Omitted Variables ${ }^{1}$ STA431 Winter/Spring 2017

${ }^{1}$ See last slide for copyright information.

Overview

(1) Omitted Variables
(2) Instrumental Variables

A Practical Data Analysis Problem

When more explanatory variables are added to a regression model and these additional explanatory variables are correlated with explanatory variables already in the model (as they usually are in an observational study),

- Statistical significance can appear when it was not present originally.
- Statistical significance that was originally present can disappear.
- Even the signs of the $\widehat{\beta}_{\mathrm{S}}$ can change, reversing the interpretation of how their variables are related to the response variable.

An extreme, artificial example

To make a point

Suppose that in a certain population, the correlation between age and strength is $r=-0.93$.

Age and Strength

The fixed x regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, p-1}+\epsilon_{i}, \text { with } \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- If viewed as conditional on $\mathbf{X}_{i}=\mathbf{x}_{i}$, this model implies independence of ϵ_{i} and \mathbf{X}_{i}, because the conditional distribution of ϵ_{i} given $\mathbf{X}_{i}=\mathbf{x}_{i}$ does not depend on \mathbf{x}_{i}.
- What is ϵ_{i} ? Everything else that affects Y_{i}.
- So the usual model says that if the explanatory varables are random, they have zero covariance with all other variables that are related to Y_{i}, but are not included in the model.
- For observational data (no random assignment), this assumption is almost always violated.
- Does it matter?

Example: $Y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{3} X_{i, 3}+\epsilon_{i}$

 As usual, the explanatory variables are random.Suppose that the variables X_{2} and X_{3} affect Y and are correlated with X_{1}, but they are not part of the data set.

Statement of the model

The explanatory variables X_{2} and X_{3} affect Y and are correlated with X_{1}, but they are not part of the data set.

The values of the response variable are generated as follows:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{3} X_{i, 3}+\epsilon_{i}
$$

independently for $i=1, \ldots, n$, where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. The explanatory variables are random, with expected value and variance-covariance matrix
$E\left(\begin{array}{l}X_{i, 1} \\ X_{i, 2} \\ X_{i, 3}\end{array}\right)=\left(\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3}\end{array}\right) \quad$ and $\operatorname{cov}\left(\begin{array}{c}X_{i, 1} \\ X_{i, 2} \\ X_{i, 3}\end{array}\right)=\left(\begin{array}{lll}\phi_{11} & \phi_{12} & \phi_{13} \\ & \phi_{22} & \phi_{23} \\ & & \phi_{33}\end{array}\right)$,
where ϵ_{i} is independent of $X_{i, 1}, X_{i, 2}$ and $X_{i, 3}$. Values of the variables $X_{i, 2}$ and $X_{i, 3}$ are latent, and are not included in the data set.

Absorb X_{2} and X_{3}

Since X_{2} and X_{3} are not observed, they are absorbed by the intercept and error term.

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{3} X_{i, 3}+\epsilon_{i} \\
& =\left(\beta_{0}+\beta_{2} \mu_{2}+\beta_{3} \mu_{3}\right)+\beta_{1} X_{i, 1}+\left(\beta_{2} X_{i, 2}+\beta_{3} X_{i, 3}-\beta_{2} \mu_{2}-\beta_{3} \mu_{3}+\epsilon_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i, 1}+\epsilon_{i}^{\prime} .
\end{aligned}
$$

And,

$$
\operatorname{Cov}\left(X_{i, 1}, \epsilon_{i}^{\prime}\right)=\beta_{2} \phi_{12}+\beta_{3} \phi_{13} \neq 0
$$

The "True" Model

Almost always closer to the truth than the usual model, for observational data

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

where $E\left(X_{i}\right)=\mu_{x}, \operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(X_{i}, \epsilon_{i}\right)=c$.

