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Statistical model
Most good statistical analyses are based on a model for the data.

A statistical model is a set of assertions that partly specify the
probability distribution of the observable data. The
specification may be direct or indirect.

Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.

For i = 1, . . . , n, let Yi = β0 +β1xi1 + · · ·+βkxik + εi, where

β0, . . . , βk are unknown constants.
xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables, not
observable.
σ2 is an unknown constant.
Y1, . . . , Yn are observable random variables.

A model is not the same thing as the truth.
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Statistical models leave something unknown
Otherwise they are probability models

The unknown part of the model for the data is called the
parameter.

Usually, parameters are (vectors of) numbers.

Usually denoted by θ or θ or other Greek letters.

Parameters are unknown constants.
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Parameter Space

The parameter space is the set of values that can be taken on by
the parameter.

Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameter space is
Θ = {(µ, σ2) : −∞ < µ <∞, σ2 > 0}.
For i = 1, . . . , n, let Yi = β0 + β1xi1 + · · ·+ βkxik + εi,
where

β0, . . . , βk are unknown constants.
xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
Y1, . . . , Yn are observable random variables.

The parameter space is
Θ = {(β0, . . . , βk, σ2) : −∞ < βj <∞, σ2 > 0}.
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Parameters need not be numbers

Let X1, . . . , Xn be a random sample from a continuous
distribution with unknown distribution function F (x).

The parameter is the unknown distribution function F (x).

The parameter space is a space of distribution functions.

We may be interested only in a function of the parameter,
like

µ =

∫ ∞
−∞

xf(x) dx

The rest of F (x) is just a nuisance parameter.
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General statement of a statistical model
D is for Data

D ∼ Pθ, θ ∈ Θ

Both D and θ could be vectors

For example,

D = Y1, . . .Yn independent multivariate normal.
θ = (µ,Σ).
Pθ is the joint distribution function of Y1, . . .Yn, with joint
density

f(y1, . . .yn) =

n∏
i=1

f(yi;µ,Σ)
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Estimation
For the model D ∼ Pθ, θ ∈ Θ

We don’t know θ.

We never know θ.

All we can do is guess.

Estimate θ (or a function of θ) based on the observable
data.

T is an estimator of θ (or a function of θ): T = T (D)

For example,

D = X1, . . . , Xn
i.i.d∼ N(µ, σ2) T = (X,S2).

For an ordinary multiple regression model, T = (β̂,MSE)

T is a statistic, a random variable (vector) that can be
computed from the data without knowing the values of any
unknown parameters.
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Parameter estimation
For the model D ∼ Pθ, θ ∈ Θ

Estimate θ with T = T (D).

How do we get a recipe for T? Guess?

It’s good to be systematic. Lots of methods are available.

We will consider two: Method of moments and maximum
likelihood.

9 / 72



Models MOM MLE Invariance Consistency

Moments
Based on a random sample like (X1, Y1), . . . , (Xn, Yn)

Moments are quantities like E{Xi}, E{X2
i }, E{XiYi},

E{WiX
2
i Y

3
i }, etc.

Central moments are moments of centered random
variables:

E{(Xi − µx)2}
E{(Xi − µx)(Yi − µy)}
E{(Xi − µx)2(Yi − µy)3(Zi − µz)2}

These are all population moments.
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Population moments and sample moments

Population moment Sample moment

E{Xi} 1
n

∑n
i=1Xi

E{X2
i } 1

n

∑n
i=1X

2
i

E{XiYi} 1
n

∑n
i=1XiYi

E{(Xi − µx)2} 1
n

∑n
i=1(Xi −Xn)2

E{(Xi − µx)(Yi − µy)} 1
n

∑n
i=1(Xi −Xn)(Yi − Y n)

E{(Xi − µx)(Yi − µy)2} 1
n

∑n
i=1(Xi −Xn)(Yi − Y n)2
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Estimation by the Method of Moments (MOM)
For the model D ∼ Pθ, θ ∈ Θ

Population moments are a function of θ.

