameters. This was not at all obvious.

Fortunately, re-parameterizations like this usually do not need to be carried out ex-
plicitly. It is common practice to write the model in centered form from the beginning, set
one factor loading10 for each latent variable equal to one, and then check parameter iden-
tifiability. This is fine, provided that the process is understood as a re-parameterization
with cascading effects on the coefficients linking the latent variables to one another and
to the other observable variables in the model.

As alternative to setting factor loadings equal to one, the centered surrogate model
may be re-parameterized so that the variances of transformed latent variables are equal
to one. That is, if Fj is a latent variable with variance φjj, the change of variables
is F ′j =

√
φjjFj. This device has advantages and disadvantages. Further discussion is

deferred until Chapter 2, which focuses upon the measurement model that links latent to
observable variables.

The blood pressure example with Sage

Sage is an open source symbolic mathematics software package. Use of such software
can greatly ease the computational burden of structural equation modeling. This section
assumes an acquaintance with the introduction to Sage in Appendix B. Like all the Sage
material, it may be skipped without loss of continuity. Since this is the first example in
the textbook proper, it contains a bit of extra detail.

Writing the equations of the centered surrogate model in matrix form, the latent
variable part is

Yi = β Yi + Γ Xi + εi(
Yi,1
Yi,2

)
=

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ
0

) (
Xi

)
+

(
εi,1
εi,2

)
,

and the measurement part of the model is

Di = Λ Fi + ei
Xi

Vi,1
Vi,2
Vi,3

 =


1 0 0
0 λ1 0
0 0 λ2

0 0 λ2




Xi

Yi,1
Yi,2
Xi,3

 +


ei,1
ei,2
ei,3
ei,4

 .

10This terminology anticipates Chapter 2. A factor loading is a coefficient linking a latent variable to
an observable variable.
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For the measurement model equations to make sense, it is necessary for the distribution
of ei,1 to be degenerate at zero; that is, Pr{ei,1 = 0} = 1. This will be accomplished by
setting V ar(ei,1) = 0.

The covariance matrix Σ = cov(Di) is the same under the original model and the
centered surrugate model. To calculate it, first download the sem package.

sem = ’http://www.utstat.toronto.edu/ brunner/openSEM/sage/sem.sage’

load(sem)

evaluate

Then set up the parameter matrices Φ, Γ, β, Ψ, Λ and Ω. Because these matrices contain
so many zeros, the ZeroMatrix function is used quite a bit to create symbolic matrices
that initially contain nothing but zeros. Then, non-zero elements are assigned using var

statements. First comes Φ, which is 1× 1.

# Set up matrices: p = 1, q = 2, k = 4

# Remember, matrix indices start with zero

PHIx = ZeroMatrix(1,1); PHIx[0,0] = var(’phi’); show(PHIx)

evaluate(
φ
)

The matrix Γ is 2× 1.

GAMMA = ZeroMatrix(2,1); GAMMA[0,0] = var(’gamma’); show(GAMMA)

evaluate(
γ
0

)

The matrix β is 2× 2.

BETA = ZeroMatrix(2,2); BETA[1,0] = var(’beta’); show(BETA)

evaluate(
0 0
β 0

)

The 2×2 matrix Ψ can be created directly with the DiagonalMatrix function; the default
symbol is a ψ.
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PSI = DiagonalMatrix(2); show(PSI)

evaluate(
ψ1 0
0 ψ2

)

The matrix Λ is 4× 3.

LAMBDA = ZeroMatrix(4,3); LAMBDA[0,0] = 1 ; LAMBDA[1,1] = var(’lambda1’)

LAMBDA[2,2] = var(’lambda2’) ; LAMBDA[3,2] = var(’lambda2’)

show(LAMBDA)

evaluate
1 0 0
0 λ1 0
0 0 λ2

0 0 λ2


The matrix Ω = cov(ei) has V ar(ei,1) = 0, so that the observable variable Xi can also
appear in the latent variable model.

OMEGA = ZeroMatrix(4,4); OMEGA[1,1] = var(’omega1’)

OMEGA[2,2] = var(’omega2’); OMEGA[3,3] = var(’omega2’)

show(OMEGA)

evaluate
0 0 0 0
0 ω1 0 0
0 0 ω2 0
0 0 0 ω2


Following the two-stage model formulation, the next step is to calculate Φ = cov(Fi).
Then Φ will be used as an ingredient in the calculation of Σ.

