
Chapter 0

Regression with measurement error

Introduction

This chapter attempts to accomplish two purposes. First, it is a self-contained introduc-
tion to linear regression with measurement error in the explanatory variables, suitable as
a supplement to an ordinary regression course. Second, it is an introduction to the study
of structural equation models in general. Without confronting the general formulation at
first, the student will learn why structural equation models are important and see what
can be done with them. Some of the ideas and definitions are repeated later in the book,
so that the theoretical treatment of structural equation modeling does not depend much
on this chapter. On the other hand, the material in this chapter will be used throughout
the rest of the book as a source of examples. It should not be skipped by most readers.

0.1 Regression: Conditional or Unconditional?

Consider the usual version of univariate multiple regression. For i = 1, . . . , n,

Yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βp−1xi,p−1 + εi,

where ε1, . . . εn are independent random variables with expected value zero and common
variance σ2, and xi,1, . . . xi,p−1 are fixed constants. For testing and constructing confidence
intervals, ε1, . . . εn are typically assumed normal.

Alternatively, the regression model may be written in matrix notation, as follows. Let

Y = Xβ + ε, (1)

where X is an n×p matrix of known constants, β is a p×1 vector of unknown constants,
and ε is multivariate normal with mean zero and covariance matrix σ2In; the variance
σ2 > 0 is a constant.

Now please take a step back and think about this model, rather than just accepting it
without question. In particular, think about why the x variables should be constants. It’s
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2 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

true that if they are constants then all the calculations are easier, but in the typical appli-
cation of regression to observational1 data, it makes more sense to view the explanatory
variables as random variables rather than constants. Why? Because if you took repeated
samples from the same population, the values of the explanatory variables would be dif-
ferent each time. Even for an experimental study with random assignment of cases (say
dogs) to experimental conditions, suppose that the data are recorded in the order they
were collected. Again, with high probability the values of the explanatory variables would
be different each time.

So, why are the x variables a set of constants in the formal model? One response is
that the regression model is a conditional one, and all the conclusions hold conditionally
upon the values of the explanatory variables. This is technically correct, but consider the
reaction of a zoologist using multiple regression, assuming he or she really appreciated
the point. She would be horrified at the idea that the conclusions of the study would be
limited to this particular configuration of explanatory variable values. No! The sample
was taken from a population, and the conclusions should apply to that population, not
to the subset of the population with these particular values of the explanatory variables.

At this point you might be a bit puzzled and perhaps uneasy, realizing that you have
accepted something uncritically from authorities you trusted, even though it seems to be
full of holes. In fact, everything is okay this time. It is perfectly all right to apply a
conditional regression model even though the predictors are clearly random. But it’s not
so very obvious why it’s all right, or in what sense it’s all right. This section will give the
missing details. These are skipped in every regression textbook I have seen; I’m not sure
why.

Unbiased Estimation Under the standard conditional regression model (1), it is straight-

forward to show that the vector of least-squares regression coefficients β̂ is unbiased for
β (both of these are p × 1 vectors). This means that it’s unbiased conditionally upon
X = x. In symbols,

E{β̂|X = x} = β.

Using the double expectation formula E{Y } = E{E{Y |X}},

E{β̂} = E{E{β̂|X}} = E{β] = β,

since the expected value of a constant is just the constant. This means that estimates
of the regression coefficients from the conditional model are still unbiased, even when the
explanatory variables are random.

The following calculation might make the double expectation a bit clearer. The outer
expected value is with respect to the joint probability distribution of the explanatory

1Observational data are just observed, rather than being controlled by the investigator. For example,
the average number of minutes per day spent outside could be recorded for a sample of dogs. In contrast
to observational data are experimental data, in which the values of the variable in question are controlled
by the investigator. For example, dogs could be randomly assigned to several different values of the
variable “time outside.” Based on this, some dogs would always be taken for longer walks than others.
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variable values – all n vectors of them; think of the n× p matrix X. To avoid unfamiliar
notation, suppose they are all continuous, with joint density f(x). Then

E{β̂} = E{E{β̂|X}}

=

∫
· · ·
∫
E{β̂|X = x} f(x) dx

=

∫
· · ·
∫
β f(x) dx

= β

∫
· · ·
∫
f(x) dx

= β · 1 = β.

Size α Tests Suppose Model (1) is conditionally correct, and we plan to use an F test.
Conditionally upon the x values, the F statistic has an F distribution when the null
hypothesis is true, but unconditionally it does not. Rather, its probability distribution is
a mixture of F distributions, with

Pr{F ∈ A} =

∫
· · ·
∫
Pr{F ∈ A|X = x}f(x) dx.

If the null hypothesis is true and the set A is the critical region for an exact size α F -test,
then Pr{F ∈ A|X = x} = α for every fixed set of explanatory variable values x. In that
case,

Pr{F ∈ A} =

∫
· · ·
∫
αf(x) dx

= α

∫
· · ·
∫
f(x) dx (2)

= α.

Thus, the so-called F -test has the correct Type I error rate when the explanatory variables
are random (assuming the model is conditionally correct), even though the test statistic
does not have an F distribution.

It might be objected that if the explanatory variables are random and we assume they
are fixed, the resulting estimators and tests might be of generally low quality, even though
the estimators are unbiased and the tests have the right Type I error rate. Now we will
see that given a fairly reasonable set of assumptions, this objection has no merit.

Denoting the explanatory variable values by X and the response variable values by Y,
suppose the joint distribution of X and Y has the following structure. The distribution
of X depends on a parameter vector θ1. Conditionally on X = x, the distribution of
Y depends on a parameter vector θ2, and θ1 and θ2 are not functionally related. For a
standard regression model this means that the distribution of the explanatory variables
does not depend upon the values of β or σ2 in any way. This is surely not too hard to
believe.
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Please notice that the model just described is not at all limited to linear regression. It
is very general, covering almost any conceivable regression-like method including logistic
regression and other forms of non-linear regression, generalized linear models and the like.

Because likelihoods are just joint densities or probability mass functions viewed as
functions of the parameter, the notation of Appendix A.4.4 may be stretched just a little
bit to write the likelihood function for the unconditional model (with X random) in terms
of conditional densities as

L(θ1,θ2,x,y) = fθ1,θ2(x,y)

= fθ2(y|x) fθ1(x)

= L2(θ2,x,y)L1(θ1,x) (3)

Now, take the log and partially differentiate with respect to the elements of θ2. The
marginal likelihood L1(θ1,x) disappears, and θ̂2 is exactly what it would have been for a
conditional model.

In this setting, likelihood ratio tests are also identical under conditional and uncondi-
tional models. Suppose the null hypothesis concerns θ2, which is most natural. Note that
the structure of (3) guarantees that the MLE of θ1 is the same under the null and alter-

native hypotheses. Letting θ̂0,2 denote the restricted MLE of θ2 under H0, the likelihood
ratio for the unconditional model is

λ =
L2(θ̂0,2,x,y)L1(θ̂1,x)

L2(θ̂2,x,y)L1(θ̂1,x)

=
L2(θ̂0,2,x,y)

L2(θ̂2,x,y)
,

which again is exactly what it would have been under a conditional model. While this
holds only because the likelihood has the nice structure in (3), it’s a fairly reasonable set
of assumptions.

Thus in terms of both estimation and hypothesis testing, the fact that explanatory
variables are usually random variables presents no difficulty, regardless of what the distri-
bution of those explanatory variables may be. On the contrary, the conditional nature of
the usual regression model is a great virtue. Notice that in all the calculations above, the
joint distribution of the explanatory variables is written in a very general way. It really
doesn’t matter what it is, because it disappears. So one might say that with respect to
the explanatory variables, the usual linear regression model is distribution free.

0.2 The Centering Rule

In this book, we are focusing on unconditional regression models, in which the explana-
tory variables are random. Mostly, the models are linear in the explanatory variables
as well as the regression parameters, and so relationships between explanatory variables
and response variables are represented by covariances. This means there will be a lot
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of variance and covariance calculations, and anything that makes it easier will be very
welcome.

This section presents a theorem that is another way of expressing the Centering Rule
given on page 91 of Appendix A. The idea is that because adding or subtracting constants
has no effect on variances and covariances, it is okay to replace random variables by
“centered” versions in which the expected value has been subtracted off, and then do the

calculation. The centered version of a random vector will be denoted2 by
c

X= X−E(X),

so that E(
c

X) = 0 and V (
c

X) = E(
c

X
c

X′) = E[(X− E(X))(X− E(X))′] = V (X).

Theorem 1 Let X1, . . . ,Xm and Y1, . . . ,Yk be random vectors, and

L1 = A1X1 + · · ·+ AmXm + b and
c

L1 = A1

c

X1 + · · ·+ Am

c

Xm, where
c

Xj = Xj − E(Xj) for j = 1, . . . ,m.

Similarly,

L2 = C1Y1 + · · ·+ CkYk + d and
c

L2 = C1

c

Y1 + · · ·+ Ck

c

Yk, where
c

Yj = Yj − E(Yj) for j = 1, . . . , k.

Then V (L1) = V (
c

L1), V (L2) = V (
c

L2), and C(L1,L2) = C(
c

L1,
c

L2).

As an example, consider the calculation of V (X + Y).

V (X + Y) = V (
c

X +
c

Y)

= E(
c

X +
c

Y)(
c

X +
c

Y)′

= E(
c

X +
c

Y)(
c

X′ +
c

Y′)

= E(
c

X
c

X′) + E(
c

Y
c

Y′) + E(
c

X
c

Y′) + E(
c

Y
c

X′)

= V (X) + V (Y) + C(X,Y) + C(Y,X)

This is the matrix version of the formula V ar(X+Y ) = V ar(X)+V ar(Y )+2Cov(X, Y ).
Note that if X and Y are not 1× 1, C(X,Y) is not in general equal to C(Y,X), though
C(Y,X) = C(X,Y)′.

The centering rule is useful in scalar variance-covrince calculations too. For example,
let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ2,
and consider the task of showing that Cov(X,Xj − X) = 0, which is the key to prov-
ing the independence of X and S2 for the normal distribution, and the gateway to the
t distribution.