Find θ as a function of the population moments.

Estimate θ with that function of the sample moments.

Symbolically,

Let m denote a vector of population moments.

m̂ is the corresponding vector of sample moments.

Find m = g(θ)

Solve for θ, obtaining θ = g−1(m).

Let θ̂ = g−1(m̂).

It doesn’t matter if you solve first or put hats on first.
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Example: X1, . . . , Xn
i.i.d∼ U(0, θ)

f(x) = 1
θ

for 0 < x < θ

First find the moment (expected value).

E(Xi) =

∫ θ

0
x

1

θ
dx

=
1

θ

∫ θ

0
x dx

=
1

θ

x2

2

∣∣∣∣θ
0

=
1

2θ
(θ2 − 0)

=
θ

2

So m = θ
2 ⇔ θ = 2m, and θ̂ = 2X.
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Small numerical example

Let X1, . . . , Xn be a random sample from a uniform distribution
on (0, θ). Estimate θ by the Method of Moments for the
following data. Your answer is a number. Show some work.

4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19 0.71

X = 2.56 so θ̂ = 2X = 2 ∗ 2.56 = 5.12.
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Method of moments estimators are not unique
What moments you use are up to you.

E(X2
i ) =

1

θ

∫ θ

0
x2 dx =

θ2

3

So set m = θ2

3 ⇔ θ =
√

3m, and

θ̂ =

√√√√3

n

n∑
i=1

X2
i

Compared to 2X.
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Compare θ̂1 = 2X and θ̂2 =
√

3
n

∑n
i=1X

2
i

For the numerical example

x 4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19 0.71

x^2 16.7281 0.0169 0.7056 14.6689 4.5369 21.8089 21.2521 0.16 17.5561 0.5041

θ̂1 = 5.12 θ̂2 = 5.42

Expressions for lower order moments tend to be simpler, and
are preferable if only for that reason.
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Method of Moments estimator for normal
Let X1, . . . , Xn

i.i.d∼ N(µ, σ2)

From the moment-generating function or a textbook,
E(Xi) = µ and E(X2

i ) = σ2 + µ2. Solving for the parameters,

µ = E(Xi)

σ2 = E(X2
i )− (E(Xi))

2

so

µ̂ = X

σ̂2 =
1

n

n∑
i=1

X2
i −X

2

=
1

n

n∑
i=1

(Xi −X)2
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A regression example
Independently for i = 1, . . . , n,

Yi = β0 + β1Xi + εi, where

E(Xi) = µx, V ar(Xi) = σ2x

E(εi) = 0, V ar(εi) = σ2ε

Xi and εi are independent.

The distributions of Xi and εi are unknown.

What’s the parameter?

The parameter is (β0, β1, Fε(ε), Fx(x) ).

We want to estimate β0 and β1, a function of the
parameter.
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Calculate some moments
Yi = β0 + β1Xi + εi

E(Xi) = µx

V ar(Xi) = σ2x
E(Yi) = β0 + β1µx

Cov(Xi, Yi) = β1σ
2
x

Use the centering rule to get the last one:

Cov(Xi, Yi) = E(
c
Xi

c
Y i)

= E{
c
Xi (β1

c
Xi +εi)}

= E{β1
c
X

2
i +

c
Xi εi)}

= β1E{
c
X

2
i}+ E{

c
Xi}E{εi}

= β1σ
2
x
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Solve for β0 and β1
Have E(Xi) = µx, V ar(Xi) = σ2

x, E(Yi) = β0 + β1µx, Cov(Xi, Yi) = β1σ
2
x

Putting hats on first, solve

Y = β̂0 + β̂1X

σ̂xy = β̂1σ̂
2
x

⇒

β̂1 =
σ̂xy
σ̂2x

=

∑n
i=1(Xi −Xn)(Yi − Y n)∑n

i=1(Xi −Xn)2
and

β̂0 = Y − β̂1X

These happen to be the same as the least-squares estimates.
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Multivariate multiple regression
Multivariate means more than one response variable

X
1

X
3

X
2

Y
1

Y
2

ε
1

ε
2

We will obtain method of moments estimation for this.
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One regression equation for each response variable
Give the equations in scalar form.