# Calculate PHI = cov(F)

PHI = PathVar(Phi=PHIx,Beta=BETA,Gamma=GAMMA,Psi=PSI)

show(PHI)

evaluate
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 φ γφ βγφ
γφ γ2φ+ ψ1 (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2


Now, Σ is calculated from Φ, Λ and Ω, yielding Expression (1.7). I used Sage to generate
the LATEXcode for the matrix by double-clicking on the object in the Sage worksheet, and
then manually deleted the lower triangular part of the matrix so it would fit better on
the page. It was still a lot better than typesetting the matrix myself.

# Calculate SIGMA = cov(D)

SIGMA = FactorAnalysisVar(Lambda=LAMBDA,Phi=PHI,Omega=OMEGA)

show(SIGMA)

evaluate
φ γλ1φ βγλ2φ βγλ2φ

γλ1φ (γ2φ+ ψ1)λ2
1 + ω1 (γ2φ+ ψ1)βλ1λ2 (γ2φ+ ψ1)βλ1λ2

βγλ2φ (γ2φ+ ψ1)βλ1λ2 (β2γ2φ+ β2ψ1 + ψ2)λ2
2 + ω2 (β2γ2φ+ β2ψ1 + ψ2)λ2

2

βγλ2φ (γ2φ+ ψ1)βλ1λ2 (β2γ2φ+ β2ψ1 + ψ2)λ2
2 (β2γ2φ+ β2ψ1 + ψ2)λ2

2 + ω2



To generate the example of two numerically different parameter sets that yield the same
Σ, I looked at the equations in (1.10) to find distinct θ vectors corresponding to the same
θ′. There was still a bit of trial and error, and Sage made it really convenient to do the
numerical calculations. A Sage object like a matrix may be treated as a function of the
symbolic variables that appear in it.

SIGMA(gamma=2,beta=4,lambda1=1,lambda2=1,psi1=4,psi2=16,

phi=1,omega1=1,omega2=1)

evaluate
1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145



SIGMA(gamma=1,beta=2,lambda1=2,lambda2=4,psi1=1,psi2=1,

phi=1,omega1=1,omega2=1)

evaluate
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1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145


The same Sage capability was used to generate Expression (1.11), the re-parameterized Σ
matrix under the second-level surrogate model. Rather than starting from the surrogate
model equations (1.9) and re-doing the whole calculation, I just evaluated the Σ of (1.7)
at λ1 = λ2 = 1.

SIGMA(lambda1=1,lambda2=1)

evaluate
φ γφ βγφ βγφ
γφ γ2φ+ ω1 + ψ1 (γ2φ+ ψ1)β (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ω2 + ψ2 β2γ2φ+ β2ψ1 + ψ2

βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2 β2γ2φ+ β2ψ1 + ω2 + ψ2


The covariance structure equations may now be solved by inspection, verifying identifi-
ability of the parameters in the re-parameterized model. But it is instructive to solve
the equations using Sage. The necessary ingredients are a list of equations and a list of
unknown parameters for which to solve.

The sem package has the specialized function Parameters for extracting parameters
from matrices, so they don’t all need to be re-typed. It works on the original parameter
matrices, not on computed matrices like Φ or Σ. For example, the 4×3 matrix Λ contains
just two parameters, λ1 and λ2.

Parameters(LAMBDA) # Don’t need these - just an example

evaluate

(λ1, λ2)

param = [phi,beta,gamma] # Start with this

param.extend(Parameters(PSI))

param.extend(Parameters(OMEGA))

param

evaluate

(φ, β, γ, ψ1, ψ2, ω1, ω2)

Notice how the list param has been extended by adding the contents of Ψ and Ω. For
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big matrices with lots of parameters, this is a real convenience.

The next step is to set up the equations to solve. The Sage solve function needs the same
number of equations as unknowns, so giving it the full set of 10 equations in 7 unknowns
will not work. But we’ll set up all 10 equations anyway to see what happens.

# Now set up equations to solve

S = SIGMA(lambda1=1,lambda2=1) # Sigma under surrogate model

S2 = SymmetricMatrix(4,’sigma’)

eqns = [] # Empty list

for i in range(4): # i goes from 0 to 3

for j in range(i+1): # j goes from 0 to i

item = S[i,j]==S2[i,j] # An equation

eqns.append(item) # Append to list of equations

eqns # Not easy to look at, but there is a scroll bar

evaluate

(φ = σ11, γφ = σ12, γ
2φ+ ω1 + ψ1 = σ22, βγφ = σ13, (γ

2φ+ ψ1)β = σ23, β
2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33, βγφ = σ14, (γ

2φ+ ψ1)β = σ24, β
2γ2φ+ β2ψ1 + ψ2 = σ34, β

2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44)

