Background¹ STA431 Spring 2015

 $^{^1 \}mathrm{See}$ last slide for copyright information.

3 Multivariate Normal

Matrices

- $\mathbf{A} = [a_{ij}]$
- Transpose: $\mathbf{A}^{\top} = [a_{ji}]$
- Multiplication: $\mathbf{AB} \neq \mathbf{BA}$
- $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$
- Inverse of a square matrix: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$
- Positive definite: $\mathbf{v}^{\top} \mathbf{A} \mathbf{v} > 0$ for all $p \times 1$ vectors $\mathbf{v} \neq \mathbf{0}$.

Trace of a square matrix: Sum of the diagonal elements

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{i,i}$$

• Of course $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$,

•
$$tr(\mathbf{A}) = tr(\mathbf{A}^{\top}),$$
 etc.

- But less obviously, even though $AB \neq BA$,
- $tr(\mathbf{AB}) = tr(\mathbf{BA})$

$tr(\mathbf{AB}) = tr(\mathbf{BA})$

Let **A** be an $r \times p$ matrix and **B** be a $p \times r$ matrix, so that the product matrices **AB** and **BA** are both defined.

$$tr(\mathbf{AB}) = \sum_{i=1}^{r} \left(\sum_{k=1}^{p} a_{i,k} b_{k,i} \right)$$
$$= \sum_{k=1}^{p} \left(\sum_{i=1}^{r} b_{k,i} a_{i,k} \right)$$
$$= tr(\mathbf{BA})$$

Random vectors Expected values and variance-covariance matrices

- $E(\mathbf{X}) = [E(X_{i,j})]$
- $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$
- $E(\mathbf{AXB}) = \mathbf{A}E(\mathbf{X})\mathbf{B}$
- $V(\mathbf{X}) = E\left\{ (\mathbf{X} \boldsymbol{\mu})(\mathbf{X} \boldsymbol{\mu})^{\top} \right\}$
- $V(\mathbf{A}\mathbf{X}) = \mathbf{A}V(\mathbf{X})\mathbf{A}^{\top}$
- $C(\mathbf{X}, \mathbf{Y}) = E\left\{ (\mathbf{X} \boldsymbol{\mu}_x)(\mathbf{Y} \boldsymbol{\mu}_y)^\top \right\}$
- $V(\mathbf{X} + \mathbf{a}) = V(\mathbf{X})$
- $C(\mathbf{X} + \mathbf{a}, \mathbf{Y} + \mathbf{b}) = C(\mathbf{X}, \mathbf{Y})$

The Centering Rule Based on $V(\mathbf{X} + \mathbf{a}) = V(\mathbf{X})$

Often, variance and covariance calculations can be simplified by subtracting off constants first.

Denote the *centered* version of **X** by $\overset{c}{\mathbf{X}} = \mathbf{X} - E(\mathbf{X})$, so that

•
$$E(\overset{c}{\mathbf{X}}) = \mathbf{0}$$
 and

•
$$V(\overset{c}{\mathbf{X}}) = E(\overset{c}{\mathbf{X}}\overset{c}{\mathbf{X}}^{\top}) = V(\mathbf{X})$$

Linear combinations These are matrices, but they could be scalars

$$\mathbf{L} = \mathbf{A}_1 \mathbf{X}_1 + \dots + \mathbf{A}_m \mathbf{X}_m + \mathbf{b}$$

$$\mathbf{\tilde{L}} = \mathbf{A}_1 \mathbf{\tilde{X}}_1 + \dots + \mathbf{A}_m \mathbf{\tilde{X}}_m, \text{ where}$$

$$\mathbf{\tilde{X}}_j = \mathbf{X}_j - E(\mathbf{X}_j) \text{ for } j = 1, \dots, m.$$

The centering rule says

$$V(\mathbf{L}) = E(\mathbf{L} \mathbf{L}^{c c \top})$$
$$C(\mathbf{L}_1, \mathbf{L}_2) = E(\mathbf{L}^{c c \top}_1 \mathbf{L}^{c \top}_2)$$

In words: To calculate variances and covariances of linear combinations, one may simply discard added constants, center all the random vectors, and take expected values of products.

$$V(\mathbf{X} + \mathbf{Y}) = E(\mathbf{\hat{X}} + \mathbf{\hat{Y}})(\mathbf{\hat{X}} + \mathbf{\hat{Y}})^{\top}$$

= $E(\mathbf{\hat{X}} + \mathbf{\hat{Y}})(\mathbf{\hat{X}}^{\top} + \mathbf{\hat{Y}}^{\top})$
= $E(\mathbf{\hat{X}}^{c}\mathbf{X}^{\top}) + E(\mathbf{\hat{Y}}^{c}\mathbf{\hat{Y}}^{\top}) + E(\mathbf{\hat{X}}^{c}\mathbf{\hat{Y}}^{\top}) + E(\mathbf{\hat{Y}}^{c}\mathbf{\hat{X}}^{\top})$
= $V(\mathbf{X}) + V(\mathbf{Y}) + C(\mathbf{X}, \mathbf{Y}) + C(\mathbf{Y}, \mathbf{X})$

- Does $C(\mathbf{X}, \mathbf{Y}) = C(\mathbf{Y}, \mathbf{X})$?
- Does $C(\mathbf{X}, \mathbf{Y}) = C(\mathbf{Y}, \mathbf{X})^{\top}$?

The Multivariate Normal Distribution

The $p \times 1$ random vector **X** is said to have a *multivariate normal* distribution, and we write $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if **X** has (joint) density

$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right],$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite.

Σ positive definite

- Positive definite means that for any non-zero $p \times 1$ vector **a**, we have $\mathbf{a}^{\top} \boldsymbol{\Sigma} \mathbf{a} > 0$.
- Since the one-dimensional random variable $Y = \sum_{i=1}^{p} a_i X_i$ may be written as $Y = \mathbf{a}^\top \mathbf{X}$ and $Var(Y) = V(\mathbf{a}^\top \mathbf{X}) = \mathbf{a}^\top \Sigma \mathbf{a}$, it is natural to require that Σ be positive definite.
- All it means is that every non-zero linear combination of **X** values has a positive variance.
- And recall Σ positive definite is equivalent to Σ^{-1} positive definite.

Analogies

Multivariate normal reduces to the univariate normal when $p=1\,$

• Univariate Normal

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$$

• $E(X) = \mu, Var(X) = \sigma^2$
• $\frac{(X-\mu)^2}{\sigma^2} \sim \chi^2(1)$

• Multivariate Normal

•
$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

•
$$E(\mathbf{X}) = \boldsymbol{\mu}, V(\mathbf{X}) = \boldsymbol{\Sigma}$$

• $(\mathbf{X}, \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{X}, \boldsymbol{\mu})$

•
$$(\mathbf{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$$

More properties of the multivariate normal

- If **c** is a vector of constants, $\mathbf{X} + \mathbf{c} \sim N(\mathbf{c} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- If **A** is a matrix of constants, $\mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$
- Linear combinations of multivariate normals are multivariate normal.
- All the marginals (dimension less than p) of **X** are (multivariate) normal.
- For the multivariate normal, zero covariance implies independence. The multivariate normal is the only continuous distribution with this property.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. Except for the picture taken from Carroll et al.'s *Measurement error in non-linear models*, it is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/431s15