Confirmatory Factor Analysis: The Measurement Model ${ }^{1}$ STA431 Winter/Spring 2015

${ }^{1}$ See last slide for copyright information.

A confirmatory factor analysis model

One Factor: Starting simply

$$
\begin{gathered}
\begin{array}{c}
Z_{1}=\lambda_{1} F+e_{1} \\
Z_{2}=\lambda_{2} F+e_{2} \\
Z_{3}=\lambda_{3} F+e_{3} \\
V(F)=V\left(Z_{1}\right)=V\left(Z_{2}\right)=V\left(Z_{3}\right)=1 \\
F, e_{1}, e_{2}, e_{3} \text { all independent } \\
\Rightarrow \quad V\left(e_{1}\right)=1-\lambda_{1}^{2}, \text { etc }
\end{array}
\end{gathered}
$$

Σ is a correlation matrix

 $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD(X)SD(Y)}}$$$
\begin{aligned}
& Z_{1}=\lambda_{1} F+e_{1} \\
& Z_{2}=\lambda_{2} F+e_{2} \\
& Z_{3}=\lambda_{3} F+e_{3} \\
& \boldsymbol{\Sigma}=\begin{array}{l|ccc}
\\
& Z_{1} & 1 & \lambda_{1} \lambda_{2}
\end{array} \lambda_{1} \lambda_{3} \\
& Z_{2} \\
& Z_{3} \\
& \\
& \hline
\end{aligned}
$$

- $\boldsymbol{\theta}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$
- The parameter space is an open cube.
- Are the parameters identifiable? What if just one is zero?

Suppose no factor loadings equal zero

$$
\begin{gathered}
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
1 & \sigma_{12} & \sigma_{13} \\
& 1 & \sigma_{23} \\
& 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} \\
& 1 & \lambda_{2} \lambda_{3} \\
& & 1
\end{array}\right) \\
\lambda_{1}^{2}=\frac{\sigma_{12} \sigma_{13}}{\sigma_{23}}=\frac{\lambda_{1} \lambda_{2} \lambda_{1} \lambda_{3}}{\lambda_{2} \lambda_{3}} \\
\lambda_{2}^{2}=\frac{\sigma_{12} \sigma_{23}}{\sigma_{13}} \\
\lambda_{3}^{2}=\frac{\sigma_{13} \sigma_{23}}{\sigma_{12}}
\end{gathered}
$$

- Squared factor loadings are identifiable, but not the loadings.
- Replace all λ_{j} with $-\lambda_{j}$, get same $\boldsymbol{\Sigma}$
- Likelihood function will have two maxima, same height.
- Which one you find depends on where you start.

Solution: Decide on the sign of one loading

Based on meaning

- Is F math ability or math inability? You decide.
- It's just a matter of naming the factors.

If $\lambda_{1}>0$

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
1 & \sigma_{12} & \sigma_{13} \\
& 1 & \sigma_{23} \\
& & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} \\
& 1 & \lambda_{2} \lambda_{3} \\
& & 1
\end{array}\right)
$$

- Signs of λ_{2} and λ_{3} can be recovered right away from $\boldsymbol{\Sigma}$.
- And all the parameters are identified.

Equality constraints

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
1 & \sigma_{12} & \sigma_{13} \\
& 1 & \sigma_{23} \\
& & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} \\
& 1 & \lambda_{2} \lambda_{3} \\
& & 1
\end{array}\right)
$$

- Three parameters minus three correlations (equations) $=$ ZERO.
- Inequality constraints are mysterious.

Add another variable: $Z_{4}=\lambda_{4} F+e_{4}$

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
1 & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} & \lambda_{1} \lambda_{4} \\
& 1 & \lambda_{2} \lambda_{3} & \lambda_{2} \lambda_{4} \\
& & 1 & \lambda_{3} \lambda_{4} \\
& & & 1
\end{array}\right)
$$

- Parameters will all be identifiable as long as 3 out of 4 loadings are non-zero, and one sign is known.
- For example, if only $\lambda_{1}=0$ then the top row $=0$, and you can get $\lambda_{2}, \lambda_{3}, \lambda_{4}$ as before.
- For 5 variables, two loadings can be zero, etc.
- How many equality restrictions? $6-4=2$.

Now add another factor

Correlation matrix of observable variables

$$
\boldsymbol{\Sigma}=\left(\begin{array}{rrrrrr}
1 & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} & \lambda_{1} \lambda_{4} \phi_{12} & \lambda_{1} \lambda_{5} \phi_{12} & \lambda_{1} \lambda_{6} \phi_{12} \\
& 1 & \lambda_{2} \lambda_{3} & \lambda_{2} \lambda_{4} \phi_{12} & \lambda_{2} \lambda_{5} \phi_{12} & \lambda_{2} \lambda_{6} \phi_{12} \\
& & 1 & \lambda_{3} \lambda_{4} \phi_{12} & \lambda_{3} \lambda_{5} \phi_{12} & \lambda_{3} \lambda_{6} \phi_{12} \\
& & & 1 & \lambda_{4} \lambda_{5} & \lambda_{4} \lambda_{6} \\
& & & & & 1
\end{array}\right.
$$

- Identify $\lambda_{1}, \lambda_{2}, \lambda_{3}$ from set 1 .
- Identify $\lambda_{4}, \lambda_{5}, \lambda_{6}$ from set 2 .
- Identify ϕ_{12} from any unused correlation.
- What if you added more variables?
- What if you added more factors?
- What if observed variables were not standardized?

Three-variable identification rule For standardized factors

For a factor analysis model, the parameters will be identifiable provided

- Errors are independent of one another and of the factors.
- Variances of all factors equal one.
- Each observed variable is a function of only one factor.
- There are at least three observable variables with non-zero loadings per factor.
- The sign of one non-zero loading is known for each factor.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{E} X$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/431s15