The object eqns is a list of equations; you can tell it’s a list because it’s enclosed in
brackets. As the comment statement says, it’s not very easy to look at, but there is
a scroll bar. So in a Sage environment, you can examine the output that runs off the
page in this document. Here’s a more convenient way to look at the covariance structure
equations.

for item in eqns: item

evaluate

φ = σ11

γφ = σ12

γ2φ+ ω1 + ψ1 = σ22

βγφ = σ13

(γ2φ+ ψ1)β = σ23

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33

βγφ = σ14

(γ2φ+ ψ1)β = σ24

β2γ2φ+ β2ψ1 + ψ2 = σ34

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44

It would seem easy to ask Sage to solve these ten equations in seven unknowns. It’s easy
to ask, but the answer is not what we’re looking for.
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solve(eqns,param)

evaluate

[]

That little rectangle is a left square bracket followed by a right square bracket; that is, it’s
an empty list (empty set), meaning that the system of equations has no general solution.
This happens because, for example, the fourth equation in the list says βγφ = σ13, while
the seventh equation says βγφ = σ14. To Sage, σ13 and σ14 are just numbers, and there
is no reason to assume they are equal. Thus there is no general solution.

Actually, because we think of the σij values as arising from a single, fixed point in the
parameter space, we recognize σ13 = σ14 (and also σ23 = σ24 and σ33 = σ44) as realities –
distinctive features that the model imposes on the covariance matrix Σ. But Sage can’t
know this unless we tell her. It’s easiest to just eliminate the redundant equations.

extra = [9,7,6] # Redundant equations, starting with index zero

for item in extra: show(eqns[item])

evaluate

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44

(γ2φ+ ψ1)β = σ24

βγφ = σ14

Removing the the extra equations from the list and then taking a look . . .

for item in extra: eqns.remove(eqns[item])

for item in eqns: item

evaluate

φ = σ11

γφ = σ12

γ2φ+ ω1 + ψ1 = σ22

βγφ = σ13

(γ2φ+ ψ1)β = σ23

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33

β2γ2φ+ β2ψ1 + ψ2 = σ34

Now it is possible to solve the remaining seven equations in seven unknowns. The solution
will be easier to use in later calculations if it is obtained in the form of a dictionary. To
see if the solution is unique, first check the length of the list of dictionaries returned by
solve.
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# Return solution as list of dictionaries

solist = solve(eqns,param,solution_dict=True)

len(solist)

evaluate

1

There is only one item in the list of dictionaries; it’s item zero. The key of the dictionary
is the parameter, and the value is the solution, which for us will be some function of
the σij quantities. Dictionary entries take the form Key-Colon-Value. Dictionaries are
inherently unordered.

sol = solist[0]; sol # Item 0 of the list; there’s just one.

evaluate{
φ : σ11, ψ1 :

σ11σ12σ23−σ2
12σ13

σ11σ13
, β : σ13

σ12
, ω2 : σ33 − σ34, γ : σ12

σ11
, ω1 : −σ12σ23−σ13σ22

σ13
, ψ2 : σ12σ34−σ13σ23

σ12

}
The dictionary format makes it convenient to refer to the solution for a parameter — for
example, the solution for ψ2.

sol[psi2]

evaluate

σ12σ34−σ13σ23
σ12

Dictionaries are hard to look at when they have a lot of items. Here is one way to take a
quick look at a solution. Dictionary entries are expressed as tuples of the form (Parameter,
Solution). Since the for loop is going through the list of parameters, the output is in
that order.

for item in param:

item, sol[item]

evaluate



112 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

(φ, σ11)(
β, σ13

σ12

)
(
γ, σ12

σ11

)
(
ψ1,

σ11σ12σ23−σ2
12σ13

σ11σ13

)
(
ψ2,

σ12σ34−σ13σ23
σ12

)
(
ω1,−σ12σ23−σ13σ22

σ13

)
(ω2, σ33 − σ34)

That’s okay for a quick look, and the syntax is intuitive. Equations are nicer, though.
In the following, realize that nothing is getting assigned. Rather, item==sol[item] just
causes that equation to be displayed.

for item in param: item==sol[item]

evaluate

φ = σ11

β = σ13
σ12

γ = σ12
σ11

ψ1 =
σ11σ12σ23−σ2

12σ13
σ11σ13

ψ2 = σ12σ34−σ13σ23
σ12

ω1 = −σ12σ23−σ13σ22
σ13

ω2 = σ33 − σ34

The dictionary sol gives parameters in terms of the σij values. It can also be useful to
have a dictionary that goes in the other direction, where the input is in terms σij and
the output is in terms of the model parameters. The function SigmaOfTheta sets up such
a dictionary; see Appendix B or try SigmaOfTheta? in a Sage environment for more
detail. In the following, the dictionary is in terms of the original (not surrogate) model
parameters.