X
1

X
3

X
2

Y
1

Y
2

ε
1

ε
2

Yi,1 = β1,0 + β1,1Xi,1 + β1,2Xi,2 + β1,3Xi,3 + εi,1

Yi,2 = β2,0 + β2,1Xi,1 + β2,2Xi,2 + β2,3Xi,3 + εi,2
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Yi = β0 + β1Xi + εi

In scalar form,

Yi,1 = β1,0 + β1,1Xi,1 + β1,2Xi,2 + β1,3Xi,3 + εi,1

Yi,2 = β2,0 + β2,1Xi,1 + β2,2Xi,2 + β2,3Xi,3 + εi,2

In matrix form,

Yi = β0 + β1 Xi + εi

(
Yi,1
Yi,2

)
=

(
β1,0
β2,0

)
+

(
β1,1 β1,2 β1,3
β2,1 β2,2 β2,3

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)

Note different order from Yi = x>i β + εi
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Statement of the model

Independently for i = 1, . . . , n,

Yi = β0 + β1Xi + εi, where

Yi is an q × 1 random vector of observable response variables, so the
regression is multivariate; there are q response variables.

Xi is a p× 1 observable random vector; there are p explanatory
variables. E(Xi) = µx and cov(Xi) = Φp×p. The vector µx and the
matrix Φ are unknown.

β0 is a q × 1 vector of unknown constants.

β1 is a q × p matrix of unknown constants. These are the regression
coefficients, with one row for each response variable and one column
for each explanatory variable.

εi is a q × 1 unobservable random vector with expected value zero and
unknown variance-covariance matrix cov(εi) = Ψq×q.

εi is independent of Xi.
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A Method of Moments estimate of β1
Yi = β0 + β1Xi + εi

Denote the p× q matrix of (population) covariances between Xi

and Yi by

Σxy = cov(Xi,Yi)

= E{
c

Xi

c
Y
>
i }

= E{
c
Xi (β1

c
Xi +εi)

>}

= E{
c
Xi (

c
X
>
i β
>
1 + ε>i )}

= E{
c
Xi

c
X
>
i β
>
1 +

c
Xi ε

>
i }

= E{
c
Xi

c
X
>
i }β>1 + E{

c
Xi ε

>
i }

= cov(Xi)β
>
1 + cov(Xi, εi)

= Φβ>1 + 0

= Φβ>1
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Solve for β1
In terms of moments of the observable data

Φβ>1 = Σxy

⇒ Φ−1Φβ>1 = Φ−1Σxy

⇒ β>1 = Φ−1Σxy

⇒ β1 = Σ>xy(Φ
−1)>

= ΣyxΦ
−1

= ΣyxΣ
−1
x ,

Where Φ = cov(Xi) is written Σx.
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MOM estimate of β1 based on β1 = ΣyxΣ
−1
x

Just put hats on.

β̂1 = Σ̂yxΣ̂
−1

x ,
where

Σ̂yx =
1

n

n∑
i=1

(Yi −Y)(Xi −X)>

Σ̂x =
1

n

n∑
i=1

(Xi −X)(Xi −X)>
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Method of Moments is Least Squares in this case

β̂1 = Σ̂yxΣ̂
−1

x

This is (X>X)−1X>y

Transposed

With both x and y variables centered by subtracting off
the sample means.
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Maximum likelihood estimation
A great idea from R. A. Fisher (1890-1962)

Given a model and a set of observed data, how should we
estimate θ?

