Background for the Personality and Job Satisfaction Example ${ }^{1}$ STA431 Winter/Spring 2017

${ }^{1}$ See last slide for copyright information.

Multivariate Normal Likelihood $L(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\begin{aligned}
& |\boldsymbol{\Sigma}|^{-n / 2}(2 \pi)^{-n p / 2} \exp -\frac{n}{2}\left\{\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right)+(\overline{\mathbf{d}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{d}}-\boldsymbol{\mu})\right\} \\
= & |\boldsymbol{\Sigma}|^{-n / 2}(2 \pi)^{-n p / 2} \exp -\frac{n}{2}\left\{\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right)\right\}
\end{aligned}
$$

- All you need is $\widehat{\boldsymbol{\Sigma}}$ and more rarely, $\overline{\mathbf{d}}$.
- You don't need the raw data.
- $(\overline{\mathbf{d}}, \widehat{\boldsymbol{\Sigma}})$ are sufficient statistics for $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Software should be able to fit a model based only on $\widehat{\boldsymbol{\Sigma}}$ and n.

Auxiliary Information

- Auxiliary means extra, supporting.
- Mostly used to identify parameters of the measurement model.
- For example, there might be double or gold standard measurement on just a subset of the sample.
- In a multi-group analysis, the groups can have overlapping sets of variables and overlapping sets of parameters.
- Or you can sometimes use published information from other studies.
- Like (estimated) reliabilities.

Typical Example

$$
\begin{aligned}
& D_{1}=F_{1}+e_{1} \\
& D_{2}=F_{2}+e_{2} \\
& D_{3}=F_{3}+e_{3}
\end{aligned}
$$

$$
\boldsymbol{\Phi}=\left(\begin{array}{ccc}
\phi_{11} & \phi_{12} & \phi_{13} \\
\phi_{12} & \phi_{22} & \phi_{23} \\
\phi_{13} & \phi_{23} & \phi_{33}
\end{array}\right) \quad \boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\phi_{11}+\omega_{1} & \phi_{12} & \phi_{13} \\
\phi_{12} & \phi_{22}+\omega_{2} & \phi_{23} \\
\phi_{13} & \phi_{23} & \phi_{33}+\omega_{3}
\end{array}\right)
$$

What if you knew the reliabilities?

$$
\rho_{1}^{2}=\frac{\phi_{11}}{\phi_{11}+\omega_{1}} \quad \rho_{2}^{2}=\frac{\phi_{22}}{\phi_{22}+\omega_{2}} \quad \rho_{3}^{2}=\frac{\phi_{33}}{\phi_{33}+\omega_{3}}
$$

Solve for Φ : Compute $\phi_{j j}=\sigma_{j j} \rho_{j}^{2}$

$$
\begin{gathered}
\Phi=\left(\begin{array}{cc}
\phi_{11} & \phi_{12} \\
\phi_{12} & \phi_{13} \\
\phi_{13} \\
\phi_{22} & \phi_{23} \\
\phi_{33}
\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}
\phi_{11}+\omega_{1} & \phi_{12} & \phi_{12} \\
\phi_{12} & \phi_{12}+\omega_{22} \\
\phi_{13} & \phi_{23}+\omega_{23} & \phi_{33}+\omega_{3}
\end{array}\right) \\
\rho_{11}^{2}=\frac{\phi_{11}}{\phi_{11}+\omega_{1}}
\end{gathered} \rho_{2}^{2}=\frac{\phi_{22}}{\phi_{22}+\omega_{2}} \quad \rho_{3}^{2}=\frac{\phi_{33}}{\phi_{33}+\omega_{3}} .
$$

- Do it using the estimates: $\widehat{\phi}_{j j}=\widehat{\sigma}_{j j} \widehat{\rho}_{j}^{2}$,
- Converting $\widehat{\boldsymbol{\Sigma}}$ to $\widehat{\boldsymbol{\Phi}}$.
- Operate on $\widehat{\boldsymbol{\Phi}}$ as if it's a $\widehat{\boldsymbol{\Sigma}}$ and the variables are measured without error.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/431s17