# Original covariance matrix as a function of theta

theta = SigmaOfTheta(SIGMA)

# theta is a dictionary

# For example, sigma12 = gamma lambda1 phi

sigma12(theta)

evaluate

γλ1φ

Such a dictionary can be used to evaluate big, messy functions of Σ, including the solutions
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in the dictionary sol.

# What is the solution for psi2 (that’s psi2-prime) in terms of

# ORIGINAL model parameters?

sol[psi2](theta)

evaluate

−(γ2φ+ψ1)β2γλ1λ22φ−(β2γ2φ+β2ψ1+ψ2)γλ1λ22φ
γλ1φ

Simplify(_) # Underscore refers to the last item

evaluate

λ2
2ψ2

Where in the original parameter space is ψ′1 identifiable? These are the points in the
parameter space where the denominator of the solution (that’s σ11σ13) is non-zero. Eval-
uating the denominator as a function of the model parameters θ,

# Where is psi1-prime identifiable?

denominator(sol[psi2])(theta)

evaluate

βγλ2φ
2

Thus, β, γ and λ2 must all be non-zero in order for ψ′1 = λ2
1ψ1 to be identifiable.

Yet another type of surrogate model

In some structural equation models, variables that are obviously measured with error are
assumed to be observable. This feature is found in many applications of instrumental
variables. Invariably, the assumption is adopted so that the parameters of the resulting
model will be identifiable. But it is practically impossible to measure anything without
error, so almost every model that assumes error-free measurement is either dangerously11

unrealistic, or a surrogate for some model that is more reasonable.

For example, consider a centered version of the simple instrumental variables model (??)

11Section 0.8 in Chapter 0 points out the disastrous effects of ignoring measurement error in multiple
regression, and it is natural to expect similar things to happen in a more general setting. Except possibly
for experimentally manipulated exogenous variables, assuming perfect measurement is not something to
be done lightly.



114 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

Figure 1.4: Path diagram of the surrogate model for credit card debt
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on page ??.

Wi = Xi + ei (1.12)

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2

The path diagram is shown in Figure 1.4. To give this some content, suppose that the
latent variable Xi is total family income, Wi is total reported family income, Yi,1 is credit
card debt, and Yi,2 is the resale value of the most expensive non-commercial vehicle
the family owns. Interest is in the connection between income and credit card debt,
represented by β1. Value of most expensive vehicle is an instrumental variable.

Notice that the factor loading for Wi equals one; this means that it’s a surrogate
model. As described starting on page ??, the parameters of this model are identifiable.
But it’s far from realistic. Total credit card surely cannot be measured without error.
People have more than one card, and they seldom know their exact balance for any card
at any given point in time. As for the approximate resale value of a car, it is possible
to base this on the car’s “book value,” so the variable is well defined. Still, it is only an
estimate, and it is an estimate that depends on the model and year of the vehicle, which
many people will not report accurately.

Figure 1.5 depicts a more reasonable model for the Credit Card Debt example, and it
is proposed as the original model. In this model, Yi,1 is true credit card debt, while Vi,1
is reported credit card debt. Vi,2 is true resale value of the most expensive vehicle, while
Vi,2 is the estimated value. The equations of the proposed original model are
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Figure 1.5: Path diagram of the original model for credit card debt
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Wi = ν1 + λ1Xi + ei,1 (1.13)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

Vi,1 = ν2 + λ2Yi,1 + ei,2

Vi,2 = ν3 + λ3Yi,2 + ei,3,

where V ar(Xi) = φ, V ar(ei,1) = ω1, V ar(ei,2) = ω2, V ar(ei,3) = ω3, V ar(εi,1) = ψ1 and
V ar(εi,2) = ψ2. As the path diagram indicates, all error terms are independent of Xi and
one another. Because Wi, Vi,1 and Vi,2 are all direct measurements of the corresponding
latent variables, it is safe to assume that the factor loadings λ1, λ2 and λ3 are all positive.

Centering the variables and setting all three factor loadings to one yields a second level
surrogate model that preserves the signs of β1 and β2, though not their actual values.
There are now eight parameters, but still only six covariance structure equations. By
the Parameter Count Rule, the parameters of this model cannot be identified. However
(dropping the primes that would denote variables that have been transformed to carry
out the re-parameterizations),

Vi,1 = Yi,1 + ei,2

= (β1Xi + εi,1) + ei,2

= β1Xi + (εi,1 + ei,2)

= β1Xi + ε′i,1.

