\documentclass[serif]{beamer} % Get Computer Modern math font. \hypersetup{colorlinks,linkcolor=,urlcolor=red} \usefonttheme{serif} % Looks like Computer Modern for non-math text -- nice! \setbeamertemplate{navigation symbols}{} % Suppress navigation symbols % \usetheme{Berlin} % Displays sections on top \usetheme{Frankfurt} % Displays section titles on top: Fairly thin but still swallows some material at bottom of crowded slides %\usetheme{Berkeley} \usepackage[english]{babel} \usepackage{amsmath} % for binom % \usepackage{graphicx} % To include pdf files! % \definecolor{links}{HTML}{2A1B81} % \definecolor{links}{red} \setbeamertemplate{footline}[frame number] \mode \title{The Pinwheel Model\footnote{See last slide for copyright information.}} \subtitle{STA431 Winter/Spring 2015} \date{} % To suppress date \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{A Cyclic Model} \framesubtitle{Not an \emph{Acyclic} model} \begin{center} \includegraphics[width=2.5in]{Pinwheel} \end{center} \end{frame} \begin{frame} \frametitle{Model equations} \framesubtitle{Assume all variances positive etc.} \begin{eqnarray*} Y_1 &=& \beta_3 Y_3 + \gamma X + \epsilon_1 \\ Y_2 &=& \beta_1 Y_1 + \epsilon_2 \\ Y_3 &=& \beta_2 Y_2 + \epsilon_3 \end{eqnarray*} In matrix terms: \begin{displaymath} \left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \end{array} \right) = \left(\begin{array}{rrr} 0 & 0 & \beta_{3} \\ \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \end{array}\right) \left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \end{array} \right) + \left(\begin{array}{c} \gamma \\ 0 \\ 0 \end{array} \right) X + \left(\begin{array}{c} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{array} \right) \end{displaymath} \end{frame} \begin{frame} \frametitle{To get $V(\mathbf{Y})$} \begin{eqnarray*} & & \mathbf{Y} = \boldsymbol{\beta} \mathbf{Y} + \boldsymbol{\Gamma} \mathbf{X} + \boldsymbol{\epsilon} \\ &\Rightarrow& \mathbf{Y} - \boldsymbol{\beta} \mathbf{Y} = \boldsymbol{\Gamma} \mathbf{X} + \boldsymbol{\epsilon} \\ &\Rightarrow& \mathbf{IY} - \boldsymbol{\beta} \mathbf{Y} = \boldsymbol{\Gamma} \mathbf{X} + \boldsymbol{\epsilon} \\ &\Rightarrow& (\mathbf{I} - \boldsymbol{\beta} )\mathbf{Y} = \boldsymbol{\Gamma} \mathbf{X} + \boldsymbol{\epsilon} \end{eqnarray*} \vspace{5mm} $(\mathbf{I} - \boldsymbol{\beta})^{-1}$ exists when $|\mathbf{I} - \boldsymbol{\beta}|\neq 0$ \begin{displaymath} \mathbf{I} - \boldsymbol{\beta} = \left(\begin{array}{rrr} 1 & 0 & -\beta_{3} \\ -\beta_{1} & 1 & 0 \\ 0 & -\beta_{2} & 1 \end{array}\right) \end{displaymath} \end{frame} \begin{frame}[fragile] \frametitle{Calculate the determinant using Sage} %\framesubtitle{} {\footnotesize % or scriptsize \begin{verbatim} sem = 'http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage' load(sem) B = ZeroMatrix(3,3) B[0,2] = var('beta3'); B[1,0] = var('beta1'); B[2,1] = var('beta2') ImB = IdentityMatrix(3)-B show( ImB.determinant() ) \end{verbatim} } % End size \begin{displaymath} -\beta_{1} \beta_{2} \beta_{3} + 1 \end{displaymath} \vspace{3mm} So the inverse will exist unless $\beta_{1} \beta_{2} \beta_{3} = 1$. \end{frame} \begin{frame} \frametitle{Solve for $Y_3$} Starting with the model equations \begin{eqnarray*} Y_1 &=& \beta_3 Y_3 + \gamma X + \epsilon_1 \\ Y_2 &=& \beta_1 Y_1 + \epsilon_2 \\ Y_3 &=& \beta_2 Y_2 + \epsilon_3 \end{eqnarray*} \vspace{3mm} \begin{eqnarray*} && Y_3 = \beta_1\beta_2\beta_3Y_3 + \beta_1\beta_2\gamma X + \beta_1\beta_2\epsilon_1 + \beta_2\epsilon_2 + \epsilon_3 \\ & \Rightarrow & Y_3(1-\beta_1\beta_2\beta_3) = \beta_1\beta_2\gamma X + \beta_1\beta_2\epsilon_1 + \beta_2\epsilon_2 + \epsilon_3 \\ \end{eqnarray*} What happens if $(\mathbf{I} - \boldsymbol{\beta})^{-1}$ does not exist (and $\gamma \neq 0$)? \end{frame} \begin{frame} \frametitle{If $\beta_{1} \beta_{2} \beta_{3} = 1$} \framesubtitle{Meaning that $(\mathbf{I} - \boldsymbol{\beta})^{-1}$ does not exist} \begin{eqnarray*} && Y_3(1-\beta_1\beta_2\beta_3) = \beta_1\beta_2\gamma X + \beta_1\beta_2\epsilon_1 + \beta_2\epsilon_2 + \epsilon_3 \\ & \Rightarrow & 0 = \beta_1\beta_2\gamma X + \beta_1\beta_2\epsilon_1 + \beta_2\epsilon_2 + \epsilon_3 \\ & \Rightarrow & E(X\cdot 0) = E\left(X (\beta_1\beta_2\gamma X + \beta_1\beta_2\epsilon_1 + \beta_2\epsilon_2 + \epsilon_3)\right) \\ & \Rightarrow & 0 = \beta_1\beta_2\gamma E(X^2) + 0 \\ & \Rightarrow & \beta_1\beta_2\gamma \phi = 0 \end{eqnarray*} with $\beta_1, \beta_2, \gamma$ and $\phi$ all non-zero. \vspace{3mm} So $\beta_{1} \beta_{2} \beta_{3} = 1$ contradicts the model. \end{frame} \begin{frame} \frametitle{Under the assumptions of the pinwheel model} \begin{itemize} \item $(\mathbf{I} - \boldsymbol{\beta})^{-1}$ exists. \item $\beta_{1} \beta_{2} \beta_{3} \neq 1$. \item The surface $\beta_{1} \beta_{2} \beta_{3} = 1$ forms a \emph{hole} in the parameter space. \end{itemize} \end{frame} \begin{frame} \frametitle{Covariance matrix of the factors: $\boldsymbol{\Phi}$} \framesubtitle{Factors are $X$, $Y_1$, $Y_2$, $Y_3$} \begin{columns} % Use Beamer's columns to use more of the margins! \column{1.2\textwidth} {\scriptsize \begin{displaymath} \left(\begin{array}{cccc} \phi & -\frac{\gamma \phi}{\beta_{1} \beta_{2} \beta_{3} - 1} & -\frac{\beta_{1} \gamma \phi}{\beta_{1} \beta_{2} \beta_{3} - 1} & -\frac{\beta_{1} \beta_{2} \gamma \phi}{\beta_{1} \beta_{2} \beta_{3} - 1} \\ & \frac{\beta_{2}^{2} \beta_{3}^{2} \psi_{2} + \beta_{3}^{2} \psi_{3} + \gamma^{2} \phi + \psi_{1}}{{\left(\beta_{1} \beta_{2} \beta_{3} - 1\right)}^{2}} & \frac{\beta_{1} \beta_{3}^{2} \psi_{3} + \beta_{1} \gamma^{2} \phi + \beta_{2} \beta_{3} \psi_{2} + \beta_{1} \psi_{1}}{{\left(\beta_{1} \beta_{2} \beta_{3} - 