Instrumental Variables Again ${ }^{1}$ STA431 Winter/Spring 2017

${ }^{1}$ See last slide for copyright information.

Overview

(1) Omitted Variables
(2) Including Measurement Error

Remember the problem of omitted variables
 Example: X is income, Y is credit card debt.

- Omitted explanatory variables are part of the error term.
- Usually they are correlated with explanatory variables that are in the model.
- This makes the error term correlated with X.

- Parameters are not identifiable.
- Estimation and inference fail.

Instrumental variable method saved the day Phillip Wright, 1928

An instrumental variable (for an explanatory variable)

- Is related to the explanatory variable in question.
- Is unrelated to any error term in the model.
- Is connected to the response variable only through X.

- Real estate agents: X is income, Y is credit card debt, Z is median home price.
- Interest is in β_{2}.

Technically everything worked great $X_{i}=\alpha_{1}+\beta_{1} W_{i}+\epsilon_{i 1}$ and $Y_{i}=\alpha_{2}+\beta_{2} X_{i}+\epsilon_{i 2}$

$\mathbf{\Sigma}=$| | Z | X | Y |
| :---: | :---: | :---: | :---: |
| Z | σ_{z}^{2} | $\beta_{1} \sigma_{z}^{2}$ | $\beta_{1} \beta_{2} \sigma_{z}^{2}$ |
| X | \cdot | $\beta_{1}^{2} \sigma_{z}^{2}+\sigma_{1}^{2}$ | $\beta_{2}\left(\beta_{1}^{2} \sigma_{z}^{2}+\sigma_{1}^{2}\right)+c$ |
| Y | \cdot | . | $\beta_{1}^{2} \beta_{2}^{2} \sigma_{z}^{2}+\beta_{2}^{2} \sigma_{1}^{2}+2 \beta_{2} c+\sigma_{2}^{2}$ |

- Nine moment structure equations in 9 unknown parameters.
- $\beta_{2}=\frac{\sigma_{13}}{\sigma_{12}}$.
- All the other parameters are identifiable too.
- But of course there is measurement error.

The model needs improvement

X is income, Y is credit card debt, Z is median home price.
Same picture:

- $X=$ Income is measured with error.
- So is $Y=$ Debt.
- There are still unmeasured variables that impact them both.

An improved Model

X is income, Y is credit card debt, Z is median home price.

- Common omitted variables are affecting true X and true Y.
- Common omitted variables are affecting measurement of X and measurement of Y.
- Factor loadings are realistic: Positive but not $=1$.
- Six covariance structure equations in 11 unknowns.
- And it's still not realistic enough.
- Housing prices are only estimated.

Easier to defend, but impossible to estimate

X is income, Y is credit card debt, Z is median home price.

Fortunately the instrumental variable only has to be correlated with the explanatory variable.

Here's the Model

X is reported income, Y is reported credit card debt, Z is estimated median resale home price.

- Fairly realistic.
- Still six covariance structure equations in 11 unknowns (poison).
- Explanatory variable correlated with the error term (poison).
- Correlated measurement errors (poison).
- But we have an instrumental variable.
- Calculate the covariance matrix.

Show part of the calculation (centered model)

Z is estimated median resale home price, Y is reported credit card debt

$$
\begin{aligned}
\operatorname{Cov}(Z, Y) & =\operatorname{Cov}\left(Z, \lambda_{2} T y+e_{2}\right) \\
& =\operatorname{Cov}\left(Z, \lambda_{2}(\beta T x+\epsilon)+e_{2}\right) \\
& =E\left(Z\left(\lambda_{2} \beta T x+\lambda_{2} \epsilon+e_{2}\right)\right) \\
& \left.=\lambda_{2} \beta E(Z T x)+\lambda_{2} E(Z) E(\epsilon)+E(Z) E\left(e_{2}\right)\right) \\
& =\lambda_{2} \beta \phi_{12}
\end{aligned}
$$

Covariance matrix of the observable data

Z is estimated median resale home price, X is reported income, Y is reported credit card debt

$$
\operatorname{cov}\left(\begin{array}{l}
Z \\
X \\
Y
\end{array}\right)=\left(\begin{array}{cc}
\phi_{11} & \lambda_{1} \phi_{12} \\
\cdot & \lambda_{1}^{2} \phi_{22}+\omega_{11} \\
\cdot & \cdot
\end{array}\right.
$$

$$
\begin{gathered}
\beta \lambda_{2} \phi_{12} \\
\beta \lambda_{1} \lambda_{2} \phi_{22}+c \lambda_{1} \lambda_{2}+\omega_{12} \\
\beta^{2} \lambda_{2}^{2} \phi_{22}+2 \beta c \lambda_{2}^{2}+\lambda_{2}^{2} \psi+\omega_{22}
\end{gathered}
$$

- β is not identifiable.
- But $\phi_{12}>0$ and $\lambda_{2}>0$.
- So the sign of β is identifiable from σ_{13}.
- $H_{0}: \beta=0$ is testable.
- It's possible to answer the basic question of the study.

It's a miracle

- Instrumental variables can help with measurement error and omitted variables at the same time.
- If there is measurement error, regression coefficients of interest are not identifiable and cannot be estimated consistently, but their signs can.
- Often, that's all you really want to know.
- Matrix version is available.
- The usual rule in Econometrics is (at least) one instrumental variable for each explanatory variable.

Independence of the instrumental variable and error terms is critical.

- Instrumental variables need to come from another world.
- For example, does academic ability contribute to higher salary?
- Study adults who were adopted as children.
- X is academic ability.
- Y is salary at age 40.
- W is measured IQ at 40 .
- Z is birth mother's IQ score.

It's a partial solution

- Good instrumental variables are not easy to find.
- They will not be in a data set casually collected for other purposes.
- Advance planning is needed.
- The ultimate instrumental variable is randomly assigned.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/~ ${ }^{\text {brunner/oldclass/431s17 }}$