Under this model,

$$
\sigma_{x y}=\operatorname{Cov}\left(X_{i}, Y_{i}\right)=\operatorname{Cov}\left(X_{i}, \beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)=\beta_{1} \sigma_{x}^{2}+c
$$

Estimate β_{1} as usual with least squares Recall $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=\sigma_{x y}=\beta_{1} \sigma_{x}^{2}+c$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x y}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow{\rightarrow} \frac{\sigma_{x y}}{\sigma_{x}^{2}} \\
& =\frac{\beta_{1} \sigma_{x}^{2}+c}{\sigma_{x}^{2}} \\
& =\beta_{1}+\frac{c}{\sigma_{x}^{2}}
\end{aligned}
$$

$\widehat{\beta}_{1} \xrightarrow{p} \beta_{1}+\frac{c}{\sigma_{x}^{2}}$
It converges to the wrong thing.

- $\widehat{\beta}_{1}$ is inconsistent.
- For large samples it could be almost anything, depending on the value of c, the covariance between X_{i} and ϵ_{i}.
- Small sample estimates could be accurate, but only by chance.
- The only time $\widehat{\beta}_{1}$ behaves properly is when $c=0$.
- Test $H_{0}: \beta_{1}=0$: Probability of making a Type I error goes to one as $n \rightarrow \infty$.

All this applies to multiple regression

When a regression model fails to include all the explanatory variables that contribute to the response variable, and those omitted explanatory variables have non-zero covariance with variables that are in the model, the regression coefficients are inconsistent. Estimation and inference are almost guaranteed to be misleading, especially for large samples.

Correlation-Causation

- The problem of omitted variables is a technical aspect of the correlation-causation issue.
- The omitted variables are "confounding" variables.
- With random assignment and good procedure, x and ϵ have zero covariance.
- But random assignment is not always possible.
- Most applications of regression to observational data provide very poor information about the regression coefficients.
- Is bad information better than no information at all?

How about another estimation method?
 Other than ordinary least squares

- Can any other method be successful?
- This is a very practical question, because almost all regressions with observational data have the disease.

For simplicity, assume normality

$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

- Assume $\left(X_{i}, \epsilon_{i}\right)$ are bivariate normal.
- This makes $\left(X_{i}, Y_{i}\right)$ bivariate normal.
- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \stackrel{i . i . d .}{\sim} N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\mu}=\binom{\mu_{1}}{\mu_{2}}=\binom{\mu_{x}}{\beta_{0}+\beta_{1} \mu_{x}}
$$

and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{11} & \sigma_{12} \\
& \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{x}^{2} & \beta_{1} \sigma_{x}^{2}+c \\
& \beta_{1}^{2} \sigma_{x}^{2}+2 \beta_{1} c+\sigma_{\epsilon}^{2}
\end{array}\right) .
$$

- All you can ever learn from the data are the approximate values of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.
- Even if you knew $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ exactly, could you know β_{1} ?

Five equations in six unknowns

The parameter is $\theta=\left(\mu_{x}, \sigma_{x}^{2}, \sigma_{\epsilon}^{2}, c, \beta_{0}, \beta_{1}\right)$. The distribution of the data is determined by
$\binom{\mu_{1}}{\mu_{2}}=\binom{\mu_{x}}{\beta_{0}+\beta_{1} \mu_{x}}$ and $\left(\begin{array}{cc}\sigma_{11} & \sigma_{12} \\ & \sigma_{22}\end{array}\right)=\left(\begin{array}{cc}\sigma_{x}^{2} & \beta_{1} \sigma_{x}^{2}+c \\ & \beta_{1}^{2} \sigma_{x}^{2}+2 \beta_{1} c+\sigma_{\epsilon}^{2}\end{array}\right)$

- $\mu_{x}=\mu_{1}$ and $\sigma_{x}^{2}=\sigma_{11}$.
- The remaining 3 equations in 4 unknowns have infinitely many solutions.
- So infinitely many sets of parameter values yield the same distribution of the sample data.
- This is serious trouble - lack of parameter identifiability.
- Definition: If a parameter is a function of the distribution of the observable data, it is said to be identifiable.