Find the value of θ that makes the data we observed have
the highest probability.

If the model is continuous, maximize the probability of
observing data in a little region surrounding the observed
data vector.

In either case, let f(d; θ) denote the joint probability
density function or probability mass function evaluated at
the observed data vector.

Maximize L(θ) = f(d; θ) over all θ ∈ Θ.

L(θ) is called the likelihood function.
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Maximum likelihood estimation for independent
random sampling

D1, . . . , Dn
i.i.d.∼ Pθ, θ ∈ Θ.

L(θ) =

n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function
evaluated at di.

Find the value of θ for which L(θ) is maximum.
Or equivalently, maximize `(θ) = lnL(θ).
The elementary approach:

Take derivatives,
Set derivatives to zero,
Solve for θ,
Put a hat on the answer.

30 / 72



Models MOM MLE Invariance Consistency

Example: Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Statistical model for the taste test example

Letting θ denote the probability that a consumer will choose the
new blend, treat the data Y1, . . . , Yn as a random sample from a
Bernoulli distribution. That is, independently for i = 1, . . . , n,

f(yi; θ) = θyi(1− θ)1−yi

for yi = 0 or yi = 1, and zero otherwise.

32 / 72



Models MOM MLE Invariance Consistency

Find the MLE of θ
Show your work

Maximize the log likelihood.

∂

∂θ
lnL(θ) =

∂

∂θ
ln

(
n∏
i=1

f(yi; θ)

)

=
∂

∂θ
ln

(
n∏
i=1

θyi(1− θ)1−yi
)

=
∂

∂θ
ln
(
θ
∑n
i=1 yi(1− θ)n−

∑n
i=1 yi

)
=

∂

∂θ

(
(
n∑
i=1

yi) ln θ + (n−
n∑
i=1

yi) ln(1− θ)

)

=

∑n
i=1 yi
θ

−
n−

∑n
i=1 yi

1− θ
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Setting the derivative to zero,

∑n
i=1 yi
θ

=
n−

∑n
i=1 yi

1− θ
⇒ (1− θ)

n∑
i=1

yi = θ(n−
n∑
i=1

yi)

⇒
n∑
i=1

yi − θ
n∑
i=1

yi = nθ − θ
n∑
i=1

yi

⇒
n∑
i=1

yi = nθ

⇒ θ =

∑n
i=1 yi
n

So it looks like the MLE is the sample proportion. Carrying out
the second derivative test to be sure,
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Second derivative test

∂2 ln `

∂θ2
=

∂

∂θ

(∑n
i=1 yi
θ

−
n−

∑n
i=1 yi

1− θ

)
=
−
∑n

i=1 yi
θ2

−−−
n−

∑n
i=1 yi

(1− θ)2

= −n
(

1− y
(1− θ)2

+
y

θ2

)
< 0

Concave down, maximum, verifying θ̂ = y.
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Numerical estimate

Suppose 60 of the 100 consumers prefer the new blend. Give a
point estimate the parameter θ. Your answer is a number.

> ybar = 60/100; ybar

[1] 0.6
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Maximum likelihood for the univariate normal

Let X1, . . . , Xn
i.i.d∼ N(µ, σ2).

`(θ) = ln

n∏
i=1

1

σ
√

2π
e−

1
2

(xi−µ)2

σ2

= ln
(
σ−n(2π)−

n
2 e−

1
2σ2

∑n
i=1(xi−µ)2

)
= −n lnσ − n

2
ln(2π)− 1

2σ2

n∑
i=1

(xi − µ)2
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Differentiate with respect to the parameters
`(θ) = −n lnσ − n

2
ln(2π)− 1

2σ2

∑n
i=1(xi − µ)2

∂`

∂µ
= − 1

2σ2

n∑
i=1

2(xi − µ)(−1)
set
= 0

⇒ µ = x

∂`

∂σ
= − n

σ
− 1

2

n∑
i=1

(xi − µ)2(−2σ−3)

