# Background: Matrices and Random Vectors ${ }^{1}$ STA431 Spring 2017 

[^0]
## Overview

(1) Matrices
(2) Random Vectors
(3) Multivariate Normal

## Matrices

- $\mathbf{A}=\left[a_{i j}\right]$
- Transpose: $\mathbf{A}^{\top}=\left[a_{j i}\right]$
- Multiplication: $\mathbf{A B} \neq \mathbf{B A}$
- $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$
- Inverse of a square matrix: $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$. (Only need to show it in one direction.)
- $\left(\mathbf{A}^{-1}\right)^{\top}=\left(\mathbf{A}^{\top}\right)^{-1}$


## Trace of a square matrix: Sum of the diagonal elements

$$
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i, i}
$$

- Of course $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$,
- $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{\top}\right)$, etc.
- But less obviously, even though $\mathbf{A B} \neq \mathbf{B A}$,
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$


## Proof of $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$

Using $\mathbf{A B}=\mathbf{C}=\left[c_{i, j}\right]=\sum_{k} a_{i, k} b_{k, j}$

Let $\mathbf{A}$ be an $r \times p$ matrix and $\mathbf{B}$ be a $p \times r$ matrix, so that the product matrices AB and $\mathbf{B A}$ are both defined.

$$
\begin{aligned}
\operatorname{tr}(\mathbf{A B}) & =\sum_{i=1}^{r}\left(\sum_{k=1}^{p} a_{i, k} b_{k, i}\right) \\
& =\sum_{k=1}^{p}\left(\sum_{i=1}^{r} b_{k, i} a_{i, k}\right) \\
& =\operatorname{tr}(\mathbf{B A})
\end{aligned}
$$

## Random vectors

Expected values and variance-covariance matrices

- $E(\mathbf{X})=\left[E\left(X_{i, j}\right)\right]$
- $E(\mathbf{X}+\mathbf{Y})=E(\mathbf{X})+E(\mathbf{Y})$
- $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$
- $\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\}$
- $\operatorname{cov}(\mathbf{A X})=\mathbf{A} \operatorname{cov}(\mathbf{X}) \mathbf{A}^{\top}$
- $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}$
- $\operatorname{cov}(\mathbf{X}+\mathbf{a})=\operatorname{cov}(\mathbf{X})$
- $\operatorname{cov}(\mathbf{X}+\mathbf{a}, \mathbf{Y}+\mathbf{b})=\operatorname{cov}(\mathbf{X}, \mathbf{Y})$


## The Centering Rule Based on $\operatorname{cov}(\mathbf{X}+\mathbf{a})=\operatorname{cov}(\mathbf{X})$

Often, variance and covariance calculations can be simplified by subtracting off constants first.
Denote the centered version of $\mathbf{X}$ by ${ }_{\mathbf{X}}^{\mathbf{X}}=\mathbf{X}-E(\mathbf{X})$, so that

- $E(\stackrel{c}{\mathbf{X}})=\mathbf{0}$ and



## Linear combinations

These are matrices, but they could be scalars

$$
\begin{aligned}
\mathbf{L} & =\mathbf{A}_{1} \mathbf{X}_{1}+\cdots+\mathbf{A}_{m} \mathbf{X}_{m}+\mathbf{b} \\
c & \mathbf{A}_{1} \mathbf{X}_{1}+\cdots+\mathbf{A}_{m}{ }_{\mathbf{c}}^{m} \\
\mathbf{L} & \text { where } \\
c & \mathbf{X}_{j}-E\left(\mathbf{X}_{j}\right) \text { for } j=1, \ldots, m
\end{aligned}
$$

The centering rule says

$$
\begin{aligned}
\operatorname{cov}(\mathbf{L}) & =E\left(\mathbf{L}^{c} \mathbf{L}^{\top}\right) \\
\operatorname{cov}\left(\mathbf{L}_{1}, \mathbf{L}_{2}\right) & =E\left(\mathbf{L}_{1} \mathbf{L}_{2}\right)
\end{aligned}
$$

In words: To calculate variances and covariances of linear combinations, one may simply discard added constants, center all the random vectors, and take expected values of products.

## Example: $\operatorname{cov}(\mathbf{X}+\mathbf{Y})$

## Using the centering rule

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}+\mathbf{Y}) & =E\left({\stackrel{c}{\mathbf{X}}+\stackrel{c}{\mathbf{Y}})(\stackrel{c}{\mathbf{X}}+\stackrel{c}{\mathbf{Y}})^{\top}}=E\left({\stackrel{c}{\mathbf{X}}+\stackrel{c}{\mathbf{Y}})\left(\mathbf{X}^{\top}+\stackrel{c}{\mathbf{Y}}^{\top}\right)}=E\left({\left.\stackrel{c}{\mathbf{X}}{ }^{c} \mathbf{X}^{\top}\right)+E\left(\stackrel{c}{\mathbf{Y}}^{c} \mathbf{Y}^{\top}\right)+E\left(\mathbf{X}^{c} \mathbf{Y}^{\top}\right)+E\left(\stackrel{\mathbf{Y}}{ }^{c} \mathbf{X}^{\top}\right)}=\operatorname{cov}(\mathbf{X})+\operatorname{cov}(\mathbf{Y})+\operatorname{cov}(\mathbf{X}, \mathbf{Y})+\operatorname{cov}(\mathbf{Y}, \mathbf{X})\right.\right.\right.
\end{aligned}
$$

- Does $\operatorname{cov}(\mathbf{Y}, \mathbf{X})=\operatorname{cov}(\mathbf{X}, \mathbf{Y})$ ?
- Does $\operatorname{cov}(\mathbf{Y}, \mathbf{X})=\operatorname{cov}(\mathbf{X}, \mathbf{Y})^{\top}$ ?

Use $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}$

## The Multivariate Normal Distribution

The $p \times 1$ random vector $\mathbf{X}$ is said to have a multivariate normal distribution, and we write $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if $\mathbf{X}$ has (joint) density

$$
f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite.

## The Bivariate Normal Density

Multivariate normal with $p=2$ variables


## Analogies

Multivariate normal reduces to the univariate normal when $p=1$

- Univariate Normal
- $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}$
- $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$
- $\frac{(X-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(1)$
- Multivariate Normal
- $f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$
- $E(\mathbf{X})=\boldsymbol{\mu}, \operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$
- $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$


## More properties of the multivariate normal

- If $\mathbf{c}$ is a vector of constants, $\mathbf{X}+\mathbf{c} \sim N(\mathbf{c}+\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- If $\mathbf{A}$ is a matrix of constants, $\mathbf{A X} \sim N\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$
- Linear combinations of multivariate normals are multivariate normal.
- All the marginals (dimension less than $p$ ) of $\mathbf{X}$ are (multivariate) normal.
- For the multivariate normal, zero covariance implies independence. The multivariate normal is the only continuous distribution with this property.


## Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. Except for the picture taken from Carroll et al.'s Measurement error in non-linear models, it is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/431s17


[^0]:    ${ }^{1}$ See last slide for copyright information.