Showing identifiability

Definition: If a parameter is a function of the distribution of the observable data, it is said to be identifiable.

- How could a parameter be a function of a distribution?
- $D \sim F_{\theta}$ and $\theta=g\left(F_{\theta}\right)$
- Usually g is defined in terms of moments.
- Example: $F_{\theta}(x)=1-e^{-\theta x}$ and $f_{\theta}(x)=\theta e^{-\theta x}$.

$$
\begin{aligned}
f_{\theta}(x) & =\frac{d}{d x} F_{\theta}(x) \\
E(X) & =\int_{0}^{\infty} x f_{\theta}(x) d x=\frac{1}{\theta} \\
\theta & =\frac{1}{E(X)}
\end{aligned}
$$

Sometimes people use moment-generating functions or characteristic functions instead of just moments.

Showing identifiability is like Method of Moments Estimation

- The distribution of the data is always a function of the parameters.
- The moments are always a function of the distribution of the data.
- If the parameters can be expressed as a function of the moments,
- Put hats on to obtain MOM estimates, or observe that
- The parameter is a function of the distribution, and is identifiable.

Back to the five equations in six unknowns

 $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$$\mathbf{D}_{i}=\binom{X_{i}}{Y_{i}} \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\begin{aligned}
& \boldsymbol{\mu}=\binom{\mu_{1}}{\mu_{2}}=\binom{\mu_{x}}{\beta_{0}+\beta_{1} \mu_{x}} \\
& \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{11} & \sigma_{12} \\
\cdot & \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{x}^{2} & \beta_{1} \sigma_{x}^{2}+c \\
\cdot & \beta_{1}^{2} \sigma_{x}^{2}+2 \beta_{1} c+\sigma_{\epsilon}^{2}
\end{array}\right)
\end{aligned}
$$

We have expressed the moments in terms of the parameters, but we can't solve for $\theta=\left(\mu_{x}, \sigma_{x}^{2}, \sigma_{\epsilon}^{2}, c, \beta_{0}, \beta_{1}\right)$.

Skipping the High School algebra
 $\theta=\left(\mu_{x}, \sigma_{x}^{2}, \sigma_{\epsilon}^{2}, c, \beta_{0}, \beta_{1}\right)$

- For any given $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, all the points in a one-dimensional subset of the 6 -dimensional parameter space yield $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, and hence the same distribution of the sample data.
- In that subset, values of β_{1} range from $-\infty$ to $-\infty$, so $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ could have been produced by any value of β_{1}.
- There is no way to distinguish between the possible values of β_{1} based on sample data.
- The problem is fatal, if all you can observe is X and Y.
- See text for details.

Instrumental Variables (Wright, 1928)

A partial solution

- An instrumental variable is a variable that is correlated with an explanatory variable, but is not correlated with any error terms and has no direct connection to the response variable.
- In Econometrics, the instrumental variable usually influences the explanatory variable.
- An instrumental variable is often not the main focus of attention; it's just a tool.

A Simple Example

What is the contribution of income to credit card debt?

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i},
$$

where $E\left(X_{i}\right)=\mu_{x}, \operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(X_{i}, \epsilon_{i}\right)=c$.

A path diagram

$$
Y_{i}=\alpha+\beta X_{i}+\epsilon_{i},
$$

where $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(X_{i}, \epsilon_{i}\right)=c$.

Least squares estimate of β is inconsistent, and so is every other possible estimate. This is strictly true if the data are normal.

Add an instrumental variable

Definition: An instrumental variable for an explanatory variable is another random variable that has non-zero covariance with the explanatory variable, and no direct connection with any other variable in the model.

Focus the study on real estate agents in many cities. Include median price of resale home.