= −n
σ

+
1

σ3

n∑
i=1

(xi − µ)2
set
= 0

⇒ σ2 =
1

n

n∑
i=1

(xi − µ)2
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Substituting

Setting derivaties to zero, we have obtained

µ = x and σ2 =
1

n

n∑
i=1

(xi − µ)2, so

µ̂ = X

σ̂2 =
1

n

n∑
i=1

(Xi −X)2
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Gamma Example

Let X1, . . . , Xn be a random sample from a Gamma

distribution with parameters α > 0 and β > 0

f (x;α, β) =
1

βαΓ(α)
e−x/βxα−1

Θ = {(α, β) : α > 0, β > 0}
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Log Likelihood
f(x;α, β) = 1

βαΓ(α)
e−x/βxα−1

`(α, β) = ln

n∏
i=1

1

βαΓ(α)
e−xi/βxα−1i

= ln

β−nα Γ(α)−n exp(− 1

β

n∑
i=1

xi)

(
n∏
i=1

xi

)α−1
= −nα lnβ − n ln Γ(α)− 1

β

n∑
i=1

xi + (α− 1)

n∑
i=1

lnxi
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Differentiate with respect to the parameters
`(θ) = −nα lnβ − n ln Γ(α)− 1

β

∑n
i=1 xi + (α− 1)

∑n
i=1 lnxi

∂`

∂β

set
= 0 ⇒ αβ = x

∂`

∂α
= −n lnβ − n ∂

∂α
ln Γ(α) +

n∑
i=1

lnxi

=

n∑
i=1

lnxi − n lnβ − nΓ′(α)

Γ(α)

set
= 0
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Solve for α

n∑
i=1

lnxi − n ln β − nΓ′(α)

Γ(α)
= 0

where

Γ(α) =

∫ ∞
0

e−ttα−1 dt.

Nobody can do it.
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Maximize the likelihood numerically with software
Usually this is in high dimension

θ

L(θ)

It’s like trying to find the top of a mountain by walking
uphill blindfolded.
You might stop at a local maximum.
The starting place is very important.
The final answer is a number (or vector of numbers).
There is no explicit formula for the MLE.
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There is a lot of useful theory
Even without an explicit formula for the MLE

θ

L(θ)

MLE is asymptotically normal.

Variance of the MLE is deeply related to the curvature of the log
likelihood at the MLE.

The more curvature, the smaller the variance.

The variance of the MLE can be estimated from the curvature (using
the Fisher Information).

Basis of tests and confidence intervals.
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Comparing MOM and MLE

Sometimes they are identical, sometimes not.

If the model is right they are usually close for large
samples.

Both are asymptotically normal.

Estimates of the variance are easy to obtain for both.

Small variance of an estimator is good.

As n→∞, nothing can beat the MLE.

Except that the MLE depends on a very specific
distribution.

And sometimes the dependence matters.

In such cases, MOM is preferable.
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The Invariance principle of maximum likelihood
estimation
Also applies to Method of Moments estimation

The Invariance Principle of maximum likelihood estimation
says that the MLE of a function is that function of the
MLE, provided the function is one-to-one.

An example comes first, followed by formal details.
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Example
Of the invariance principle

Let D1, . . . , Dn be a random sample from a Bernoulli
distribution (1=Yes, 0=No) with parameter θ, 0 < θ < 1.
The parameter space is Θ = (0, 1), and the likelihood function is

L(θ) =

n∏
i=1

θdi(1− θ)1−di = θ
∑n
i=1 di(1− θ)n−

∑n
i=1 di .

Differentiating the log likelihood with respect to θ, setting the
derivative to zero and solving yields the usual estimate θ̂ = d,
the sample proportion.
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Re-parameterize

Write the model in terms of the odds of Di = 1, a
re-parameterization that is often useful in categorical data
analysis.

Denote the odds by θ′.