1\right)}^{2}} & \frac{\beta_{1} \beta_{2} \gamma^{2} \phi + \beta_{2}^{2} \beta_{3} \psi_{2} + \beta_{1} \beta_{2} \psi_{1} + \beta_{3} \psi_{3}}{{\left(\beta_{1} \beta_{2} \beta_{3} - 1\right)}^{2}} \\ & & \frac{\beta_{1}^{2} \beta_{3}^{2} \psi_{3} + \beta_{1}^{2} \gamma^{2} \phi + \beta_{1}^{2} \psi_{1} + \psi_{2}}{{\left(\beta_{1} \beta_{2} \beta_{3} - 1\right)}^{2}} & \frac{\beta_{1}^{2} \beta_{2} \gamma^{2} \phi + \beta_{1}^{2} \beta_{2} \psi_{1} + \beta_{1} \beta_{3} \psi_{3} + \beta_{2} \psi_{2}}{{\left(\beta_{1} \beta_{2} \beta_{3} - 1\right)}^{2}} \\ & & & \frac{\beta_{1}^{2} \beta_{2}^{2} \gamma^{2} \phi + \beta_{1}^{2} \beta_{2}^{2} \psi_{1} + \beta_{2}^{2} \psi_{2} + \psi_{3}}{{\left(\beta_{1} \beta_{2} \beta_{3} - 1\right)}^{2}} \end{array}\right) \end{displaymath} } % End size \end{columns} \vspace{5mm} \begin{itemize} \item $\phi=\phi_{11}$, $\beta_1 = \frac{\phi_{13}}{\phi_{12}}$ and $\beta_2 = \frac{\phi_{14}}{\phi_{13}}$ are easy. \item But then? \end{itemize} \end{frame} \begin{frame} \frametitle{Solutions exist provided $\beta_1, \beta_2, \beta_3$ are all non-zero.} \framesubtitle{Using Sage \ldots} \begin{eqnarray*} \beta_{3} &=& \frac{\phi_{12} \phi_{13} \phi_{23} - \phi_{13}^{2} \phi_{22}}{\phi_{12} \phi_{14} \phi_{33} - \phi_{13} \phi_{14} \phi_{23}} \\ && \\ \gamma &=& \frac{\phi_{12}^{2} \phi_{33} - 2 \, \phi_{12} \phi_{13} \phi_{23} + \phi_{13}^{2} \phi_{22}}{\phi_{11} \phi_{12} \phi_{33} - \phi_{11} \phi_{13} \phi_{23}} \\ && \\ \psi_{3} &=& \frac{{\left(\phi_{13} \phi_{44} - \phi_{14} \phi_{34}\right)} {\left(\phi_{12}^{2} \phi_{33} - 2 \, \phi_{12} \phi_{13} \phi_{23} + \phi_{13}^{2} \phi_{22}\right)}}{{\left(\phi_{12} \phi_{33} - \phi_{13} \phi_{23}\right)} \phi_{12} \phi_{13}} \\ && \\ \psi_{2} &=& \frac{\phi_{12}^{2} \phi_{33} - 2 \, \phi_{12} \phi_{13} \phi_{23} + \phi_{13}^{2} \phi_{22}}{\phi_{12}^{2}} \\ && \\ \psi_1 & = & \beta_{1}^{2} \beta_{2}^{2} \beta_{3}^{2} \phi_{22} - \beta_{2}^{2} \beta_{3}^{2} \psi_{2} - 2 \, \beta_{1} \beta_{2} \beta_{3} \phi_{22} - \beta_{3}^{2} \psi_{3} - \gamma^{2} \phi + \phi_{22} \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Parameters of the pinwheel model are identifiable} %\framesubtitle{} \begin{itemize} \item Even though it does not fit any known rules \item And the proof is very difficult. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Copyright Information} This slide show was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistical Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \href{http://www.utstat.toronto.edu/~brunner/oldclass/431s15} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/431s15}} \end{frame} \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{} %\framesubtitle{} \begin{itemize} \item \item \item \end{itemize} \end{frame} {\LARGE \begin{displaymath} \end{displaymath} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%