Structural Equation Models: The General Case ${ }^{1}$ STA431 Winter/Spring 2017

${ }^{1}$ See last slide for copyright information.

Features of Structural Equation Models

- Multiple equations.
- All the variables are random.
- An explanatory variable in one equation can be the response variable in another equation.
- Models are represented by path diagrams.
- Identifiability is always an issue.
- The statistical models are models of influence. They are often called causal models.

Correlation versus Causation

- The path diagrams deliberately imply influence. If $A \rightarrow B$, we are saying A contributes to B, or partly causes it.
- Data are usually observational. The correlation-causation issue does not go away.
- You may be able to argue on theoretical grounds that $A \rightarrow B$ is more believable than $B \rightarrow A$.
- If you have a causal model, you may be able to test whether it's compatible with the data.

Modest changes in notation

$$
\begin{aligned}
Y_{i, 1} & =\alpha_{1}+\gamma_{1} X_{i, 1}+\gamma_{2} X_{i, 2}+\epsilon_{i, 1} \\
Y_{i, 2} & =\alpha_{2}+\beta Y_{i, 1}+\epsilon_{i, 2}
\end{aligned}
$$

- Regression coefficients (links between exogenous variables and endogenous variables) are now called gamma instead of beta.
- Betas are used for links between endogenous variables.
- Intercepts are alphas but they will soon disappear.

Losing the intercepts and expected values

- Mostly the intercepts and expected values are not identifiable anyway, as in multiple regression with measurement error.
- We have a chance to identify a function of the parameter vector - the parameters that appear in the covariance matrix $\boldsymbol{\Sigma}$ of an observable data vector. $\boldsymbol{\Sigma}=\operatorname{cov}\left(\mathbf{D}_{i}\right)$.
- Denote the vector of parameters that appear in $\boldsymbol{\Sigma}$ by $\boldsymbol{\theta}$.
- Re-parameterize. The new parameter vector is $(\boldsymbol{\theta}, \boldsymbol{\mu})$, where $\boldsymbol{\mu}=E\left(\mathbf{D}_{i}\right)$.
- Estimate $\boldsymbol{\mu}$ with $\overline{\mathbf{D}}$, forget it, and concentrate on $\boldsymbol{\theta}$.
- To make calculation of the covariance matrix easier, write the model equations in centered form. The little letters c over the variables are invisible.
- From this point on the models seemingly have zero means and no intercepts.

A General Two-Stage Model

Stage 1 is the latent variable model and Stage 2 is the measurement model.

$$
\begin{aligned}
\mathbf{Y}_{i} & =\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\binom{\mathbf{X}_{i}}{\mathbf{Y}_{i}} \\
\mathbf{D}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

- \mathbf{D}_{i} (the data) are observable. All other variables are latent.
- $\mathbf{Y}_{i}=\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i}$ is called the Latent Variable Model.
- The latent vectors \mathbf{X}_{i} and \mathbf{Y}_{i} are collected into a factor \mathbf{F}_{i}. This is not a categorical explanatory variable, the usual meaning of "factor" in experimental design.
- $\mathbf{D}_{i}=\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}$ is called the Measurement Model.

$\mathbf{Y}_{i}=\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \quad \mathbf{F}_{i}=\binom{\mathbf{X}_{i}}{\mathbf{Y}_{i}} \quad \mathbf{D}_{i}=\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathrm{e}_{i}$

- \mathbf{Y}_{i} is a $q \times 1$ random vector.
- $\boldsymbol{\beta}$ is a $q \times q$ matrix of constants with zeros on the main diagonal.
- \mathbf{X}_{i} is a $p \times 1$ random vector.
- $\boldsymbol{\Gamma}$ is a $q \times p$ matrix of constants.
- $\boldsymbol{\epsilon}_{i}$ is a $q \times 1$ random vector.
- \mathbf{F}_{i} (F for Factor) is just \mathbf{X}_{i} stacked on top of \mathbf{Y}_{i}. It is a $(p+q) \times 1$ random vector.
- \mathbf{D}_{i} is a $k \times 1$ random vector. Sometimes, $\mathbf{D}_{i}=\binom{\mathbf{W}_{i}}{\mathbf{V}_{i}}$.
- $\boldsymbol{\Lambda}$ is a $k \times(p+q)$ matrix of constants: "factor loadings."
- \mathbf{e}_{i} is a $k \times 1$ random vector.
- $\mathbf{X}_{i}, \boldsymbol{\epsilon}_{i}$ and \mathbf{e}_{i} are independent.