Since X and Xj −X are both linear combinations,

2This notation is very non-standard. Let’s see if it helps.
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Cov(X,Xj −X) = Cov(
c

X,
c

Xj −
c

X)

= E

( c

X (
c

Xj −
c

X)

)
= E

(
c

Xj

c

X

)
− E

(
c

X
2

)

= E

(
c

Xj
1

n

n∑
i=1

c

X i

)
− V ar

( c

X

)

= E

(
1

n

n∑
i=1

c

X i

c

Xj

)
− V ar

(
X
)

=
1

n

n∑
i=1

E
( c

X i

c

Xj

)
− σ2

n

=
1

n
E

(
c

X2
j

)
+

1

n

∑
i6=j

E
( c

X i

)
E
( c

Xj

)
− σ2

n

=
1

n
V ar

( c

Xj

)
− σ2

n

=
1

n
V ar(Xj)−

σ2

n

=
σ2

n
− σ2

n
= 0

This valuable calculation looks worse than it is at first glance, becuse every little step is
show. It is significantly messier without centering.

0.3 Unconditional regression without measurement

error

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (4)

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0
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• Xi and εi are independent.

Under this model the pairs (Xi, Yi) are bivariate normal, with

E

(
Xi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx

β0 + β1µx

)
,

and variance-covariance matrix

V

(
Xi

Yi

)
= Σ = [σi,j] =

[
φ β1φ
β1φ β2

1φ+ ψ

]
.

The Centering Rule (Theorem 1 on page 5) is useful for calculating the covariance:

Cov(Xi, Yi) = Cov(
c

X i,
c

Y i)

= E(
c

X i

c

Y i)

= E
( c

X i (β1

c

X i +εi)
)

= β1E(
c

X2
i ) + E(

c

X i)E(εi)

= β1φ

Here is some useful terminology:

Definition 0.3.1 Moments of a distribution are quantities such E(X), E(Y 2), V ar(X),
E(X2Y 2), Cov(X, Y ), and so on.

Definition 0.3.2 Moment structure equations are a set of equations expressing moments
of the distribution of the data in terms of the model parameters. If the moments involved
are limited to variances and covariances, the moment structure equations are called co-
variance structure equations.

For the regression Model (4), the moments structure equations are

µ1 = µx (5)

µ2 = β0 + β1µx

σ1,1 = φ

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

Here, the moments are the elements of the mean vector µ, and the unique elements of
the covariance matrix Σ. This is a system of 5 equations in five unknowns, and may be
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readily be solved to yield

β0 = µ2 −
σ1,2

σ1,1

µ1 (6)

µx = µ1

φ = σ1,1

β1 =
σ1,2

σ1,1

ψ = σ2,2 −
σ2

1,2

σ1,1

.

The existence of this nice solution is quite revealing. It tells us that the parameters of
the normal regression Model (4) stand in a one-to-one-relationship with the mean and
covariance matrix of the bivariate normal distribution posessed by the observable data.
In fact, the two sets of parameter values are 100% equivalent; they are just different ways
of expressing the same thing. For some purposes, the parameterization represented by
the regression model may be more informative.

Furthermore, the Invariance Principle of maximum likelihood estimation (see Ap-
pendix A) says that the MLE of a function is just that function of the MLE. So, to obtain
the maximum likelihood estimators of the regression model from the maximum likelihood
estimators of the bivariate normal distribution, one may just put hats on the parameters
in Expression 6, as follows:

β̂0 = y − σ̂1,2

σ̂1,1

x

µ̂x = µ̂1 = x

φ̂ = σ̂1,1

β̂1 =
σ̂1,2

σ̂1,1

ψ̂ = σ̂2,2 −
σ̂2

1,2

σ̂1,1

.

Thus there is no need to re-derive the maximum likelihood likelihood estimators for the
regression model.

These calculations are important, because they are an easy, clear example of what will
be necessary again and again throughout the course. Here is the process:

• Calculate the moments of the distribution (usually means, variances and covari-
ances) in terms of the model parameters, obtaining a system of moment structure
equations.

• Solve the moment structure equations for the parameters, expressing the parameters
in terms of the moments.



0.3. UNCONDITIONAL REGRESSION WITHOUT MEASUREMENT ERROR 9

When the second step is successful, the solution provides a way to estimate the parameters.
But it turns out that for some models a unique solution for the parameters is mathemati-
cally impossible. In such cases, successful parameter estimation by any method is usually
impossible as well. It is vitally important to verify the possibility of successful parameter
estimation before trying it for a given data set, and verification consists of a process like
the one you have just seen3.

Because the process is so important, let us take a look at the extension to multivariate
multiple regression — that is, to linear regression with multiple explanatory variables and
multiple response variables. This will illustrate the matrix versions of the calculations.
Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (7)

where

Yi is an q× 1 random vector of observable response variables, so the regression can
be multivariate; there are q response variables.

β0 is a q × 1 vector of unknown constants, the intercepts for the q regression equa-
tions. There is one for each response variable.

Xi is a p × 1 observable random vector; there are p explanatory variables. Xi has
expected value µx and variance-covariance matrix Φ, a p×p symmetric and positive
definite matrix of unknown constants.

β1 is a q×p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

εi is the error term of the latent regression. It is an q × 1 multivariate normal
random vector with expected value zero and variance-covariance matrix Ψ, a q × q
symmetric and positive definite matrix of unknown constants. εi is independent of
Xi.

The parameter vector for this model could be written θ = (β0,µx,Φ,β1,Ψ), where it is
understood that the symbols for the matrices really refer to their unique elements4.

The observable data are the random vectors Di = (X′i,Y
′
i)
′, for i = 1, . . . , n. Because

the data vectors are linear combinations of multivariate normals, they are also multivariate
normal. That is, Di ∼ N(µ,Σ), We write µ and Σ as partitioned matrices (matrices of
matrices).

µ =

(
E(Xi)
E(Yi)

)
=

(
µ1

µ2

)
3Of course it is no surprise that estimating the parameters of a regression model is technically possible.
4In the present case, this informal notation is probably clearer than the vech notation defined in

Appendix A.
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and

Σ = V

(
Xi

Yi

)
=

(
V (Xi) C(Xi,Yi)

C(Xi,Yi)
′ V (Yi)

)
=

(
Σ11 Σ12

Σ′12 Σ22

)
As in the univariate case, the maximum likelihood estimators may be obtained by

solving the moment structure equations for the unknown parameters. The moment struc-
ture equations are obtained by calculating expected values and covariances in terms of
the model parameters. All the calculations are immediate except possibly

Σ12 = C(Xi,Yi)

= C(
c

Xi,
c

Yi)

= E
( c

Xi (β1

c

Xi +εi)
′
)

= Φβ′1

Thus, the moment structure equations are

µ1 = µx (8)

µ2 = β0 + β1µx
Σ11 = Φ

Σ12 = Φβ′1
Σ22 = β1Φβ

′
1 + Ψ.

Solving for the parameter matrices is routine.

β0 = µ2 −Σ′12Σ
−1
11 µ1 (9)

µx = µ1

Φ = Σ11

β1 = Σ′12Σ
−1
11

Ψ = Σ22 −Σ′12Σ
−1
11 Σ12

As in the univariate case, the invariance principle may be used to obtain the maximum
likelihood estimators for the parameters of the regression model. Just put hats on all the
parameters in Expression (9).

0.4 Omitted Variables

Some very serious problems arise when standard regression methods are applied to non-
experimental data. Note that regression methods are applied to non-experimental data
all the time, and we teach students how to do it in almost every Statistics class where
regression is mentioned. But without an understanding of the technical issues involved,
the usual applications can be misleading.

The problems do not arise because the explanatory variables are random. As we saw
in Section 0.1, that’s fine. The problems arise because the random explanatory variables
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have non-zero correlations with other explanatory variables that are missing from the
regression equation and are related to the response variable. In this section, we will see
how omitting important explanatory variables from a regression equation can cause the
error term to be correlated with the explanatory variables that remain, and how that can
produce incorrect results.

To appreciate the issue, it is necessary to understand what the error term in a regres-
sion equation really represents. When we write something like

Yi = β0 + β1Xi,1 + εi,

we are saying that Xi,1 contributes to Yi, but there are also other, unspecified influences.
All these other influences are rolled together into εi. It is common practice to assume that
Xi,1 and εi are independent, or at least uncorrelated, and that is the kind of assumption
that will be made throughout this book. In fact, without this assumption everything
usually falls apart on a technical level. But that does not mean the assumption can be
justified in practice. Prepare yourself for a strong and bitter dose of reality.

Suppose that the variables X2 and X3 have an impact on Y and are correlated with X1,
but they are not part of the data set. The values of the response variable are generated
as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + β2Xi,3 + εi, (10)

independently for i = 1, . . . , n, where εi ∼ N(0, σ2). The explanatory variables are
random, with expected value and variance-covariance matrix

E

 Xi,1

Xi,2

Xi,3

 =

 µ1

µ2

µ3

 and V

 Xi,1

Xi,2

Xi,3

 =

 φ11 φ12 φ13

φ22 φ23

φ33

 ,
where εi is independent of Xi,1, Xi,2 and Xi,3.

Since X2 and X3 are not observed, they are absorbed by the intercept and error term.

Yi = β0 + β1Xi,1 + β2Xi,2 + β2Xi,3 + εi

= (β0 + β2µ2 + β3µ3) + β1Xi,1 + (β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β′0 + β1Xi,1 + ε′i.

The primes just denote a new β0 and a new ε; the addition and subtraction of β2µ2 +
β3µ3 serve to make E(ε′i) = 0. And of course there could be any number of omitted
variables. They would all get swallowed by the intercept and error term, the garbage bins
of regression analysis.

Notice that although the original error term εi is independent of Xi,1, the new error
term ε′i is not.

Cov(Xi,1, ε
′
i) = Cov(Xi,1, β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= Cov(
c

X i,1, β2

c

X i,2 +β3

c

X i,3 +εi)

= β2φ12 + β3φ13 (11)
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So, when explanatory variables are omitted from the regression equation and those ex-
planatory variables have non-zero covariance with variables that are in the equation, the
result is non-zero covariance between the error term and the explanatory variables in the
equation5.

Response variables are almost always affected by more than one explanatory variable,
and in non-experimental data6, explanatory variables usually have non-zero covariances
with one another. So, the most realistic model for a regression with just one explanatory
variable should include a covariance between the error term and the explanatory variable.
The covariance comes from the regression coefficients and covariances of some unknown
number of omitted variables; it will be represented by a single quantity.

We have arrived at the following model, which will be called the true model in the
discussion that follows. Independently for i = 1, . . . , n,

Yi = β0 + β1Xi + εi, (12)

where E(Xi) = µx, V ar(Xi) = σ2
x, E(εi) = 0, V ar(εi) = σ2

ε , and Cov(Xi, εi) = c.