Re-labelling Vi,1 as Y ′i,1, we have the model equation Y ′i,1 = β1Xi + ε′i,1, with V ar(ε′i,1) =
ψ′1 = ψ1 +ω2. The same procedure yields Y ′i,2 = β2Xi+ε

′
i,2, with V ar(ε′i,2) = ψ′2 = ψ2 +ω3.

Dropping the primes again to hide the evidence of our strange activities, we arrive
once more at the model equations (1.12). All along, this model was a surrogate for the
original model of Figure 1.5 and Equations (1.13). It never really assumed that credit card
debt and vehicle value were observable. Rather, the change of variables ε′i,1 = εi,1 + ei,2
was carried out to obtain the re-parameterization ψ′1 = ψ1 + ω2, and the change of
variables ε′i,2 = εi,2 + ei,3 was carried out to obtain the re-parameterization ψ′2 = ψ2 + ω3.
Notationally, the result looks like a model with error-free measurement of Yi,1 and Yi,2
— but in this case appearances are deceiving. Surrogate models are never to be taken
literally.

The beginning of Section 0.8 of Chapter 0 suggested that in multiple regression, mea-
surement error in response variables could be safely ignored, and the result was a useful
surrogate model. The same principle applies here. In general, suppose that an endogenous
variable Yi,j in the latent variable model is a purely endogenous variable, in the sense that
there are no arrows from Yi,j to any other latent variable. In addition, suppose that Yi,j
is measured with error in a single observable variable Yi,j, so that after centering,

Yi,j = r>j Xi + εi,j

Vi,j = λjYi,j + ei,j,
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where rj = rj(β,Γ) denotes row j of the matrix (I − β)−1Γ; see Expression (1.3) on
page 97. In addition, suppose that εi,j and ei,j are independent of one another and of all
other exogenous variables in the model, with

At this point, it would be possible and legitimate to implicitly re-parameterize by
setting λj = 1 as in the Credit Card Debt example. This time, the absorption of the un-
knowable factor loading will be accomplished by the re-parameterization that combines
ψj and ωj, all in one step.

Vi,j = λjYi,j + ei,j

= λj(r
>
j Xi + εi,j) + ei,j

= (λjrj)
>Xi + (λjεi,j + ei,j)

= r′>j Xi + ε′i,j,

with V ar(ε′i,j) = ψ′j = λ2
jψj + ωj. The β and γ parameters in rj are also re-expressed in

this step. Now Vi,j may be called Y ′i,j without doing any harm. The result is a new model
in which

• The parameters are functions of the parameters in the original model.

• The dimension of the parameter space is two less, so the new parameter vector
should be easier to identify.

• The meaning of the new parameters is clear. The β and γ parameters in rj are
positive multiples of what they were before, while any separate meaning that ψj
and ωj may have had is lost. They were probably not knowable anyway.

• After dropping the primes, it looks like Yi,j is measured without error, but that is
an illusion. No such claim was ever intended.

The situation is shown graphically in Figure 1.6. When a latent endogenous variable does
not affect any other latent variables and is expressed by only one observable variable, it
is acceptable to drop the latent variable from the model, and run all the arrows directly
to the observable variable.

Comments Virtually all structural equation models used in practice are surrogate mod-
els, and most of them have the features described here. While the re-parameterizations
are very standard, the terms “original model” and “surrogate model” are not. I made
them up, and they will not be found elsewhere12.

Experts in the field undoubtedly know that what’s happening is a series of re-parameterizations,
but this is often not acknowledged in textbooks. Instead, the process is presented as a
harmless restriction of the parameter space, adopted in order to identify the parameters.
I think it’s really helpful to point out how the re-parameterizations are accomplished by
change-of-variable operations. This reveals effects on other variables in the model (not
just the ones that seem to be restricted), and makes it possible to specify the meanings
of the new parameters in terms of the parameters of the original model.

12That is, unless others find the terminology useful and it catches on. It’s always possible, I suppose.
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Figure 1.6: Direct path to the observed variable
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1.5 Inference

Maximum likelihood

For most structural equation modeling software, the default method of estimation is
numerical maximum likelihood. The exogenous variables and error terms are assumed
multivariate normal, and consequently the joint distribution of the observable variables
is multivariate normal too. Even when the normal assumption is clearly wrong, normal
likelihood methods can yield inference of surprisingly high quality13. This is a good reason
to emphasize likelihood methods, though distribution-free inference based on the method
of moments will also be described. The reader is referred to Appendix A for material on
maximum likelihood and related concepts.