Covariance matrices

More notation

$$
\begin{aligned}
\mathbf{Y}_{i} & =\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\binom{\mathbf{X}_{i}}{\mathbf{Y}_{i}} \\
\mathbf{D}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{X}_{i}\right) & =\boldsymbol{\Phi}_{x} \\
\operatorname{cov}\left(\boldsymbol{\epsilon}_{i}\right) & =\boldsymbol{\Psi}
\end{aligned}
$$

$$
\operatorname{cov}\left(\mathbf{F}_{i}\right)=\mathbf{\Phi}=\left(\begin{array}{cc}
\operatorname{cov}\left(\mathbf{X}_{i}\right) & \operatorname{cov}\left(\mathbf{X}_{i}, \mathbf{Y}_{i}\right) \\
\operatorname{cov}\left(\mathbf{Y}_{i}, \mathbf{X}_{i}\right) & \operatorname{cov}\left(\mathbf{Y}_{i}\right)
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{\Phi}_{11} & \mathbf{\Phi}_{12} \\
\mathbf{\Phi}_{12}^{\top} & \mathbf{\Phi}_{22}
\end{array}\right)
$$

$$
\operatorname{cov}\left(\mathbf{e}_{i}\right)=\Omega
$$

$$
\operatorname{cov}\left(\mathbf{D}_{i}\right)=\boldsymbol{\Sigma}
$$

Example: A Path Model with Measurement Error

Matrix Form

$$
\begin{aligned}
& Y_{i, 1}=\gamma_{1} X_{i}+\epsilon_{i, 1} \\
& Y_{i, 2}=\beta Y_{i, 1}+\gamma_{2} X_{i}+\epsilon_{i, 2} \\
& \mathbf{Y}_{i}=\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
& W_{i}=X_{i}+e_{i, 1} \\
& \mathbf{F}_{i}=\binom{\mathbf{X}_{i}}{\mathbf{Y}_{i}} \\
& V_{i, 1}=Y_{i, 1}+e_{i, 2} \\
& \mathbf{D}_{i}=\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\mathbf{Y}_{i} \\
\binom{Y_{i, 1}}{Y_{i, 2}} & =\left(\begin{array}{cc}
\boldsymbol{\beta} & \mathbf{Y}_{i} \\
0 & 0 \\
\beta & 0
\end{array}\right) \\
\binom{Y_{i, 1}}{Y_{i, 2}} & +\left(\begin{array}{c}
\boldsymbol{\Gamma} \\
\gamma_{1} \\
\gamma_{2}
\end{array}\right)
\end{array} \begin{array}{c}
\mathbf{X}_{i} \\
X_{i}
\end{array}+\begin{array}{c}
\boldsymbol{\epsilon}_{i} \\
\epsilon_{i, 1} \\
\epsilon_{i, 2}
\end{array}\right) .
$$

Observable variables in the "latent" variable model

 $\mathbf{Y}_{i}=\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i}$- These present no problem.
- Let $P\left(e_{j}=0\right)=1$, so $\operatorname{Var}\left(e_{j}\right)=0$.
- And $\operatorname{Cov}\left(e_{i}, e_{j}\right)=0$
- Because if $P\left(e_{j}=0\right)=1$,

$$
\begin{aligned}
\operatorname{Cov}\left(e_{i}, e_{j}\right) & =E\left(e_{i} e_{j}\right)-E\left(e_{i}\right) E\left(e_{j}\right) \\
& =E\left(e_{i} \cdot 0\right)-E\left(e_{i}\right) \cdot 0 \\
& =0-0=0
\end{aligned}
$$

- In $\boldsymbol{\Omega}=\operatorname{cov}\left(\mathbf{e}_{i}\right)$, column j (and row j) are all zeros.
- $\boldsymbol{\Omega}$ singular, no problem.

What should you be able to do?

- Given a path diagram, write the model equations and say which exogenous variables are correlated with each other.
- Given the model equations and information about which exogenous variables are correlated with each other, draw the path diagram.
- Given either piece of information, write the model in matrix form and say what all the matrices are.
- Calculate model covariance matrices.
- Check identifiability.

Recall the notation

$$
\begin{aligned}
\mathbf{Y}_{i} & =\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
\mathbf{F}_{i} & =\binom{\mathbf{X}_{i}}{\mathbf{Y}_{i}} \\
\mathbf{D}_{i} & =\boldsymbol{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{X}_{i}\right) & =\boldsymbol{\Phi}_{x} \\
\operatorname{cov}\left(\boldsymbol{\epsilon}_{i}\right) & =\boldsymbol{\Psi}
\end{aligned}
$$

$$
\operatorname{cov}\left(\mathbf{F}_{i}\right)=\mathbf{\Phi}=\left(\begin{array}{cc}
\operatorname{cov}\left(\mathbf{X}_{i}\right) & \operatorname{cov}\left(\mathbf{X}_{i}, \mathbf{Y}_{i}\right) \\
\operatorname{cov}\left(\mathbf{Y}_{i}, \mathbf{X}_{i}\right) & \operatorname{cov}\left(\mathbf{Y}_{i}\right)
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{\Phi}_{11} & \mathbf{\Phi}_{12} \\
\mathbf{\Phi}_{12}^{\top} & \mathbf{\Phi}_{22}
\end{array}\right)
$$

$$
\operatorname{cov}\left(\mathbf{e}_{i}\right)=\mathbf{\Omega}
$$

$$
\operatorname{cov}\left(\mathbf{D}_{i}\right)=\boldsymbol{\Sigma}
$$

Calculate a general expression for $\boldsymbol{\Sigma}(\boldsymbol{\theta})$.