The definition of odds is

θ′ =
θ

1− θ
= g(θ).

As θ ranges from zero to one, θ′ ranges from zero to infinity.

So there is a new parameter space: θ′ ∈ Θ′ = (0,∞).
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Likelihood function in terms of θ′ = θ
1−θ

First solve for θ, obtaining θ = θ′

1+θ′ = g−1(θ′). The likelihood
in terms of θ′ is then

L(g−1(θ′)) = θ
∑n
i=1 di(1− θ)n−

∑n
i=1 di

=

(
θ′

1 + θ′

)∑n
i=1 di

(
1− θ′

1 + θ′

)n−∑n
i=1 di

=

(
θ′

1 + θ′

)∑n
i=1 di

(
1 + θ′ − θ′

1 + θ′

)n−∑n
i=1 di

=
θ′

∑n
i=1 di

(1 + θ′)n
.
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L(g−1(θ′)) = L′(θ′)) = θ′
∑n
i=1 di

(1+θ′)n

See how re-parameterization changes the likelihood function

Could differentiate the log likelihood, set the derivative to
zero, and solve for θ′.

The point of the invariance principle is that this is
unnecessary.

The maximum likelihood estimator of g(θ) = θ
1−θ is g(θ̂),

so that

θ̂′ =
θ̂

1− θ̂
=

d

1− d
.
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Theorem
See text for a proof. The one-to-one part is critical.

Let g : Θ→ Θ′ be a one-to-one re-parameterization, with the
maximum likelihood estimate θ̂ satisfying L(θ̂) > L(θ) for all
θ ∈ Θ with θ 6= θ̂. Then L′(g(θ̂)) > L′(θ′) for all θ′ ∈ Θ′ with
θ′ 6= g(θ̂).

In other words

The MLE of g(θ) is g(θ̂).

ĝ(θ) = g(θ̂).

The MLE of θ′ is g(θ̂).

θ̂′ = g(θ̂).
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Re-parameterization in general

The parameters of common statistical models are written in a
standard way, but other equivalent parameterizations are
sometimes useful. Suppose Xi ∼ N(µ, σ2). Have

θ̂ = (X,
1

n

n∑
i=1

(Xi −X)2)

Write Xi ∼ N(µ, σ).
g(θ) = (θ1,

√
θ2)

θ̂′ =

(
X,
√

1
n

∑n
i=1(Xi −X)2

)
Write Xi ∼ N(µ, τ), where τ = 1/σ2 is called the precision.

g(θ) = (θ1, 1/θ2)

θ̂′ =
(
X, n∑n

i=1(Xi−X)2

)
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Consistency

The idea is large-sample accuracy.

As n→∞, you get the truth.

It’s a kind of limit, but with probability involved.
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The setting

Let T1, T2, . . . be a sequence of random variables.

Main application: Tn is an estimator of θ based on a
sample of size n.

Think Tn = Xn = 1
n

∑n
i=1Xi.

Generalize to random vectors, soon.
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Convergence in Probability

We say that Tn converges in probability to the constant θ, and

write Tn
p→ θ if for all ε > 0,

lim
n→∞

P{|Tn − θ| < ε} = 1

Convergence in probability to θ means no matter how small the
interval around θ, for large enough n (that is, for all n > N) the
probability of getting a value of Tn that near to θ (or nearer) is
as close to one as you like.
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Picture it

P{|Tn − t| < ε} = P{−ε < Tn − θ < ε}
= P{θ − ε < Tn < θ + ε}

                                                                                                                                                                   
              

         
       
     
     
    
    
    
   
   
   
   
   
   
   
   
  
  
  
  
  
  
  
  
  
  
  
   
   
   
   
   
   
    
     
       
                                                                                                                                                                                                                                                                                                                  
θ(θ − ε θ + ε)

.
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Picture it

P{|Tn − t| < ε} = P{−ε < Tn − θ < ε}
= P{θ − ε < Tn < θ + ε}

                                                                                                                                                                   
              

         
       
     
     
    
    
    
   
   
   
   
   
   
   
   
  
  
  
  
  
  
  
  
  
  
  
   
   
   
   
   
   
    
     
       
                                                                                                                                                                                                                                                                                                                  
θ(θ − ε θ + ε)

.
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Convergence in Probability for Random Vectors

Let T1,T2, . . . be a sequence of k-dimensional random vectors.

