Results: CarCalisReg.sas

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Proc reg for comparison

The REG Procedure

Model: MODEL1

Dependent Variable: lper100k

The REG Procedure

MODEL1

Fit

lper100k

Number of Observations

Number of Observations Read 100
Number of Observations Used 100

Analysis of Variance

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 2 757.27066 378.63533 116.36 <.0001
Error 97 315.64094 3.25403    
Corrected Total 99 1072.91160      

Fit Statistics

Root MSE 1.80389 R-Square 0.7058
Dependent Mean 12.27800 Adj R-Sq 0.6997
Coeff Var 14.69208    

Parameter Estimates

Parameter Estimates
Variable DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept 1 -3.61747 2.95847 -1.22 0.2244
weight 1 0.00495 0.00155 3.20 0.0018
length 1 1.83563 1.01735 1.80 0.0743

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Surface regression with proc calis

The CALIS Procedure

Mean and Covariance Structures: Model and Initial Values

The CALIS Procedure

Modeling Specification

Modeling Info

Modeling Information
Maximum Likelihood Estimation
Data Set WORK.AUTO
N Records Read 100
N Records Used 100
N Obs 100
Model Type LINEQS
Analysis Means and Covariances

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Surface regression with proc calis

The CALIS Procedure

Mean and Covariance Structures: Descriptive Statistics

Descriptive Statistics

Covariances

Covariance Matrix (DF = 100)
  lper100k weight length
lper100k 10.72912 984.08962 1.47215
weight 984.08962 129698.99 186.41747
length 1.47215 186.41747 0.29938
Determinant 12871 Ln 9.462730

Means

Means
lper100k weight length
12.27800 1413.2100 4.84920

Optimization


Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Surface regression with proc calis

The CALIS Procedure

Mean and Covariance Structures: Optimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Optimization Problem

Parameter Estimates 9
Functions (Observations) 9

Iteration Start

Optimization Start
Active Constraints 0 Objective Function 0
Max Abs Gradient Element 1.782968E-16 Radius 1

Iteration Stop

Optimization Results
Iterations 0 Function Calls 4
Jacobian Calls 1 Active Constraints 0
Objective Function 0 Max Abs Gradient Element 1.782968E-16
Lambda 0 Actual Over Pred Change 0
Radius 1    
Convergence criterion (ABSGCONV=0.00001) satisfied.

Note:The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates.

Note:Covariance matrix for the estimates is not full rank.

Note:The variance of some parameter estimates is zero or some parameter estimates are linearly related to other parameter estimates as shown in the following equations:

Linear Dependence

phi11 = 129584 + 383.259241 * phi22
mu1 = 1460.676413 - 9.788504 * mu2

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Surface regression with proc calis

The CALIS Procedure

Mean and Covariance Structures: Maximum Likelihood Estimation

Fit

Fit Summary

Fit Summary
Modeling Info Number of Observations 100
  Number of Variables 3
  Number of Moments 9
  Number of Parameters 9
  Number of Active Constraints 0
  Baseline Model Function Value 3.4772
  Baseline Model Chi-Square 347.7159
  Baseline Model Chi-Square DF 3
  Pr > Baseline Model Chi-Square <.0001
Absolute Index Fit Function 0.0000
  Chi-Square 0.0000
  Chi-Square DF 0
  Pr > Chi-Square .
  Z-Test of Wilson & Hilferty .
  Hoelter Critical N .
  Root Mean Square Residual (RMR) 0.0000
  Standardized RMR (SRMR) 0.0000
  Goodness of Fit Index (GFI) 1.0000
Parsimony Index Adjusted GFI (AGFI) .
  Parsimonious GFI 0.0000
  RMSEA Estimate .
  Probability of Close Fit .
  Akaike Information Criterion 18.0000
  Bozdogan CAIC 50.4465
  Schwarz Bayesian Criterion 41.4465
  McDonald Centrality 1.0000
Incremental Index Bentler Comparative Fit Index 1.0000
  Bentler-Bonett NFI 1.0000
  Bentler-Bonett Non-normed Index .
  Bollen Normed Index Rho1 .
  Bollen Non-normed Index Delta2 1.0000
  James et al. Parsimonious NFI 0.0000

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Surface regression with proc calis

The CALIS Procedure

Mean and Covariance Structures: Maximum Likelihood Estimation

Predicted Covariances

Predicted Covariances
  lper100k weight length
lper100k 10.72912 984.08962 1.47215
weight 984.08962 129698.99 186.41747
length 1.47215 186.41747 0.29938
Determinant 12871 Ln 9.462730

Predicted Means

Predicted Means
lper100k weight length
12.27800 1413.2100 4.84920

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Surface regression with proc calis

The CALIS Procedure

Mean and Covariance Structures: Maximum Likelihood Estimation

ML Estimation

Equations

Linear Equations
lper100k =   -3.6175 (ns) Intercept + 0.00495 (**) weight + 1.8356 (ns) length + 1.0000   epsilon

Linear Effects

Effects in Linear Equations
Variable Predictor Parameter Estimate Standard
Error
t Value Pr > |t|
lper100k Intercept beta0 -3.61747 2.91376 -1.2415 0.2144
lper100k weight beta1 0.00495 0.00152 3.2511 0.0011
lper100k length beta2 1.83563 1.00197 1.8320 0.0669

Variance Parms

Estimates for Variances of Exogenous Variables
Variable
Type
Variable Parameter Estimate Standard
Error
t Value Pr > |t|
Observed weight phi11 129699 0.00918 14131102 <.0001
  length phi22 0.29938 0.01889 15.8509 <.0001
Error epsilon psi 3.15641 0.44638 7.0711 <.0001