Let D1, . . . ,Dn be a random sample from a k-dimensional multivariate normal distri-
bution with expected value µ and varance-covariance matrix Σ. The likelihood is

L(µ,Σ) =
n∏
i=1

1

|Σ| 12 (2π)
k
2

exp

{
−1

2
(Di − µ)>Σ−1(Di − µ)

}

= |Σ|−n/2(2π)−nk/2 exp

{
−1

2

n∑
i=1

(Di − µ)>Σ−1(Di − µ)

}

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (D− µ)>Σ−1(D− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(Di −D)(Di −D)> is the sample variance-covariance matrix.

13Lift references from the mereg paper
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Let θ ∈ Θ be a vector of parameters from a structural equation model; Θ is the
parameter space. For example, θ could be the the unique elements in the parameter
matrices in the original Model (1.1), restricted only by modeling considerations. Then the
likelihood is a function of θ through µ = µ(θ) and Σ = Σ(θ), as given in Expressions (1.4).

Maximizing the likelihood over θ is equivalent to minimizing the minus log likelihood

−`(θ) =
n

2
log |Σ(θ)|+ nk

2
log(2π) +

n

2
tr(Σ̂Σ(θ)−1) (1.14)

+
n

2

(
D− µ(θ)

)>
Σ(θ)−1

(
D− µ(θ)

)
For any set of observed data values, the minus log likelihood defines a high-dimensional
surface floating over the parameter space Θ. The maximum likelihood estimate θ̂ is the
point in Θ where the surface is lowest. To find this point numerically, choose a starting
value as close to the answer as possible and move downhill. Ideally, the process will
terminate at the unique minimum of the function. Geometrically, the surface will be
level and concave up. Analytically, the gradient will be zero14 and the eigenvalues of
the Hessian matrix will all be positive. As described in Appendix A, the Hessian is the
observed Fisher information matrix evaluated at θ̂, and its inverse is the approximate
asymptotic covariance matrix of θ̂.

When the parameters are not identifiable, this procedure fails. The likelihood is con-
stant on collections of functions of θ that are identifiable. Typically, the numerical search
reaches the bottom of a valley, and at the bottom of that valley is a contour (think of a
winding, invisibly thin river) where the minus log likelihood is constant. The gradient is
zero at any point on the surface of the river, but the surface is not concave up in every di-
rection. It follows that the Hessian matrix has one or more eigenvalues equal to zero. The
determinant of the Hessian equals zero, and inverting it to approximate the asymptotic
covariance matrix of θ̂ is impossible. In this situation, most software complains loudly15.

Since the parameters of the original Model (1.1) are not identifiable, fitting it by
maximum likelihood is out of the question. Re-parameterization is necessary. Following
Section A.6.1, the first step is to lose the expected values and intercepts. Let κ = ν+ΛµF ,
where the partitioned matrix

µF =

(
µx

(I− β)−1 (α+ Γµx)

)
.

Under this re-parameterization, the new parameter vector θ′ consists of κ, plus all the
parameters that appear in Σ — that is, the unique elements of Φx,Ψ,Ω, β,Γ and Λ.

14The gradient is the vector obtained by partially differentiating the minus log likelihood with respect
to each parameter. Partially differentiating the log likelihood and setting all the derivates to zero typically
yields a system of equations that nobody can solve. So the numerical minimization yields one solution
to this problem.

15This encourages some naive users to simply run their structural equation modeling software without
thinking very hard about identifiability, trusting that if the parameters are not identifiable, the search
will blow up. Unfortunately, the search can blow up numerically for other reasons, and sometimes the
symptoms can be very similar to those arising from lack of identifiability. It is much better to check
identifiability mathematically, before trying to fit the model.
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Because the new parameter κ is exactly µ(θ), the minus log likelihood is minimal
when κ = D, regardless of the values of the remaining parameters. The second line of
Expression (1.14) disappears, and the task is now to minimize the first line with respect
to the parameters that appear in the covariance matrix.

