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Matrices

A = [aij ]

Transpose: A> = [aji]

Multiplication: AB 6= BA

(AB)> = B>A>

Inverse of a square matrix: A−1A = AA−1 = I. (Only
need to show it in one direction.)

(A−1)> = (A>)−1
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Trace of a square matrix: Sum of the diagonal elements

tr(A) =

n∑
i=1

ai,i

Of course tr(A + B) = tr(A) + tr(B),

tr(A) = tr(A>), etc.

But less obviously, even though AB 6= BA,

tr(AB) = tr(BA)
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Proof of tr(AB) = tr(BA)
Using AB = C = [ci,j ] =

∑
k ai,kbk,j

Let A be an r × p matrix and B be a p× r matrix, so that the
product matrices AB and BA are both defined.

tr(AB) =

r∑
i=1

(
p∑

k=1

ai,kbk,i

)

=

p∑
k=1

(
r∑

i=1

bk,iai,k

)
= tr(BA)
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Random vectors
Expected values and variance-covariance matrices

E(X) = [E(Xi,j)]

E(X + Y) = E(X) + E(Y)

E(AXB) = AE(X)B

cov(X) = E
{

(X− µ)(X− µ)>
}

cov(AX) = Acov(X)A>

cov(X,Y) = E
{

(X− µx)(Y − µy)>
}

cov(X + a) = cov(X)

cov(X + a,Y + b) = cov(X,Y)
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The Centering Rule
Based on cov(X+ a) = cov(X)

Often, variance and covariance calculations can be simplified by
subtracting off constants first.

Denote the centered version of X by
c
X= X− E(X), so that

E(
c
X) = 0 and

cov(
c
X) = E(

c
X

c
X
>

) = cov(X)
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Linear combinations
These are matrices, but they could be scalars

L = A1X1 + · · ·+ AmXm + b
c
L = A1

c
X1 + · · ·+ Am

c
Xm, where

c
Xj = Xj − E(Xj) for j = 1, . . . ,m.

The centering rule says

cov(L) = E(
c
L

c
L
>

)

cov(L1,L2) = E(
c
L1

c
L
>
2 )

In words: To calculate variances and covariances of linear
combinations, one may simply discard added constants, center
all the random vectors, and take expected values of products.
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Example: cov(X+Y)
Using the centering rule

cov(X + Y) = E(
c
X +

c
Y)(

c
X +

c
Y)>

= E(
c
X +

c
Y)(

c
X> +

c
Y>)

= E(
c
X

c
X>) + E(

c
Y

c
Y>) + E(

c
X

c
Y>) + E(

c
Y

c
X>)

= cov(X) + cov(Y) + cov(X,Y) + cov(Y,X)

Does cov(Y,X) = cov(X,Y)?

Does cov(Y,X) = cov(X,Y)>?

Use cov(X,Y) = E
{

(X− µx)(Y − µy)>
}
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The Multivariate Normal Distribution

The p×1 random vector X is said to have a multivariate normal
distribution, and we write X ∼ N(µ,Σ), if X has (joint) density

f(x) =
1

|Σ|
1
2 (2π)

p
2

exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
,

where µ is p× 1 and Σ is p× p symmetric and positive definite.
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The Bivariate Normal Density
Multivariate normal with p = 2 variables

x

y

D
ensity
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Analogies

Multivariate normal reduces to the univariate normal when
p = 1

Univariate Normal

f(x) = 1
σ
√
2π

exp
{
− 1

2
(x−µ)2
σ2

}
E(X) = µ, V ar(X) = σ2

(X−µ)2
σ2 ∼ χ2(1)

Multivariate Normal

f(x) = 1

|Σ|
1
2 (2π)

p
2

exp
{
− 1

2 (x− µ)>Σ−1(x− µ)
}

E(X) = µ, cov(X) = Σ
(X− µ)>Σ−1(X− µ) ∼ χ2(p)
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More properties of the multivariate normal

If c is a vector of constants, X + c ∼ N(c + µ,Σ)

If A is a matrix of constants, AX ∼ N(Aµ,AΣA>)

Linear combinations of multivariate normals are
multivariate normal.

All the marginals (dimension less than p) of X are
(multivariate) normal.

For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. Except for the
picture taken from Carroll et al.’s Measurement error in
non-linear models, it is licensed under a Creative Commons
Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code
is available from the course website:

http://www.utstat.toronto.edu/∼brunner/oldclass/431s17
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