Consider a data set consisting of pairs (X1, Y1), . . . , (Xn, Yn) coming from the true
model, and the interest is in the regression coefficent β1. Who will try to estimate the
parameters of the true model? Almost no one. Practically everyone will use ordinary
least squares, as described in countless Statistics textbooks and implemented in countless
computer programs and statistical calculators.

The model underlying ordinary least squares is Yi = β0 +β1xi+εi, where x1, . . . , xn are
fixed constants, and conditionally on x1, . . . , xn, the error terms ε1, . . . , εn are independent
normal random variables with mean zero and variance σ2. It may not be immediately
obvious, but this model implies independence of the explanatory variable and the error
term. It is a conditional model, and the distribution of the error terms is the same for
every fixed set of values x1, . . . , xn. Using a loose but understandable notation for densities
and conditional densities,

f(εi|xi) = f(εi)

⇔ f(εi, xi)

f(xi)
= f(εi)

⇔ f(εi, xi) = f(εi)f(xi),

which is the definition of independence. So, the usual regression model makes a hidden
assumption. It assumes that any explanatory variable that is omitted from the equation is
independent of the variables that are in the equation. Of course this is almost never true,
and now we will see the consequences.

Both ordinary least squares and an unconditional regression model like the true model

5The effects of the omitted variables could offset each other. In this example, it is possible that
β2φ12 + β3φ13 = 0, but that is really too much to hope for.

6Values of variables are just observed, and not experimentally manipulated.
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with c = 0 lead to the same standard formula:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=

∑n
i=1(Xi −X)(Yi − Y )/n∑n

i=1(Xi −X)2/n

=
σ̂x,y
σ̂2
x

,

where σ̂x,y is the sample covariance between X and Y , and σ̂2
x is the sample covariance

of X. These are maximum likelihood estimates of Cov(X, Y ) and V ar(X) respectively
under the assumption of normality, and if the divisors were n−1 instead of n, they would
be unbiased.

By the consistency of the sample variance and covariance (see Section A.5 in Ap-
pendix A), σ̂x,y converges to Cov(X, Y ) and σ̂2

x converges to V ar(X) as n → ∞. Under
the true model,

Cov(X, Y ) = Cov(Xi, β0 + β1Xi + εi) = β1σ
2
x + c.

So by a continuity argument (Slutsky lemmas 7c and 7a) in Section A.5),

β̂1 =
σ̂x,y
σ̂2
x

a.s.→ β1 +
c

σ2
x

.

Thus, while the usual teaching is that sample regression coefficients are unbiased estima-
tors, we see here that β̂1 is biased, even as n → ∞. Regardless of the true value β1, the
estimate β̂1 could be absolutely anything, depending on the value of c, the covariance
between Xi and εi. The only time β̂1 behaves properly is when c = 0.

What’s going on here is that the calculation of β̂1 is based on a model that is mis-
specified. That is, it’s not the right model. The right model is what we’ve been calling
the true model. And to repeat, the true model is the most reasonable model for simple
regression, at least for most non-experimental data.

The lesson is this. When a regression model fails to include all the explanatory variables
that contribute to the response variable, and those omitted explanatory variables have non-
zero covariance with variables that are in the model, the regression coefficients are biased
and inconsistent. In other words, they give the wrong answer, and do not approach the
right answer even for very large samples.

If you think about it, this fits with what happens frequently in practical regrssion
analysis. When you add a new explanatory variable to a regression equation, the coeffi-
cients of the variables that are already in the equation do not remain the same. Almost
anything can happen. Positive coefficients can turn negative, negative ones can turn posi-
tive, statistical significance can appear where it was previously absent or disappear where
it was previously present. Now you know why.

Notice that if the values of one or more explanatory variables are randomly assigned,
the random assignment guarantees that these variables are independent of any and all
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variables that are omitted from the regression equation. Thus, the variables in the equa-
tion have zero covariance with those that are omitted, and all the trouble disappears. So,
well-controlled experimental studies are not subject to the kind of bias described here.

Actually, the calculations in this section are the technical counterpart of a familiar
point, the correlation-causation issue, which is often stated more or less as follows. If A
and B are correlated, one cannot necessarily infer that A affects B. It could be that B
affects A, or that some third variable C is affecting both A and B. To this we can now
add the possibility that the third variable C affects B and is merely correlated with A.

Variables like C are often called confounding variables, or more rarely, lurking vari-
ables. The usual advice is that the only way to completely rule out the action of potential
confounding variables is to randomly assign subjects in the study to the various values of
A, and then assess the relationship of A to B. Again, now you know why.

Trying to fit the true model We have seen that terrible trouble arises from adopting
a mis-specified model with c = 0, when in fact because of omitted variables, c 6= 0.
It is natural, therefore, to attempt estimation and inference for the case where c 6= 0.
For simplicity, assume that the observable variables are normally distributed. Then the
observable data pairs (Xi, Yi) for i = 1, . . . , n are a random sample from a bivariate normal
distribution with mean vector µ and variance-covariance matrix Σ.

It is straightforward to calculate µ and Σ from the equation and assumptions of the
true model (12). The result is

µ =

[
µ1

µ2

]
= E

[
Xi

Yi

]
=

[
µx

β0 + β1µx

]
(13)

and

Σ =

[
σ11 σ12

σ12 σ22

]
= V

[
Xi

Yi

]
=

[
σ2
x β1σ

2
x + c

β1σ
2
x + c β1σ

2
x + σ2

ε

]
. (14)

This shows the way in which the parameter vector θ = (µx, σ
2
x, β0, β1, σ

2
ε , c) determine µ

and Σ, and hence the probability distribution of the data. Now we will see that every
such probability distribution can arise from infinitely many sets of parameter values.

For any given pair µ = (µ1, µ2) ∈ R2 and any 2×2 symmetric, positive definite matrix
Σ = [σi,j], let the values of the other parameters depend on the value of β1, as follows.

β0 = µ2 − β1µ1

c = σ12 − β1σ11

σ2
ε = σ22 − β2

1σ11 (15)

µx = µ1

σ2
x = σ11

This defines a 5-dimensional surface in the 6-dimensional parameter space. The value of
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β1 is not completely arbirtary. Because variances are greater than zero,

σ2
ε = σ22 − β2

1σ11 > 0

⇔ β2
1σ11 < σ22

⇔ β2
1 <

σ22

σ11

⇔ |β1| <
√
σ22

σ11

.

So let the parameter β1 (which determines the relationship between X and Y , if any)

vary between plus and minus
√

σ22
σ11

. For each β1 in this range, substituting (15) into (13)

and (14) returns

µ =

[
µ1

µ2

]
and Σ =

[
σ11 σ12

σ12 σ22

]
.

This means that β1 might be positive, it might be negative, or it might be zero. But

you really can’t tell, because all the values of β1 between plus and minus
√

σ22
σ11

yield the

same population mean and population variance-covariance matrix for the parameter sets
defined by the surface (15)7.

Let me beat this point into the ground a bit, because it is important. Since the
data are bivariate normal, their probability distribution corresponds uniquely to the pair
(µ,Σ). All you can ever learn from any set of sample data is the probability distribution
from which they come. So all you can ever get from bivariate normal data, no matter
what the sample size, is a closer and closer approximation of µ and Σ. If you cannot find
out whether β1 is positive, negative or zero from µ and Σ, you will never be able to make
reasonable estimates or inferences about it from any set of sample data.

In particular, maximum likelihood estimation of the parameter vecctor θ will fail. If
you take partial derivatives of the log likelihood and set them all equal to zero, there will
be infinitely many solutions. If you do numerical maximum likelihood, the search will
take you to a flat place defined by the surface (15). There, you will find the infinitely

many parameter values corresponding to the generic MLE (x, Σ̂).
To summarize, if explanatory variables are omitted from a regression equation and

those variables have non-zero covariance c with explanatory variables that are not omitted,
the result is non-zero covariance between explanatory variables and the error term. And,
if there is a non-zero covariance between the error term an an explanatory variable in a
regression equation, the false assumption that c = 0 leads to false results. But allowing c
to be non-zero means that infinitely many parameter estimates will be equally plausible,
given any set of sample data. In particular, no set of data will be able to provide a basis
for deciding whether regression coefficients are positive, negative or zero.

Is there any way out of this mess? What should be conclued from this discussion?
Is regression completely useless when applied to non-experimental data, unless every

7Could you estimate β1 if it were big enough? What would happen if β2
1 >

σ22

σ11
? This would imply

σ2
ε < 0, which is impossible if the true model is correct.
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conceivable explanatory variable is included in the model? The answer is no, it’s not
quite useless. But one must talk about the results very carefully.

First of all, there is no problem with pure prediction. If you have a data set with x
and y values and your interest is predicting y from the x values for a new set of data, a
regression equation will be useful, provided that there is a reasonably strong relationship
between x and y. From the standpoint of prediction, it does not really matter whether
y is related to x directly, or indirectly through unmeasured variables that are related to
x. You have x and not the unmeasured variables, so use it. An example would be an
insurance company that seeks to predict the amount of money that you will claim next
year (so they can increase your premiums accordingly now). If it turns out that this is
predictable from the type of music you download, they will cheerfully use the information,
and not care why it works.

When it comes to interpreting results, it is possible to say something useful as long as
you are cautious. Suppose you have a regression with three explanatory variables. It is
an observational study with plenty of potential omitted variables, so assuming the error
terms are uncorrelated with the explanatory variables is not really supportable. Using
the usual methods, you reject H0 : β3 = 0, with β̂3 > 0. You can say something like the
following: “Controlling for age and sex, intake of Vitamin D supplements is positively
related to bone density among older adults. That is, older adults who take more Vitamin
D tend to have denser bones, even when you allow for age and sex.”

This is okay so far, but if the investigator assumes that higher bone density is actually
produced by Vitamin D supplements (more or less as Y is produced by X3 in the regression
equation), then that is not justified by the statistical analysis. It could be that some other
variable like amount of exercise is causing increased bone density, and is also associated
with intake of Vitamin D supplements.

All this discussion may have the effect of obscuring a point that should not be hidden.

In this book and elsewhere, we frequently consider models in which the co-
variance of the error term and the explanatory variables equals zero. If the
model represents a belief that the explanatory variables contribute to the re-
sponse variable, the assumption of zero covariance quietly makes a very big
claim. The claim is that if there are any unmeasured explanatory variables that
also contribute to the response variable, they are unrelated to the explanatory
variables that are in the model. Such an assumption is impossible to believe
most of the time, and it is not harmless. When it is wrong, the result can
be biased parameter estimates, and tests that support false conclusions with
high probability.

0.5 Measurement Error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
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still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error.