The remaining parameters are still not identifiable in general. Further re-parameterization
is necessary, and the re-parameterizations corresponding to standard surrogate models are
often very helpful. The parameters of a good surrogate model are identifiable functions of
the original model’s parameters, at least in most of the parameter space16. Not counting
the centering step, re-parameterization is carried out by a change of variables involving
only latent variables. As a result, the parameters of the original model appear in the
covariance matrix only through the functions of θ that correspond to the parameters of
the surrogate model. This means that the maximum of the likelihood under the surro-
gate model is identical to the maximum of the likelihood under the original model. If
the likelihood function achieves its maximum at a point where the parameters of the the
parameters of the surrogate model are identifiable, then the maximum is unique. The
minus log likelihod will be nicely concave up at this point in the parameter space of the
re-parameterized model. The Hessian matrix (observed Fisher Information) will be pos-
itive definite, and its inverse will provide an approximate asymptotic covariance for the
estimated parameters of the surrogate model. This is the main ingredient for Z-tests and
Wald tests. The height of the minus log likelihood at the MLE is used in likelihood ratio
tests.

Once the expected values and intercepts have been absorbed into κ, we implicitly
estimate the identifiable function κ with the vector of sample means D, and then forget
about it, basing all inference upon the sample variance-covariance matrix. This is standard
practice, but it raises a few issues. First, note that while κ is a function of the un-knowable
parameters ν, α and µx, it is also a function of β,Γ and Λ. These last three matrices
are often of primary interest. Might D contain some information about them? Are we
are throwing this information away?

The answer is No, provided that the intercept term sν is not restricted by modeling
considerations. Suppose that the first line of the minus log likelihood (1.14) is minimized,
regardless of whether that minimum is unique. Now consider the effect of adjusting β,
Γ or Λ. The value of the first line will increase or remain the same. Now look at the
second line, recalling that µ(θ) = ν + ΛµF . Regardless of how the values of the other
parameters change, ν can always be adjusted so that D − µ(θ) = 0. This makes the
second line equal to zero, which is as low as it can be. Therefore, the second line of (1.14)
makes no contribution to the MLEs of parameters appearing in the covariance matrix Σ
— that is, provided that ν is unrestricted.

Since inference is to be be based on the covariance matrix, it saves mental effort to
employ the centered surrogate model. But we never actually fit the centered surrogate
model. We cannot, because the change of variables involves subtracting expected values
from the observed data, and those expected values (elements of µ(θ) = κ) are unknown.
On the other hand, it is possible to fit an approximate centered model by using the vector

16That is, except possibly on a set of volume (Lebesgue measure) zero.
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of sample means in place of µ(θ). That is,

c

Di= Di − µ(θ) ≈ Di −D

by the Law of Large Numbers. The approximation will be very good for large samples.

Letting
c

Di refer to Di −D for now, the model is that
c

D1, . . .
c

Dn are a random sample
from a multivariate normal distribution with expected value zero and covariance matrix
Σ(θ). The observations are not quite independent because the same random quantity D
is subtracted from each one, but the covariances go to zero as n → ∞. The likelihood
function is

L(Σ) =
n∏
i=1

1

|Σ| 12 (2π)
k
2

exp

{
−1

2

c

D
>
i Σ−1

c

Di

}

= |Σ|−n/2(2π)−nk/2 exp

{
−1

2

n∑
i=1

(Di −D)>Σ−1(Di −D)

}

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
)
}
.

The minus log likelihood is just the first line of (1.14). So, estimating κ = µ(θ) with
D and setting it aside is the same as fitting the approximate centered surrogate model.
Either way, the intercepts and expected values disappear.

Testing model correctness The typical structural equation model implies a covariance
matrix Σ(θ) with properties that are not necessarily true of covariance matrices in general.
For example, the original and surrogate model for the Blood Pressure example yields the
covariance matrix (1.7) on page 101. In this matrix, σ13 = σ14, σ23 = σ24 and σ33 =
σ34; these same constraints are implied by the surrogate model The double measurement
regression Model (37) and the instrumental variables Model (45) also induce equality
constraints on their covariance matrices; see pages 60 and 71 respectively for details.

In all such cases, the model implies that certain polynomials in σij are equal to zero.

These constraints are satisfied by Σ(θ) for any θ in the parameter space, including θ̂.

This means that the matrix Σ(θ̂) (sometimes called the reproduced covariance matrix )
automatically satisfies the constraints as well.