Covariance Parms

Covariances Among Exogenous Variables
Var1 Var2 Parameter Estimate Standard
Error
t Value Pr > |t|
weight length phi12 186.41747 6.38570 29.1930 <.0001

Mean Parms

Mean Parameters
Variable
Type
Variable Parameter Estimate Standard
Error
t Value Pr > |t|
Observed weight mu1 1413 36.01375 39.2409 <.0001
  length mu2 4.84920 0.05472 88.6256 <.0001

Sq. Mult. Correlations

Squared Multiple Correlations
Variable Error Variance Total Variance R-Square
lper100k 3.15641 10.72912 0.7058

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Weight re-scaled

The CALIS Procedure

Mean and Covariance Structures: Model and Initial Values

The CALIS Procedure

Modeling Specification

Modeling Info

Modeling Information
Maximum Likelihood Estimation
Data Set WORK.AUTO2
N Records Read 100
N Records Used 100
N Obs 100
Model Type LINEQS
Analysis Means and Covariances

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Weight re-scaled

The CALIS Procedure

Mean and Covariance Structures: Descriptive Statistics

Descriptive Statistics

Covariances

Covariance Matrix (DF = 100)
  lper100k weight length
lper100k 10.72912 9.84090 1.47215
weight 9.84090 12.96990 1.86417
length 1.47215 1.86417 0.29938
Determinant 1.287098 Ln 0.252390

Means

Means
lper100k weight length
12.27800 14.13210 4.84920

Optimization


Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Weight re-scaled

The CALIS Procedure

Mean and Covariance Structures: Optimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Optimization Problem

Parameter Estimates 9
Functions (Observations) 9

Iteration Start

Optimization Start
Active Constraints 0 Objective Function 0
Max Abs Gradient Element 1.624159E-14 Radius 1

Iteration Stop

Optimization Results
Iterations 0 Function Calls 4
Jacobian Calls 1 Active Constraints 0
Objective Function 0 Max Abs Gradient Element 1.624159E-14
Lambda 0 Actual Over Pred Change 0
Radius 1    
Convergence criterion (ABSGCONV=0.00001) satisfied.

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Weight re-scaled

The CALIS Procedure

Mean and Covariance Structures: Maximum Likelihood Estimation

Fit

Fit Summary

Fit Summary
Modeling Info Number of Observations 100
  Number of Variables 3
  Number of Moments 9
  Number of Parameters 9
  Number of Active Constraints 0
  Baseline Model Function Value 3.4772
  Baseline Model Chi-Square 347.7159
  Baseline Model Chi-Square DF 3
  Pr > Baseline Model Chi-Square <.0001
Absolute Index Fit Function 0.0000
  Chi-Square 0.0000
  Chi-Square DF 0
  Pr > Chi-Square .
  Z-Test of Wilson & Hilferty .
  Hoelter Critical N .
  Root Mean Square Residual (RMR) 0.0000
  Standardized RMR (SRMR) 0.0000
  Goodness of Fit Index (GFI) 1.0000
Parsimony Index Adjusted GFI (AGFI) .
  Parsimonious GFI 0.0000
  RMSEA Estimate .
  Probability of Close Fit .
  Akaike Information Criterion 18.0000
  Bozdogan CAIC 50.4465
  Schwarz Bayesian Criterion 41.4465
  McDonald Centrality 1.0000
Incremental Index Bentler Comparative Fit Index 1.0000
  Bentler-Bonett NFI 1.0000
  Bentler-Bonett Non-normed Index .
  Bollen Normed Index Rho1 .
  Bollen Non-normed Index Delta2 1.0000
  James et al. Parsimonious NFI 0.0000

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Weight re-scaled

The CALIS Procedure

Mean and Covariance Structures: Maximum Likelihood Estimation

Predicted Covariances

Predicted Covariances
  lper100k weight length
lper100k 10.72912 9.84090 1.47215
weight 9.84090 12.96990 1.86417
length 1.47215 1.86417 0.29938
Determinant 1.287098 Ln 0.252390

Predicted Means

Predicted Means
lper100k weight length
12.27800 14.13210 4.84920

Metric Cars Data: Fit a regression model with proc calis

Jerry Brunner: Student Number 999999999

Weight re-scaled

The CALIS Procedure

Mean and Covariance Structures: Maximum Likelihood Estimation

ML Estimation

Equations

Linear Equations
lper100k =   -3.6175 (ns) Intercept + 0.4949 (**) weight + 1.8356 (ns) length + 1.0000   epsilon

Linear Effects

Effects in Linear Equations
Variable Predictor Parameter Estimate Standard
Error
t Value Pr > |t|
lper100k Intercept beta0 -3.61747 2.91376 -1.2415 0.2144
lper100k weight beta1 0.49491 0.15223 3.2511 0.0011
lper100k length beta2 1.83563 1.00197 1.8320 0.0669

Variance Parms

Estimates for Variances of Exogenous Variables
Variable
Type
Variable Parameter Estimate Standard
Error
t Value Pr > |t|
Observed weight phi11 12.96990 1.83422 7.0711 <.0001
  length phi22 0.29938 0.04234 7.0711 <.0001
Error epsilon psi 3.15641 0.44638 7.0711 <.0001

Covariance Parms

Covariances Among Exogenous Variables
Var1 Var2 Parameter Estimate Standard
Error
t Value Pr > |t|
weight length phi12 1.86417 0.27126 6.8723 <.0001

Mean Parms

Mean Parameters
Variable
Type
Variable Parameter Estimate Standard
Error
t Value Pr > |t|
Observed weight mu1 14.13210 0.36014 39.2409 <.0001
  length mu2 4.84920 0.05472 88.6256 <.0001

Sq. Mult. Correlations

Squared Multiple Correlations
Variable Error Variance Total Variance R-Square
lper100k 3.15641 10.72912 0.7058