One might think that for experimentally manipulated variables like the amount of drug
administered in a biological experiment, laboratory procedures would guarantee that for
all practical purposes, the amount of drug a subject receives is exactly what you think
it is. But Alison Fleming (University of Toronto Psychology department) pointed out to
me that when hormones are injected into a laboratory rat, the amount injected is exactly
right, but due to tiny variations in needle placement, the amount actually reaching the
animal’s bloodstream can vary quite a bit. The same thing applies to clinical trials of drugs
with humans. We will see later, though, that the statistical consequences of measurement
error are not nearly as severe with experimentally manipulated variables, assuming the
study is well-controlled in other respects.

Random variables that cannot be directly observed are called latent variables. The ones
we can observe are sometimes called “manifest,” but here they will be called “observed”
or “observable,” which is also a common usage. Upon reflection, it is clear that most of
the time, we are interested in relationships among latent variables, but at best our data
consist only of their imperfect, observable counterparts. One is reminded of the allegory
of the cave in Plato’s Republic, where human beings are compared to prisoners in a cave,
with their heads chained so that they can only look at a wall. Behind them is a fire,
which casts flickering shadows on the wall. They cannot observe reality directly; all they
can see are the shadows.

0.5.1 A simple additive model for measurement error

Measurement error can take many forms. For categorical variables, there is classification
error. Suppose a data file indicates whether or not each subject in a study has ever had
a heart attack. Clearly, the latent Yes-No variable (whether the person has truly had a
heart attack) does not correspond perfectly to what is in the data file, no matter how
careful the assessment is. Mis-classification can and does occur, in both directions.

Here, we will put classification error aside because it is technically difficult, and focus
on a very simple form of measurement error that applies to continuous variables. There
is a latent random variable X that cannot be observed, and a little random shock e that
pushes X up or down, producing an observable random variable W . That is,

W = X + e (16)

Let’s say E(X) = µ, E(e) = 0, V ar(X) = σ2
X , V ar(e) = σ2

e , and Cov(X, e) = 0. Because
X and e are uncorrelated,

V ar(W ) = V ar(X) + V ar(e) = σ2
X + σ2

e .

So, it is impossible to tell how much of the variance in the observable variable W comes
from variation in the true quantity of interest, and how much comes from random noise.
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In psychometric theory8, the reliability9 of a measurement is defined as the squared
correlation of the true score with the observed score. Here the “true score” is X and the
“observed score” is W . Recalling the definition of a correlation,

Corr(X, Y ) =
Cov(X, Y )

SD(X)SD(Y )
,

we have the reliability of the measurement W equal to

ρ =

(
Cov(X,W )

SD(X)SD(W )

)2

=

(
σ2
X√

σ2
X

√
σ2
X + σ2

e

)2

=
σ4
X

σ2
X(σ2

X + σ2
e)

=
σ2
X

σ2
X + σ2

e

. (17)

That is, the reliability of a measurement is the proportion of the measurement’s variance
that comes from the true quantity being measured, rather than from measurement error.

A reliability of one means there is no measurement error at all, while a reliability of zero
means the measurement is pure noise. In the social sciences, reliabilities above 0.9 could be
called excellent, from 0.8 to 0.9 good, and from 0.7 to 0.8 acceptable. Frequently, responses
to single questions have reliabilities that are much less than this. To see why reliability
depends on the number of questions that measure the latent variable, see Exercise 6 at
the end of this section.

Since reliability represents quality of measurement, estimating it is an important goal.
Using the definition directly is seldom possible. Reliability is the squared correlation
between a latent variable and its observable counterpart, but by definition, values of the
latent variable cannot be observed. This means another approach is needed.

On rare occasions and perhaps with great expense, it may be possible to obtain perfect
or near-perfect measurements on a subset of the sample; the term gold standard is some-
times applied to such measurements. In that case, the reliability of the usual measurement
can be estimated by a squared sample correlation between the usual measurement and

8Psychometric theory is the statistical theory of psychological measurement. The bible of psychometric
theory is Lord and Novick’s (1968) classic Statistical theories of mental test scores [5]. It is not too
surprising that measurement error would be acknowledged and studied by psychologists. A large sector
of psychological research employs “measures” of hypothetical constructs like neuroticism or intelligence
(mostly paper-and-pencil tests), but no sensible person would claim that true value of such a trait is
exactly the score on the test. It’s true there is a famous quote “Intelligence is whatever an intelligence
test measures.” I have tried unsuccessfully to track down the source of this quote, and I now suspect that
it is just an illustration of a philosophic viewpoint called Logical Positivism (which is how I first heard
it), and not a serious statement about intelligence measurement.

9Reliability has a completely unrelated meaning in survival analysis, and I believe yet another meaning
in statistical quality control.
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the gold standard measurement. But even measurements that are called gold standard
are seldom truly free of measurement error. Consequently, reliabilities that are estimated
by correlating imperfect gold standards and ordinary measurements are biased downward:
See Exercise 4 at the end of this section.

Test-retest reliability Suppose that it is possible to make the measurement of W
twice, in such a way that the errors of measurement are independent on the two occasions.
We have

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = σ2
X , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and X, e1

and e2 are all independent. Because V ar(e1) = V ar(e2), W1 and W2 are called equivalent
measurements. That is, they are contaminated by error to the same degree.

It turns out that the correlation between W1 and W2 is exactly equal to the reliability,
and this opens the door to reasonable methods of estimation. The calculation (like many
throughout this course) is greatly simplified by using the Centering Rule on page 91 of
Appendix A. Basically, the centering rule says it is safe to assume that all expected values
are zero, even though they may not be. The answer will be the same.

So, assuming without loss of generality that µ = 0,

Corr(W1,W2) =
Cov(W1,W2)

SD(W1)SD(W2)

=
E(W1W2)√

σ2
X + σ2

e

√
σ2
X + σ2

e

=
E(X + e1)(X + e2)

σ2
X + σ2

e

=
E(X2) + 0 + 0 + 0

σ2
X + σ2

e

=
σ2
X

σ2
X + σ2

e

, (18)

which is the reliability. Notice the final crucial step, in which σ2
X is substituted for E(X2).

The calculation above is the basis of test-retest reliability10, in which the reliability of
a measurement such as an educational or psychological test is estimated by the sample
correlation between two independent administrations of the test. That is, the test is given

10Closely related to test-retest reliability is alternate forms reliability, in which you correlate two
equivalent versions of the test. In split-half reliability, you split the items of the test into two equivalent
subsets and correlate them. There are also internal consistency estimates of reliability based on corre-
lations among items. Assuming independent errors of measurement for split half reliability and internal
consistency reliability is largely a fantasy.
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twice to the same sample of individuals, ideally with a short enough time between tests
so that the trait does not really change, but long enough apart so they forget how they
answered the first time.

Correlated measurement error Notice that if participants remembered their wrong
answers or lucky guesses from the first time they took an educational test and just gave
the same answer the second time, the result would be a positive correlation between the
measurement errors e1 and e2. This would mess everything up. Throughout this course we
will return again and again to the issue of correlated errors of measurement. For now, just
notice how careful planning of the data collection (in this case, the time lag between the
two administrations of the test) can eliminate or at least reduce the correlation between
errors of measurement. In general, the best way to take care of correlated measurement
error is with good research design.

The Sample Test-retest Reliability Again, suppose it is possible to measure a vari-
able of interest twice, in such a way that the errors of measurement are uncorrelated
and have equal variance. Then the reliability may be estimated by doing this for a ran-
dom sample of individuals. Let X1, . . . , Xn be a random sample of latent variables (true
scores), with E(Xi) = µ and V ar(Xi) = σ2

X . Independently for i = 1, . . . , n, let

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where E(ei,1) = E(ei,2) = 0, V ar(ei,1) = V ar(ei,2) = σ2
e , and Xi, ei,1 and ei,2 are all inde-

pendent for i = 1, . . . , n. Then the sample correlation between the pairs of measurements
is

Rn =

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√∑n

i=1(Wi,1 −W 1)2

√∑n
i=1(Wi,2 −W 2)2

=

∑n
i=1Wi,1Wi,2 − nW 1W 2√∑n

i=1W
2
i,1 − nW

2

1

√∑n
i=1 W

2
i,2 − nW

2

2

=
( 1
n

∑n
i=1 Wi,1Wi,2) − W 1W 2√

( 1
n

∑n
i=1W

2
i,1)−W 2

1

√
( 1
n

∑n
i=1 W

2
i,2)−W 2

2

, (19)

where the subscript on the sample correlation coefficient Rn emphasizes that it is a func-
tion of the sample size n. By the Strong Law of Large Numbers (see Appendix A.5), we
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have the following:

1

n

n∑
i=1

Wi,1Wi,2
a.s.→ E(Wi,1Wi,2) = Cov(Wi,1,Wi,2) + E(Wi,1)E(Wi,2) = σ2

X + µ2

W 1
a.s.→ E(Wi,1) = µ

W 2
a.s.→ E(Wi,2) = µ

1

n

n∑
i=1

W 2
i,1

a.s.→ E(W 2
i,1) = V ar(Wi,1) + (E{Wi,1})2 = σ2

X + σ2
e + µ2

1

n

n∑
i=1

W 2
i,2

a.s.→ E(W 2
i,2) = V ar(Wi,2) + (E{Wi,2})2 = σ2

X + σ2
e + µ2.

Now, since Rn is a continuous function of the various sample moments in (19) and almost
sure convergence can be treated like an ordinary limit,

Rn
a.s.→ σ2

X + µ2 − µ2√
σ2
X + σ2

e + µ2 − µ2
√
σ2
X + σ2

e + µ2 − µ2

=
σ2
X

σ2
X + σ2

e

= ρ.

So Rn is a strongly consistent estimator of the reliability. That is, for a large enough
sample size, Rn will get arbitrarily close to the true reliability, and this happens with
probability one. Notice that this was a limits problem and not a variance-covariance
computation, so there was no assumption of zero expected values – even though the limit
calculation also works out for that restricted case.

0.6 Ignoring measurement error

This section will show what happens in multiple regression when measurement error in the
explanatory variables is ignored. It turns out that under some conditions, measurement
error in the response variable is a less serious problem.

0.6.1 Measurement error in the response variable

Example 0.6.1.1 Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Vi = ν + Yi + ei,

where V ar(Xi) = σ2
X , V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.
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Here, the explanatory variable Xi is observable, but the response variable Yi is latent.
Instead of Yi, we can see Vi, which is Yi plus a piece of random noise, and also plus a
constant ν that represents the difference between the expected value of the latent random
variable and the expected value of its observable counterpart. This constant term could be
called measurement bias.