For the latent variable model, calculate $\boldsymbol{\Phi}=\operatorname{cov}\left(\mathbf{F}_{i}\right)$ Have $\operatorname{cov}\left(\mathbf{X}_{i}\right)=\boldsymbol{\Phi}_{x}$, need $\operatorname{cov}\left(\mathbf{Y}_{i}\right)$ and $\operatorname{cov}\left(\mathbf{X}_{i}, \mathbf{Y}_{i}\right)$

$$
\begin{aligned}
& \mathbf{Y}_{i}=\boldsymbol{\beta} \mathbf{Y}_{i}+\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & \mathbf{Y}_{i}-\boldsymbol{\beta} \mathbf{Y}_{i}=\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & \mathbf{I} \mathbf{Y}_{i}-\boldsymbol{\beta} \mathbf{Y}_{i}=\boldsymbol{\Gamma} \mathbf{X}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & (\mathbf{I}-\boldsymbol{\beta}) \mathbf{Y}=\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i} \\
\Rightarrow & (\mathbf{I}-\boldsymbol{\beta})^{-1}(\mathbf{I}-\boldsymbol{\beta}) \mathbf{Y}_{i}=(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i}\right) \\
\Rightarrow & \mathbf{Y}_{i}=(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i}\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{Y}_{i}\right) & =(\mathbf{I}-\boldsymbol{\beta})^{-1} \operatorname{cov}\left(\boldsymbol{\Gamma} \mathbf{X}_{i}+\boldsymbol{\epsilon}_{i}\right)(\mathbf{I}-\boldsymbol{\beta})^{-1 \top} \\
& =(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\operatorname{cov}\left(\boldsymbol{\Gamma} \mathbf{X}_{i}\right)+\operatorname{cov}\left(\boldsymbol{\epsilon}_{i}\right)\right)\left(\mathbf{I}-\boldsymbol{\beta}^{\top}\right)^{-1} \\
& =(\mathbf{I}-\boldsymbol{\beta})^{-1}\left(\boldsymbol{\Gamma} \mathbf{\Phi}_{11} \boldsymbol{\Gamma}^{\top}+\mathbf{\Psi}\right)\left(\mathbf{I}-\boldsymbol{\beta}^{\top}\right)^{-1}
\end{aligned}
$$

For the measurement model, calculate $\boldsymbol{\Sigma}=\operatorname{cov}\left(\mathbf{D}_{i}\right)$

$$
\begin{aligned}
\mathbf{D}_{i} & =\mathbf{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i} \\
\Rightarrow \operatorname{cov}\left(\mathbf{D}_{i}\right) & =\operatorname{cov}\left(\mathbf{\Lambda} \mathbf{F}_{i}+\mathbf{e}_{i}\right) \\
& =\operatorname{cov}\left(\boldsymbol{\Lambda} \mathbf{F}_{i}\right)+\operatorname{cov}\left(\mathbf{e}_{i}\right) \\
& =\boldsymbol{\Lambda} \operatorname{cov}\left(\mathbf{F}_{i}\right) \boldsymbol{\Lambda}^{\top}+\operatorname{cov}\left(\mathbf{e}_{i}\right) \\
& =\boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}^{\top}+\boldsymbol{\Omega} \\
& =\boldsymbol{\Sigma}
\end{aligned}
$$

Two-stage Proofs of Identifiability Stage 1 is the latent variable model and Stage 2 is the measurement model.

- Show the parameters of the latent variable model $\left(\boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Phi}_{11}, \boldsymbol{\Psi}\right)$ can be recovered from $\boldsymbol{\Phi}=\operatorname{cov}\left(\mathbf{F}_{i}\right)$.
- Show the parameters of the measurement model $(\boldsymbol{\Lambda}, \boldsymbol{\Phi}, \boldsymbol{\Omega})$ can be recovered from $\boldsymbol{\Sigma}=\operatorname{cov}\left(\mathbf{D}_{i}\right)$.
- This means all the parameters can be recovered from $\boldsymbol{\Sigma}$.
- Break a big problem into two smaller ones.
- Develop rules for checking identifiability at each stage.
- Just look at the path diagram.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/431s17