With probability one, Σ(θ̂) will not be exactly equal to Σ̂; but if the model is correct,
it should be fairly close. This is the idea behind the classical likelihood ratio test for
goodness of model fit. The null hypothesis is that the equality constraints implied by the
model are true, and the alternative is that Σ is completely unconstrained except for being
symmetric and positive definite. Note that since a well-chosen surrogate model implies
the same constraints as the original model, this test of model correctness applies equally
to the original and the surrogate model. It is far more convenient to carry out model
fitting using the surrogate model.
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Assuming that substantive modeling considerations do not restrict the intercept pa-
rameter ν in the general Model (1.1)17, the likelihood ratio test statistic is written

G2 = −2 log
L
(

Σ(θ̂)
)

L(Σ̂)

= −2 log
|Σ(θ̂)|−n/2(2π)−nk/2 exp−n

2

{
tr(Σ̂Σ(θ̂)−1)

}
|Σ̂|−n/2(2π)−nk/2 exp−n

2

{
tr(Σ̂Σ̂

−1
)
}

= n
(

log |Σ(θ̂)|+ tr(Σ̂Σ(θ̂)−1)− log |Σ̂| − k
)

= n
(
tr(Σ̂Σ(θ̂)−1)− log |Σ̂Σ(θ̂)−1| − k

)
(1.15)

This statistic is quite easy to compute given θ̂. In fact, it is common18 for software to
directly minimize the function g(θ) = tr(Σ̂Σ(θ)−1) − log |Σ̂Σ(θ)−1| − k instead of the
minus log likelihood, and then just multiply by n to get the likelihood ratio test statistic
G2. An advantage of doing it this way is that the numerical performance of the algorithm
does not depend on the sample size.

The test statistic G2 is referred to a chi-squared distribution with degrees of freedom
equal to the number of model-induced constraints on Σ. When G2 is larger than the
critical value, the null hypothesis that the constraints hold is rejected, casting doubt on
the model.

To count the constraints, first assume that the parameter vector is identifiable, and
that there are more moment structure equations than unknown parameters. Suppose
there are m moments (typically covariances or correlations), and t unknown parameters
in the vector θ, with m > t. The degrees of freedom are m − t. To see why this might
hold, suppose that exactly t of the the moment structure equations can be solved for the t
unknown parameters. Substituting the solution into the m−t unused equations gives m−t
equalities involving only σij quantities. These correspond to the constraints. Notice that
while this is a test of the constraints that the model induces on the covariance matrix Σ,
both the test statistic and degrees of freedom can be determined without knowing exactly
what the constraints are.

If a model fails the G2 goodness of fit test, it is common to search for a model that does
fit. Sometimes, the reason for lack of fit can be revealed by residuals formed by subtracting
the elements of Σ̂ from those of Σ(θ). Approximate formulas for standardization are
available. Once the model fits, likelihood ratio tests for full versus reduced models can
be obtained by subtracting G2 statistics, with degrees of freedom equal to the number of
additional constraints implied by the reduced model.

17This might not be correct. For example, if two measurements of a latent variable are truly equivalent,
they will have the same means as well as the same variances and covariances with other variables.
Overlooking this kind of thing results in a modest loss of power in the goodness of fit test.

18They seem to be using Formula (6) on p. 446, from Jöreskog’s (1978) classic article [8] in Psychome-
trika.
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The likelihood ratio test for goodness of fit is useful, but as a test of model correctness,
it is incomplete. This is because structural equation models imply two types of constraint
on Σ: equality constraints and inequality constraints. For example, in proving identi-
fiability for the instrumental variables Model (refinstru2) on page 69, the solution (49)
includes ω = σ11 − σ13σ14

σ34
. This means σ11 >

σ13σ14
σ34

, an inequality constraint that is ob-
viously not true of 4× 4 covariance matrices in general. The typical structural equation
model imposes many inequality constraints on the covariance matrix.

In general, moment structure equations map the parameter space into a moment space,
which is typically a space of k× k positive definite matrices. As the numerical maximum
likelihood search moves θ through the parameter space, Σ(θ) moves along through a
lower-dimensional subset of the moment space where the equality constraints are satisfied,
generally behaving as if it were attracted to Σ̂. The algorithm is minimizing the height of
the minus log likelihood rather than the distance between Σ(θ) and Σ̂, but if the sample
size is large and the surface is not too complicated, it is close to the same thing.

While Σ(θ) is forced to obey the equality constraints, it need not obey the inequality
constraints. If the true value of Σ is such that an inequality constraint is not satisfied
(which means the model is wrong), then it is quite possible that Σ(θ) will cross the bound-
ary of an inequality constraint. This means that θ leaves the parameter space. Maximum
likelihood estimates that are outside the parameter space make everyone uncomfortable,
if they are noticed.

Negative variance estimates are easy to notice.

Suppose that one of the (surrogate) model parameters is a variance, and the parameter
is identifiable. Then it equals a function of the σij values that must be positive if the
model is correct. This is an inequality constraint on Σ, and the

f the function is one-to-one when restricted to the parameter space, the parameter
vector is identifiable. If it is onto, then every point in the moment space has an inverse
image in the parameter space.

Chapter 5 explores this topic in detail, but here

Method of moments
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