Since Yi cannot be observed, Vi is used in its place, and the data analyst fits the naive
model

Vi = β0 + β1Xi + εi.

Studying Mis-specified Models The “naive model” above is an example of a model
that is mis-specified. That is, the model says that the data are being generated in a
particular way, but this is not how the data are actually being produced. Generally
speaking, correct models will usually yield better results than incorrect models, but it’s
not that simple. In reality, most statistical models are imperfect. The real question is
how much any given imperfection really matters. As Box and Draper (1987, p. 424) put
it, “Essentially all models are wrong, but some are useful.” [3]

So, it is not enough to complain that a statistical model is incorrect, or unrealistic.
To make the point convincingly, one must show that by being wrong in a particular way,
the model can yield results that are misleading in a particular way. To do this, it is
necessary to have a specific true model in mind; typically the so-called true model is
one that is obviously more believable than the model being challenged. Then, one can
examine estimators or test statistics based on the mis-specified model, and see how they
behave when the true model holds.

Under the true model of Example 0.6.1.1, we have Cov(X, Y ) = β1σ
2
x and V ar(X) =

σ2
x. Then,

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=
σ̂x,y
σ̂2
x

a.s.→ Cov(X, Y )

V ar(X)

=
β1σ

2
x

σ2
x

= β1.

That is, measurement error in the response variable causes no asymptotic bias. Even when
the model is mis-specified by assuming that the response variable is measured without
error, the ordinary least squares estimate of the slope is consistent. There is a general
lesson here about mis-specified models. Mis-specification (using the wrong model) is not
always a disaster; sometimes everything works out fine.

Let’s see why the naive model works so well here. The response variable under the
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true model may be re-written

Vi = ν + Yi + ei

= ν + (β0 + β1Xi + εi) + ei

= (ν + β0) + β1Xi + (εi + ei)

= β′0 + β1Xi + ε′i (20)

What has happened here is a re-parameterization, in which the pair (ν, β0) is absorbed
into β′0, and V ar(εi + ei) = σ2

ε + σ2
e is absorbed into a single unknown variance that will

probably be called σ2.

It is true that ν and β0 will never be knowable separately, and also σ2
ε and σ2

e will
never be knowable separately. But that really doesn’t matter, because the true interest
is in β1. So in quite a few of the examples that follow, it will appear that the response
variable is being measured without error, but what it really means is that of course there
is measurement error in Yi, but the measurement error is absorbed into the error term.
Similarly, the measurement bias ν is absorbed into the intercept, making the intercept a
quantity of convenience more than an interpretable model parameter.

In this book and in standard statistical practice, there are many models in which
the response variable appears to be measured without error. But of course error-free
measurement is a rarity at best, so these models should be viewed as re-parameterized
versions of models that acknowledge the reality of measurement error in the response
variable. Two important features of these re-parameterized models are that the intercepts
represent measurement bias as well as the intercepts of the original models, and that the
measurement error is assumed independent of everything else in the model.

0.6.2 Measurement error in the explanatory variable

Example 0.6.2.1 Independently for i = 1, . . . , n,

Yi = β0 + β1Xi + εi

Wi = Xi + ei,

where V ar(Xi) = σ2
X , V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Unfortunately, the explanatory variable Xi cannot be observed; it is a latent variable.
So instead Wi is used in its place, and the data analyst fits the naive model

Yi = β0 + β1Wi + εi.

Under the naive model of Example 0.6.2.1, the ordinary least squares estimate of β1

is

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2
=
σ̂w,y
σ̂2
w

.
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Now regardless of what model is correct, σ̂w,y
a.s.→ Cov(W,Y ) and σ̂2

w
a.s.→ V ar(W )11, so

that by the continuous mapping property of ordinary limits12, β̂1
a.s.→ Cov(W,Y )

V ar(W )
.

Let us assume that the true model holds. In that case,

Cov(W,Y ) = β1σ
2
x and V ar(W ) = σ2

x + σ2
e .

Consequently,

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2

=
σ̂w,y
σ̂2
w

a.s.→ Cov(W,Y )

V ar(W )

= β1

(
σ2
x

σ2
x + σ2

e

)
. (21)

So when the fuzzy explanatory variable Wi is used instead of the real thing, β̂1 con-
verges not to the true regression coefficient, but to the true regression coefficient multiplied
by the reliability of Wi. That is, it’s biased, even as the sample size approaches infin-
ity. It is biased toward zero, because reliability is between zero and one. The worse the
measurement of X, the more the asymptotic bias.

What happens to β̂1 in (21) is sometimes called attenuation, or weakening, and in
this case that’s what happens. The measurement error weakens the apparent relationship
between X1 and Y . If the reliability of W can be estimated from other data (and psychol-
ogists are always trying to estimate reliability), then the sample regression coefficient can
be “corrected for attentuation.” Sample correlation coefficients are sometimes corrected
for attenuation too.

Now typically, social and biological sientists are not really interested in point estimates
of regression coefficients. They only need to know whether they are positive, negative
or zero. So the idea of attenuation smetimes leads to a false sense of security about
measurement error. It’s natural to think that all it does is to weaken what’s really there,
so if you can reject the null hypothesis and conclude that a relationship is present even
with measuremnt error, you would have reached the same conclusion if the explanatory
variables had not been measured with error.

Unfortunately, it’s not so simple. The reasoning above is okay if there is just one
explanatory variable, but we will see that with two or more explanatory variables the
effects of measurement error are far more serious and potentially misleading.

11This is true because sample variances and covariances are strongly consistent estimators of the cor-
responding population quantities; see Section A.5.2 in Appendix A, problems 9 and 10 .

12This is true because almost sure convergence acts like an ordinary limit, applying to all points in
the underlying sample space, except possibly a set of probability zero. If you wanted to descend to the
level of convergence in probability, you could observe that almost sure convergence implies convergence
in probability, and then use Slutsky Lemma 7a of Appendix A.5.
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0.6.3 Two Explanatory Variables

In Example 0.6.2.1, we saw that measurement error in the explanatory variable causes
the estimated regression coefficient β̂1 to be biased toward zero as n → ∞. Bias toward
zero weakens the apparent relationship between X and Y ; and if β1 = 0, there is no
asymptotic bias. So for the case of a single explanatory variable measured with error, the
sample relationships still reflect population relationships, with the sample relationships
being weaker because of inexact measurement. But this only holds for regression with
a single explanatory variable. Measurement error causes a lot more trouble for multiple
regression. In this example, there are two explanatory variables measured with error.

Example 0.6.3.1 Independently for i = 1, . . . , n,

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,

where where E(Xi,1) = µ1, E(Xi,2) = µ2, E(εi) = E(ei,1) = E(ei,2) = 0, V ar(εi) = σ2,
V ar(ei,1) = ω1, V ar(ei,2) = ω2, the errors εi, ei,1 and ei,2 are all independent, Xi,1 is
independent of εi, ei,1 and ei,2, Xi,2 is independent of εi, ei,1 and ei,2, and

V ar

[
Xi,1

Xi,1

]
=

[
φ11 φ12

φ12 φ22

]
.

Again, because the actual explanatory variables Xi,1 and Xi,2 are latent variables that
cannot be observed, Wi,1 and Wi,2 are used in their place. The data analyst fits the naive
model

Yi = β0 + β1Wi,1 + β2Wi,2 + εi.

A very nice feature of multiple regression is its ability to represent the relationship
of one or more explanatory variables to the response variable, while controlling for other
explanatory varables. In fact, this is the biggest appeal of multiple regression and similar
methods for non-experimental data. In Example 0.6.3.1, our interest is in the relationship
of X2 to Y controlling for X1. The main objective is to test H0 : β2 = 0, but we are also
interested in the estimation of β2.

We will try the same approach that worked for Example 0.6.2.1, estimating β̂2 assum-
ing the naive model, and then examining how β̂2 behaves as n→∞ when the true model
holds. We want to express β̂2 in terms of sample variances and covariances, because they
converge to the corresponding population variances and covariances as n→∞, and it is
easy to calculate population variances and covariances under the true model. To keep the
calculations fairly simple, it is helpful to center the explanatory variables and the response
variable by subtracting off sample means. That is, Wi,1 is replaced by (Wi,1 −W 1), Wi,2

is replaced by (Wi,2 −W 2), and Yi is replaced by (Yi − Y ).
Think of fitting a plane to a 3-dimensional scatterplot, in such a way that the sum of

squared vertical distances from the points to the plane is minimized. Clearly, subtracting
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off means does not alter the relative positions of the points, nor does it affect the orienta-
tion (slopes) of the best-fitting plane. All it does is to shift the axies, so that the origin is
the point (W 1,W 2, Y ) and the equation of the best-fitting plane has no intercept. Then,

the familar formula β̂ = (X′X)−1X′Y (but with W instead of X) will yield the desired
regression coefficients.

Adopting a notation that will be used throughout the course, denote one of the n
vectors of observable data by Di. Here,

Di =

 Wi,1

Wi,2

Yi

 .

Then, let Σ = [σi,j] = V (Di). Corresponding to Σ is the sample variance covariance

matrix Σ̂ = [σ̂i,j], with n rather than n − 1 in the denominators. To make this setup
completely explicit,

Σ = V

 Wi,1

Wi,2

Yi

 =

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


Calculating the regression coefficients is straightforward.

W′W =

( ∑n
i=1(Wi,1 −W 1)2

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)∑n

i=1(Wi,1 −W 1)(Wi,2 −W 2)
∑n

i=1(Wi,2 −W 2)2

)
= n

(
σ̂1,1 σ̂1,2

σ̂1,2 σ̂2,2

)
W′Y =

( ∑n
i=1(Wi,1 −W 1)(Yi − Y )∑n
i=1(Wi,2 −W 2)(Yi − Y )

)
= n

(
σ̂1,3

σ̂2,3

)
Then with a bit of simplification,

β̂ = (W′W)−1W′Y =

(
β̂1

β̂2

)
=


σ̂22σ̂13−σ̂12σ̂23
σ̂11σ̂22−σ̂2

12

σ̂11σ̂23−σ̂12σ̂13
σ̂11σ̂22−σ̂2

12

 .

Because sample variances and covariances are strongly consistent estimators of the corre-
sponding population quantities,

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

. (22)

This convergence holds provided that the denominator σ11σ22−σ2
12 6= 0. The denominator

is a determinant:

σ11σ22 − σ2
12 =

∣∣∣∣V ( Wi,1

Wi,2

)∣∣∣∣ .
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It will be non-zero provided at least one of

V

(
Xi,1

Xi,2

)
and V

(
ei,1
ei,2

)
is positive definite – not a lot to ask.