We say that Tn converges in probability to θ ∈ Rk, and write

Tn
p→ θ if for all ε > 0,

lim
n→∞

P{||Tn − θ|| < ε} = 1,

where ||a− b|| denotes Euclidian distance in Rk.
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Use theorems, not the definition

In this class we will not use the definition of convergence in
probability.

We will use theorems instead.
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The Law of Large Numbers

Let X1, X2, . . . be independent random variables from a

distribution with expected value µ. The Law of Large Numbers

says

Xn
p→ µ
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The Change of Variables formula: Let Y = g(X)

E(Y ) =

∫ ∞
−∞

y f
Y

(y) dy =

∫ ∞
−∞

g(x) f
X

(x) dx

Or, for discrete random variables

E(Y ) =
∑
y

y p
Y

(y) =
∑
x

g(x) p
X

(x)

This is actually a big theorem, not a definition.
62 / 72



Models MOM MLE Invariance Consistency

Applying the change of variables formula
To approximate E[g(X)]

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
p→ E(Y )

= E(g(X))
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So for example

1

n

n∑
i=1

Xk
i

p→ E(Xk)

1

n

n∑
i=1

U 2
i ViW

3
i

p→ E(U 2VW 3)

That is, sample moments converge in probability to
population moments.

Central sample moments converge to central population
moments as well.
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Two more Theorems

The “stack” theorem and continuous mapping.

Often used together.
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The “Stack” Theorem
Because I don’t know what to call it.

Let Xn
p→ x and Yn

p→ y. Then the partitioned random vector(
Xn

Yn

)
p→
(

x
y

)

66 / 72



Models MOM MLE Invariance Consistency

Continuous mapping
One of the Slutsky lemmas

Let Tn
p→ t, and let the function g(x) be continuous at x = t.

Then

g(Tn)
p→ g(t)

Note that the function g could be multidimensional, for
example mapping R5 into R2.
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Definition of Consistency

The random vector (of statistics) Tn is said to be a consistent

estimator of the parameter vector θ if

Tn
p→ θ

for all θ ∈ Θ.
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Consistency of the Sample Variance
This answer gets full marks.

σ̂2
n =

1

n

n∑
i=1

(Xi −X)2 =
1

n

n∑
i=1

X2
i −X

2

By LLN, Xn
p→ µ and 1

n

∑n
i=1X

2
i

p→ E(X2) = σ2 + µ2.

By continuous mapping,

σ̂2
n =

1

n

n∑
i=1

X2
i −X

2 p→ σ2 + µ2 − µ2 = σ2

Note the silent use of the Stack Theorem.
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Method of Moments Estimators are Consistent
For most practical cases

Recall

Let m denote a vector of population moments.

m̂ is the corresponding vector of sample moments.

Find m = g(θ)

Solve for θ, obtaining θ = g−1(m).

Let θ̂n = g−1(m̂n).

If g is continuous, so is g−1. Then by continous mapping,
m̂

p→ m⇒ θ̂n = g−1(m̂n)
p→ g−1(m) = θ.
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Consistency is great but it’s not enough.

It’s the least we can ask. Estimators that are not
consistent are completely unacceptable for most purposes.

Think of an = 1/n as a sequence of degenerate random
variables with P{an = 1/n} = 1.

So, an
p→ 0.

Tn
p→ θ ⇒ Un = Tn +

100, 000, 000

n

p→ θ.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/431s17
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