- X is income.
- Y is credit card debt.
- W is median price of resale home.

$$
\begin{aligned}
X_{i} & =\alpha_{1}+\beta_{1} W_{i}+\epsilon_{i 1} \\
Y_{i} & =\alpha_{2}+\beta_{2} X_{i}+\epsilon_{i 2}
\end{aligned}
$$

Picture

W_{i} is median price of resale home, X_{i} is income, Y_{i} is credit card debt.

$$
\begin{aligned}
X_{i} & =\alpha_{1}+\beta_{1} W_{i}+\epsilon_{i 1} \\
Y_{i} & =\alpha_{2}+\beta_{2} X_{i}+\epsilon_{i 2}
\end{aligned}
$$

Main interest is in β_{2}.

Calculate the covariance matrix

 of the observable data $\left(W_{i}, X_{i}, Y_{i}\right)$: Call it $\boldsymbol{\Sigma}=\left[\sigma_{i j}\right]$From $X_{i}=\alpha_{1}+\beta_{1} W_{i}+\epsilon_{i 1}$ and $Y_{i}=\alpha_{2}+\beta_{2} X_{i}+\epsilon_{i 2}$,

$$
\boldsymbol{\Sigma}=\begin{array}{|c|ccc|}
\hline & W & X & Y \\
\hline W & \sigma_{w}^{2} & \beta_{1} \sigma_{w}^{2} & \beta_{1} \beta_{2} \sigma_{w}^{2} \\
X & \cdot & \beta_{1}^{2} \sigma_{w}^{2}+\sigma_{1}^{2} & \beta_{2}\left(\beta_{1}^{2} \sigma_{w}^{2}+\sigma_{1}^{2}\right)+c \\
Y & \cdot & \cdot & \beta_{1}^{2} \beta_{2}^{2} \sigma_{w}^{2}+\beta_{2}^{2} \sigma_{1}^{2}+2 \beta_{2} c+\sigma_{2}^{2} \\
\hline
\end{array}
$$

$$
\beta_{2}=\frac{\sigma_{13}}{\sigma_{12}}
$$

Parameter estimation

$X_{i}=\alpha_{1}+\beta_{1} W_{i}+\epsilon_{i 1}$ and $Y_{i}=\alpha_{2}+\beta_{2} X_{i}+\epsilon_{i 2}$

$\boldsymbol{\Sigma}=$| | W | X | Y |
| :---: | :---: | :---: | :---: |
| W | σ_{w}^{2} | $\beta_{1} \sigma_{w}^{2}$ | $\beta_{1} \beta_{2} \sigma_{w}^{2}$ |
| X | \cdot | $\beta_{1}^{2} \sigma_{w}^{2}+\sigma_{1}^{2}$ | $\beta_{2}\left(\beta_{1}^{2} \sigma_{w}^{2}+\sigma_{1}^{2}\right)+c$ |
| Y | \cdot | \cdot | $\beta_{1}^{2} \beta_{2}^{2} \sigma_{w}^{2}+\beta_{2}^{2} \sigma_{1}^{2}+2 \beta_{2} c+\sigma_{2}^{2}$ |$\quad \beta_{2}=\frac{\sigma_{13}}{\sigma_{12}}$.

- All the other parameters are identifiable too.
- The instrumental variable saved us.
- There are 9 model parameters, and 9 moments in $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.
- The invariance principle yields explicit formulas for the MLEs.
- If the data are normal, MLEs equal the Method of Moments estimates because they are both 1-1 with the moments.

More Comments

- Of course there is measurement error.
- Instrumental variables help with measurement error as well as with omitted variables.
- More later.
- Good instrumental variables are not easy to find.
- They will not just happen to be in the data set, except by a miracle.
- They really have to come from another universe, but still have a strong and clear connection to the explanatory variable.
- Data collection has to be planned.
- Wright's original example was tax policy for cooking oil.
- Time series applications are common, but not in this course.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/~ ${ }^{\text {brunner/oldclass/431s17 }}$