The convergence of β̂2 in expression 22 applies regardless of what model is correct. To
see what happens when the true model of Example 0.6.3.1 holds, we calculate the Σ, the
common variance-covariance matrix of the observable data vectors.

Σ = V

 Wi,1

Wi,2

Yi


=

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


=

 ω1 + φ11 φ12 β1φ11 + β2φ12

φ12 ω2 + φ22 β1φ12 + β2φ22

β1φ11 + β2φ12 β1φ12 + β2φ22 β2
1φ11 + 2 β1β2φ12 + β2

2φ22 + ψ


Subsituting into expression 22 and simplifying, we obtain

β̂2
a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

=
(β1ω1φ12 + β2ω1φ22 + β2φ11φ22 − β2φ

2
12)

(ω1ω2 + ω1φ22 + ω2φ11 + φ11φ22 − φ2
12)

= β2 +
β1ω1φ12 + β2ω2(φ11 − ω1)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

(23)

By the asymptotic normality of the sample variance-covariance matrix (see Appendix A.5),

β̂2 has a distribution that is approximately normal for large samples, with approximate
mean given by expression (23). Thus, it makes sense to call the second term in (23)
the asymptotic bias. It is also the amount by which the estimate of β2 will be wrong as
n→∞.

Clearly, this situation is much more serious than the bias toward zero detected for
the case of one explanatory variable. With two explanatory variables, the bias can be
positive, negative or zero depending on the values of other unknown parameters.

In particular, consider the problems associated with testing H0 : β2 = 0. The purpose
of this test is to determine whether, controlling for X1, X2 has any relationship to Y . The
supposed ability of multiple regression to answer questions like this is the one of the main
reasons it is so widely used in practice. So when measurement error makes this kind of
inference invalid, it is a real problem.

Suppose that the null hypothesis is true, so β2 = 0. Also, suppose that the conditions
of Example 0.6.3.1 hold. The explanatory variables are measured with error, but the data
analyst ignores it and tests H0 : β2 = 0 using ordinary regression methods. The test will
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be either an F -test or t-test, and since F = t2 in this case, the two tests are the same
(assuming a 2-sided t-test). The numerator of the t statistic is (to be continued).

Combined with estimated standard error going almost surely to zero, Get t statistic
for H0 : β2 = 0 going to plus/minus infinity, and p-value going almost Surely to zero,
unless

• There is no measurement error in W1, or

• There is no relationship between X1 and Y , or

• There is no correlation between X1 and X2.

And, anything that increases V ar(W2) will decrease the bias.

0.6.4 A large scale simulation study

This was covered in lecture.

0.7 Modeling measurement error

It is clear that ignoring measurement error in regression can yield conclusions that are
very misleading. But as soon as we try building measurement error into the statisti-
cal model, we encounter a technical issue that will occupy a central role in this course:
parameter identifiability. For comparison, first consider a regression model without mea-
surement error, where everything is nice. This is not quite the standard model, because
the explanatory variables are random variables. General principles arise right away, so
definitions will be prvided as we go.

0.7.1 A first try at including measurement error

The following is basically the true model of Example 0.6.2.1, with everything normally
distributed. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (24)

Wi = ν +Xi + ei,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0

• Xi, ei, εi are all independent.
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The intercept term ν could be called “measurement bias.” If Xi is true amount of exercise
per week and Wi is reported amount of exercise per week, ν is the average amount by
which people exaggerate.

Data from Model (24) are just the pairs (Wi, Yi) for i = 1, . . . , n. The true explanatory
variable Xi is a latent variable whose value cannot be known exactly. The model implies
that the (Wi, Yi) are independent bivariate normal with

E

(
Wi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx + ν

β0 + β1µx

)
,

and variance covariance matrix

V

(
Wi

Yi

)
= Σ = [σi,j] =

(
φ+ ω β1φ
β1φ β2

1φ+ ψ

)
.

There is a big problem here, and the moment structure equations reveal it.

µ1 = µx + ν (25)

µ2 = β0 + β1µx

σ1,1 = φ+ ω

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

It is impossible to solve these five equations for the seven model parameters13. That is,
even with perfect knowledge of the probability distribution of the data (for the multivari-
ate normal, that means knowing µ and Σ, period), it would be impossible to know the
model parameters.

To make the problem clearer, look at the table below. It shows two diferent set of
parameter values θ1 and θ2 that both yield the same mean vector and covariance matrix,
and hence the exact same distribution of the observable data.

µx β0 ν β1 φ ω ψ
θ1 0 0 0 1 2 2 3
θ2 0 0 0 2 1 3 1

Both θ1 and θ2 imply a bivariate normal distribution with mean zero and covariance
matrix

Σ =

[
4 2
2 5

]
,

and thus the same distribution of the sample data.
No matter how large the sample size, it will be impossible to decide between θ1 and

θ2, because they imply exactly the same probability distribution of the observable data.
The problem here is that the parameters of Model (24) are not identifiable. This calls for
a brief discussion of identifiability, a topic of central importance in this course.

13That’s a strong statement, and a strong Theorem is coming to justify it.
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0.8 Parameter Identifiability

The Basic Idea Suppose we have a vector of observable data D = (D1, . . . , Dn), and
a statistical model (a set of assertions implying a probability distribution) for D. The
model depends on a parameter θ, which is usually a vector. If the probability distribution
of D corresponds uniquely to θ, then we say that the parameter vector is identifiable.
But if any two different parameter values yield the same probability distribution, then
the parameter vector is not identifiable. In this case, the data cannot be used to decide
between the two parameter values, and standard methods of parameter estimation will
fail. Even an infinite amount of data cannot tell you the true parameter values.

Definition 0.8.1 A Statistical Model is a set of assertions that partly14 specify the prob-
ability distribution of a set of observable data.

Definition 0.8.2 Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If no two points in
Θ yield the same probability distribution, then the parameter θ is said to be identifiable.
On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2, the parameter θ is not
identifiable.

A good example of non-identifiability appears in Section 0.4 on omitted variables in re-
gression. There, the correct model has a set of infinitely many parameter values leading
to exactly the same probability distribution for the observed data.

Theorem 2 If the parameter vector is not identifiable, consistent estimation for all points
in the parameter space is impossible.

In Figure 1, θ1 and θ2 are two distinct sets of parameter values for which the distribu-
tion of the observable data is the same. Let Tn be a estimator that is consistent for both

Figure 1: Two parameters values yielding the same probability distribution

Consistent Estimation is 
Impossible 

θ1 and θ2. What this means is that if θ1 is the correct parameter value, eventually as n
increases, the probability distribution of Tn will be concentrated in the circular neighbor-
hood around θ1. And if θ1 is the correct parameter value, it the probability distribution
will be concentrated around θ2.

14Suppose that the distribution is assumed known except for the value of a parameter vector θ. So the
distribution is “partly” specified.
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But the probability distribution of the data, and hence of Tn (a function of the data)
is identical for θ1 and θ2. This means that for a large enough sample size, most of Tn’s
probability distribution must be concentrated in the neighborhood around θ1, and at the
same time it must be concentrated in the neighborhood around θ2. This is impossible,
since the two regions do not overlap. Hence there can be no such consistent estimator Tn.

Theorem 2 says why parameter identifiability is so important. Without it, even an
infinite amount of data cannot reveal the values of the parameters.

In the discussion of model identification, the definitions are in terms of the distribution
of the observable data. But we will be using a multivariate normal model, for which the
distribution of the observable data corresponds exactly to the pair (µ,Σ). That means
that in practice, the parameter vector is identifiable if it can be recovered from µ and Σ,
and most of the time it will be “recovered” by solving the moment structure equations,
or at least verifying that a solution exists. Why does this work? Because if the parameter
vector is a function of the moments (which correspond to the distribution of the data),
then it is impossible for two different parameter values to yield the same distribution,
because functions produce only one value of their arguments.

Surprisingly often, whether a set of parameter values can be recovered from the mo-
ments depends on where in the parameter space those values are located. That is, the
parameter vector may be identifiable at some points but not others.

Definition 0.8.3 The parameter is said to be identifiable at a point θ0 if no other point
in Θ yields the same probability distribution as θ0.

If the parameter is identifiable at at every point in Θ, it is identifiable, or globally (as
opposed to locally) identifiable.

It is possible for individual parameters (or other functions of the parameter vector) to
be identifiable even when the entire parameter vector is not.

Definition 0.8.4 Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ) implies
Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the point θ0.

For example, let D1, . . . , Dn be i.i.d. Poisson random variables with mean λ1 + λ2,
where λ1 > 0 and λ1 > 0. The parameter is the pair θ = (λ1, λ2). The parameter is not
identifiable because any pair of λ values satisfying λ1 + λ2 = c will produce exactly the
same probability distribution. Notice also how maximum likelihood estimation will fail
in this case; the likelihood function will have a ridge, a non-unique maximum along the
line λ1 + λ2 = D, where D is the sample mean. The function g(θ) = λ1 + λ2, of course,
is identifiable.

The failure of maximum likelihood for the Poisson example is very typical of situations
where the parameter is not identifiable. Collections of points in the parameter space yield
the same probability distribution of the observable data, and hence identical values of
the likelihood. Usually these form connected sets of infinitely many points, and when
a numerical likelihood search reaches such a higher-dimensional ridge or plateau, the
software checks to see if it’s a maximum, and (if it’s good software) complains loudly
because the maximum is not unique. The complaints might take unexpected forms, like a
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statement that the Hessian has negative eigenvalues. But in any case, maximum likelihood
estimation fails.

The idea of a function of the parameter vector covers a lot of territory. It includes
individual parameters and sets of parameters, as well as things like products and ratios of
parameters. Look at the moment structure equations (25) that come from the regression
Model (24). If σ1,2 = 0, this means β1 = 0, because φ is a variance, and is greater than
zero. Also in this case ψ = σ2,2 and β0 = µ2. So, the function g(θ) = (β0, β1, ψ) is
identifiable at all points in the parameter space where β1 = 0.

Recall how for the regression Model (24), the moment structure equations (25) consist
of five equations in seven unknown parameters. It was shown by a numerical example
that there were two different sets of parameter values that produced the same mean vector
and covariance matrix, and hence the same distribution of the observable data. Actually,
infinitely many parameter values produce the same distribution, and it happens because
there are more unknowns than equations. Theorem 3 is a strictly mathematical theorem15

that provides the necessary details.

Theorem 3 Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set
of points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

The following corollary to Theorem 3 is the fundamental necessary condition for pa-
rameter identifiability. It will be called the Parameter Count Rule.

Rule 1 Suppose identifiability is to be decided based on a set of moment structure equa-
tions. If there are more parameters than equations, the parameter vector is identifiable on
at most a set of volume zero in the parameter space.

When the data are multivariate normal (and this will be the assumption throughout
most of the course), then the distribution of the sample data corresponds exactly to the
mean vector and covariance matrix, and to say that a parameter value is identifiable means
that is can be recovered from elements of the mean vector and covariance matrix. Most
of the time, that involves trying to solve the moment structure equations or covariance
structure equations for the model parameters.

Even when the data are not assumed multivariate normal, the same process makes
sense. Classical structural equation models, including models for regression with mea-
surement error, are based on systems of simultaneous linear equations. Assuming simple

15The core of the proof may be found in Appendix 5 of Fisher (1966).
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random sampling from a large population, the observable data are independent and iden-
tically distributed, with a mean vector µ and a covariance matrix Σ that may be written
as functions of the model parameters in a straightforward way. If it is possible to solve
uniquely for a given model parameter in terms of the elements of µ and Σ, then that
parameter is a function of µ and Σ, which in turn are functions of the probability dis-
tribution of the data. A function of a function is a function, and so the parameter is a
function of the probability distribution of the data. Hence, it is identifiable.

To summarize, we have arrived at the standard way to check parameter identifiability
for any linear simultaneous equation model, not just measurement error regression. First,
calculate the expected value and covariance matrix of the observable data, as a function of
the model parameters. If it is possible to solve uniquely for the model parameters in terms
of the means, variances and covariances of the observable data, then the model parameters
are identifiable. If all the random vectors in the model are multivariate normal, this
condition is necessary as well as sufficient.

0.9 Double measurement

Consider again the model of Expression (24), a simple regression with measurement error
in the single explanatory variable. This is a tiny example of something that occurs all
too frequently in practice. The statistician or scientist has a data set that seems relevant
to a particular topic, and a model for the observable data that is more or less reasonable.
But the parameters of the model cannot be identified from the distribution of the data.
In such cases, valid inference is very challenging, if indeed it is possible at all.

The best way out of this trap is to avoid getting trapped in the first place. Plan the
statistical analysis in advance, and ensure identifiability by collecting the right kind of
data. Double measurement is a straightforward way to get the job done. The key is to
measure the explanatory variables twice, preferably using different methods or measuring
instruments.

0.9.1 A scalar example

Instead of measuring the explanatory variable only once, suppose we had a second, inde-
pendent measurement; “independent” means that the measurement errors are statistically
independent of one another. Perhaps the two measurements are taken at different times,
using different instruments or methods. Then we have the following model. Independently
for i = 1, . . . , n, let

Wi,1 = ν1 +Xi + ei,1 (26)

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

where

• Xi is normally distributed with mean µx and variance φ > 0
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• εi is normally distributed with mean zero and variance ψ > 0

• ei,1 is normally distributed with mean zero and variance ω1 > 0

• ei,2 is normally distributed with mean zero and variance ω2 > 0

• Xi, ei,1, ei,1 and εi are all independent.

The model implies that the triples Di = (Wi,1,Wi,2, Yi)
′ are multivarate normal with

E(Di) = E

 Wi,1

Wi,1

Yi

 =

 µx + ν1

µx + ν2

β0 + β1µx

 ,

and variance covariance matrix

V (Di) = Σ = [σi,j] =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β2
1φ+ ψ

 . (27)

Here are some comments.

• There are now nine moment structure equations in nine unknown parameters. This
model passes the test of the Parameter Count Rule, meaning that identifiability is
possible, but not guaranteed.

• Notice that the model dictates σ1,3 = σ2,3. This model-induced constraint upon Σ
is testable. If H0 : σ1,3 = σ2,3 were rejected, the correctness of the model would be
called into question16. Thus, the study of parameter identifiability leads to a useful
test of model fit.

• The constraint σ1,3 = σ2,3 allows two solutions for β1 in terms of the moments:
β1 = σ13/σ12 and β1 = σ23/σ12. Does this mean the solution for β1 is not “unique?”
No; everything is okay. Because σ1,3 = σ2,3, the two solutions are actually the same.
If a parameter can be recovered from the moments in any way at all, it is identifiable.

• For the other model parameters appearing in the covariance matrix, the additional
measurement of the explanatory variable also appears to have done the trick. It is
easy to solve for φ, ω1, ω2 and ψ in terms of σi,j values. Thus, these parameters are
identifiable.

16Philosophers of science agree that falsifiability – the possibility that a scientific model can be chal-
lenged by empirical data – is a very desirable property. The Wikipedia has a good discussion under
Falsifiability — see http://en.wikipedia.org/wiki/Falsifiable. Statistical models may be viewed as primi-
tive scientific models, and should be subject to the same scrutiny. It would be nice if scientists who use
statistical methods would take a cold, clear look at the statistical models they are using, and ask “Is this
a reasonable model for my data?”

http://en.wikipedia.org/wiki/Falsifiable
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• On the other hand, the additional measurement did not help with the means and
intercepts at all. Even assuming β1 known because it can be recovered from Σ, the
remaining three linear equations in four unknowns have infinitely many solutions.
There are still infinitely many solutions if ν1 = ν2.

Maximum likelihood for the parameters in the covariance matrix would workup to a
point, but the lack of unique values for µx, ν1, ν2 and β0 would cause numerical problems.
A good solution is to re-parameterize the model, absorbing µx+ν1 into a parameter called
µ1, µx + ν2 into a parameter called µ2, and β0 + β1µx into a parameter called µ3. The
parameters in µ = (µ1, µ2, µ3)′ lack meaning and interest17, but we can estimate them
with the vector of sample means D and focus on the parameters in the covariance matrix.

Here is the multivariate normal likelihood from Appendix A.3.2, simplified so that it’s
clear that the likelihood depends on the data only through the MLEs D and Σ̂. This is
just a reproduction of expression (A.15).

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (D− µ)′Σ−1(D− µ)

}

Notice that if Σ is positive definite then so is Σ−1, and so for any positive definite Σ
the likelihood is maximized when µ = D. In that case, the last term just disappears.
So, re-parameterizing and then letting µ̂ = D leaves us free to conduct inference on the
model parameters in Σ.

Just to clarify, after re-parameterization and estimation of µ with Dn, the likelihood
function may be written

L(θ) = |Σ(θ)|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ(θ)−1)

}
, (28)

where θ is now a vector of just those parameters appearing in the covariance matrix. This
formulation is general. For the specific case of the double measurement Model (43), θ =
(φ, ω1, ω2, β1, ψ)′, and Σ(θ) is given by Expression (27). Maximum likelihood estimation is
numerical, and the full range of large-sample likelihood methods described in Section A.4
of Appendix A is available.

17If Xi is true amount of exercise, µx is the average amount of exercise in the population; it’s very
meaningful. Also, the quantity ν1 is interesting; it’s the average amount people exaggerate how much
they exercise using Questionnaire One. But when you add these two interesting quantities together, you
get garbage. The parameter µ in the re-parametrerized model is a garbage can.
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0.9.2 The Double Measurement Design in Matrix Form

Now consider the general case of regression with measurement error in both the explana-
tory variables and the response variables, beginning with a model in which all random
variables have expected value zero and there no intercepts. Independently for i = 1, . . . , n,
let

Wi,1 = Xi + ei,1 (29)

Vi,1 = Yi + ei,2

Wi,2 = Xi + ei,3,

Vi,2 = Yi + ei,4,

Yi = βXi + εi

where

Yi is a q × 1 random vector of latent response variables. Because q can be greater
than one, the regression is multivariate.

β is an q×p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

Xi is a p×1 random vector of latent explanatory variables, with expected value zero
and variance-covariance matrix Φ, a p × p symmetric and positive definite matrix
of unknown constants.

εi is the error term of the latent regression. It is a q×1 random vector with expected
value zero and variance-covariance matrix Ψ, a q×q symmetric and positive definite
matrix of unknown constants.

Wi,1 and Wi,2 are p × 1 observable random vectors, each representing Xi plus
random error.

Vi,1 and Vi,2 are q×1 observable random vectors, each representing Yi plus random
error.

ei,1, . . . , ei,1 are the measurement errors in Wi,1,Vi,1,Wi,2 and Vi,2 respectively.
Joining the vectors of measurement errors into a single long vector ei, its covariance
matrix may be written as a partitioned matrix

V (ei) = V


ei,1
ei,2
ei,3
ei,4

 =


Ω11 Ω12 0 0
Ω′12 Ω22 0 0
0 0 Ω33 Ω34

0 0 Ω′34 Ω44

 = Ω.

In addition, the matrices of covariances between Xi, εi and ei are all zero.
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The main idea of the Double Measurement Design is that every variable is measured
by two different methods. Errors of measurement may be correlated within measurement
methods, but not between methods. So for example, farmers who overestimate their
number of pigs may also overestimate their number of cows. On the other hand, if
the number of pigs is counted once by the farm manager at feeding time and on another
occasion by a research assistant from an areal photograph, then it would be fair to assume
that the errors of measurement for the different methods are uncorrelated.

In symbolic terms, ei,1 is error in measuring the explanatory variables by method one,
and ei,2 is error in measuring the response variables by method one. V (ei,1) = Ω11 need
not be diagonal, so method one’s errors of measurement for the explanatory variables
may be correlated with one another. Similarly, V (ei,2) = Ω22 need not be diagonal, so
method one’s errors of measurement for the response variables may be correlated with one
another. And, errors of measurement using the same method may be correlated between
the explanatory and response variables. For method one, this is represented by the matrix
C(ei,1, ei,2) = Ω12. The same pattern holds for method two. On the other hand, ei,1 and
ei,2 are each uncorrelated with both ei,3 and ei,4.

To emphasize an important practical point, the matrices Ω11 and Ω33 must be of the
same dimension, just as Ω22 and Ω44 must be of the same dimension – but none of the
corresponding elements need be equal. In particular, the corresponding diagonal elements
nee not be equal. This means that measurements of a variable by two different methods
do not need to be equally precise.

The model is depicted in Figure 2. It follows the usual conventions for path diagrams
of structural equation models. Straight arrows go from exogenous variables (that is,
explanatory variables, those on the right-hand side of equations) to endogenous varables
(response variables, those on the left side). Correlations among exogenous variables are
represented by two-headed curved arrows. Observable variables are enclosed by rectangles
or squares, while latent variables are enclosed by ellipses or circles. Error terms are not
enclosed by anything.

Proof of parameter identifiability The following is typical of easier proofs for struc-
tural equation models. The goal is to solve for the model parameters in terms of elements
of the variance-covariance matrix of the observable data. This shows the parameters are
functions of the distribution, so that no two distinct parameter values could yield the
same distribution of the observed data.

Collecting Wi,1, Vi,1, Wi,2 and Vi,2 into a single long data vector Di, we write its
variance-covariance matrix as a partitioned matrix:

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 ,

where the covariance matrix of Wi,1 is Σ11, the covariance matrix of Vi,1 is Σ22, the
matrix of covariances between Wi,1 and Vi,1 is Σ12, and so on.
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Figure 2: The Double Measurement Model
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Now we express all the Σij sub-matrices in terms of the parameter matrices of Model (29)
by straightforward variance-covariance calculations. Students may be reminded that
things go smoothly if one substitutes for everything in terms of explanatory variables
and error terms before actually starting to calculate covariances. For example,

Σ12 = C(Wi,1,Vi,1)

= E(Wi,1V
′
i,1)

= E ((Xi + ei,1)(Yi + ei,2)′)

= E ((Xi + ei,1)(βXi + εi + ei,2)′)

= E
(
(Xi + ei,1)(X′iβ

′ + ε′i + e′i,2)
)

= E(XiX
′
iβ
′ + Xiε

′
i + Xie

′
i,2 + ei,1X

′
iβ
′ + ei,1ε

′
i + ei,1e

′
i,2)

= E(XiX
′
i)β
′ + E(Xi)E(ε′i) + E(Xi)E(e′i,2) + E(ei,1)E(X′i)β

′ + E(ei,1)E(ε′i) + E(ei,1e
′
i,2)

= Φβ′ + 0 + 0 + 0 + 0 + Ω12.

In this manner, we obtain the partitioned covariance matrix of the observable data Di =
(W′

i,1,V
′
i,1,W

′
i,2,V

′
i,2)′ as
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Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 (30)

=


Φ + Ω11 Φβ′ + Ω12 Φ Φβ′

βΦβ′ + Ψ + Ω22 βΦ βΦβ′ + Ψ
Φ + Ω33 Φβ′ + Ω34

βΦβ′ + Ψ + Ω44


The equality (30) corresponds to a system of ten matrix equations in nine matrix un-
knowns. The unknowns are the parameter matrices of Model (29): Φ, β, Ψ, Ω11, Ω22,
Ω33, Ω44, Ω12, and Ω34. In the solution below, notice that once a parameter has been
identified, it may be used to solve for other parameters without explicitly substituting in
terms of Σij quantities. Sometimes a full explicit solution is useful, but to show identifi-
ability all you need to do is show that the moment structure equations can be solved.

Φ = Σ13 (31)

β = Σ23Φ
−1 = Σ′14Φ

−1

Ψ = Σ24 − βΦβ′

Ω11 = Σ11 −Φ

Ω22 = Σ22 − βΦβ′ −Ψ

Ω33 = Σ33 −Φ

Ω44 = Σ44 − βΦβ′ −Ψ

Ω12 = Σ12 −Φβ′

Ω34 = Σ34 −Φβ′

This shows that the parameters of Model (29) are identifiable, so that if data are collected
following the double measurement recipe, then the data analysis may proceed with no
worries about parameter identifiability.

Notice in the covariance structure equations (30), that Σ14 = Σ′23. As in the scalar
example of Section 0.9.1 (see page 33), this constraint on the covariance matrix Σ arises
from the model, and provides a way to test whether the model is correct. These pq
equalities are not the only ones implied by the model. Because Σ13 = Φ, the p × p
matrix of covariances Σ13 is actually a covariance matrix, so it is symmetric. This implies
p(p− 1)/2 more equalities.

0.9.3 Intercepts

Now Model (29) is expanded to include intercepts and non-zero expected values. We will
see that this leads to complications that are seldom worth the trouble, and the classical
models with zero expected value and no intercepts are usually preferable. Let
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Wi,1 = ν1 + Xi + ei,1

Vi,1 = ν2 + Yi + ei,2

Wi,2 = ν3 + Xi + ei,3

Vi,2 = ν4 + Yi + ei,4,

Yi = α+ βXi + εi

where α, ν1, ν2, ν3 and ν4 are vectors of constants, and E(Xi) = µx. Everything
else is as in Model (29).The terms ν1 . . . ,ν4 are called measurement bias. For example,
of one of the elements of Wi,1 is reported amount of exercise, the corresponding element
of ν1 would be the average amount by which people exaggerate how much they exercise.

Again, the observable data Wi,1, Vi,1, Wi,2 and Vi,2 are collected into a data vector
Di, with expected value µ and covariance matrix Σ. The pair (µ,Σ) is a function of
the probability distribution of Di. If the parameter matrices of Model (32) are functions
of µ and Σ, then they are also functions of the distribution of Di, and thus they are
identifiable.

Since the addition of constants has no effect on variances or covariances, the contents
of Σ are given by (30), as before. The expected value µ is the partitioned vector

µ =


µ1

µ2

µ3

µ4

 =


E(Wi,1)
E(Vi,1)
E(Wi,2)
E(Vi,2)

 =


ν1 + µx
ν2 +α+ βµx
ν3 + µx
ν4 +α+ βµx

 . (32)

To demonstrate the identification of Model (32), one would need to solve the equations
in (32) uniquely for ν1, ν2, µx and α. Even with β considered known and fixed because
it is identified in (31), this is impossible in most of the parameter space, because (32)
specifies 2m+ 2p additional equations in 3m+ 3p additional unknowns.

It is tempting to assume the measuremant bias terms ν1 . . . ,ν4 to be zero; this would
allow identification of α and µx. Unfortunately, it is doubtful that such an assumption
could be justified very often in practice. Most of the time, all we can do is identify the
parameter matrices that appear in the covariance matrix, and also the functions µ1 . . . ,µ4

of the parameters as given in equation (32). This can be viewed as a re-parameterization
of the model.

0.9.4 Estimation and testing

Normal model As in the scalar example of Section 0.9.1, the (collapsed) expected val-
ues are estimated by the corresponding vector of sample means, and then set aside. With
multivariate normal distributions for all the random vectors in the model, the resulting
likelihood is again (28) on page 35. The full range of large-sample likelihood methods is
then available. Maximum likelihood estimates are asymptotically normal, and asymptotic
standard errors are convenient by-products of the numerical minimization as described in
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Section A.4 of Appendix A; most software produces them by default. Dividing an esti-
mated regression coefficient by its standard error gives a Z-test for whether the coefficient
is different from zero. My experience is that likelihood ratio tests can substantially out-
perform both these Z-tests and the Wald tests that are their generalizations, especially
when there is a lot of measurement error, the explanatory variables are strongly related
to one another, and the sample size is not huge.

Distribution-free In presenting models for regression with measurement error, it is
often convenient to assume that everything is multivariate normal. This is especially true
when giving examples of models where the parameters are not identifiable. But normality
is not necessary. Suppose Model (29) holds, and that the distributions of of the latent
explanatory variables and error terms are unknown, except that they possess covariance
matrices, with ei,1 and ei,2 having zero covariance with ei,3 and ei,4. In this case the
parameter of the model could be expressed as θ = (β, Φ, Ψ, Ω, FX, Fε, Fe), where FX,
Fε and Fe are the (joint) cumulative distribution functions of Xi, εi and ei respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension,
but that presents no conceptual difficulty. The probability distribution of the observed
data is still a function of the parameter vector, and to show identifiability, we would have
to be able to recover the parameter vector from the probability distribution of the data.
While in general we cannot recover the whole thing, we certainly can recover a useful
function of the parameter vector, namely β. In fact, β is the only quantity of interest;
the remainder of the parameter vector consists only of nuisance parameters, whether it is
of finite dimension or not.

To make the reasoning explicit, the covariance matrix Σ is a function of the probability
distribution of the observed data, whether that probability distribution is normal or not.
The calculations leading to (31) still hold, showing that β is a function of Σ, and hence
of the probability distribution of the data. Therefore, β is identifiable.

This is all very well, but can we actually do anything without knowing what the dis-
tributions are? Certainly! Looking at (31), one is tempted to just put hats on everything
to obtain Method-of-Moments estimators. However, we can do a little better. Note that
while Φ = Σ12 is a symmetric matrix in the population and Σ̂12 converges to a symmetric
matrix, Σ̂12 will be non-symmetric for any finite sample size (with probability one if the
distributions involved are continuous). A better estimator is obtained by averaging pairs
of off-diagonal elements:

Φ̂M =
1

2
(Σ̂13 + Σ̂

′
13),

where the subscript M indicates a Method-of-Moments estimator. Using the second line
of (31), a reasonable though non-standard estimator of β is

β̂M =
1

2

(
Σ̂
′
14 + Σ̂23

)
Φ̂
−1

M (33)

Consistency follows from the Law of Large Numbers and a continuity argument. All this
assumes the existence only of second moments and cross-moments. With the assumption
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of fourth moments (so that sample variances possess variances), the multivariate Central
Limit Theorem provides a routine basis for large-sample interval estimation and testing.

0.10 Instrumental variables

Sometimes, double measurement is not a practical alternative. Usually, this happens
because the data are already collected, and the study was designed without planning for a
latent variable analysis. The guilty parties might be academic or private sector researchers
who do not know what a parameter is, much less parameter identifiability. Or, the data
might have been collected for some purpose other than research. For example, a paper
mill might report the amount and concentrations of poisonous chemicals they dump into a
nearby river. They take the measurements because they have agreed to do so, or because
they are required to do it by law — but they certainly are not going to do it twice. Much
economic data and public health data is of this kind. In such situations, all one can do
is to use what information happens to be available. The instrumental variable method is
a lovely trick from Econometrics18. It allows for measurement error in the explanatory
variables not by measuring the explanatory variables more than once, but by including
additional response variables in the model.

0.10.1 One explanatory variable

In a simple measurement error regression model like (24), suppose that we have access
to data for a second response variables that depends on the latent explanatory variable
Xi. Our main interest is still in the response variable Yi; the second response variable is
called an instrumental variable because it’s just a tool.

Here is the expanded version of Model (24). The original response variable Yi is now
called Yi,1. Independently for i = 1, . . . , n.

Wi = ν +Xi + ei (34)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

where ei, εi,1 and εi,2 are all independent, V ar(Xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2,
V ar(ei) = ω, E(Xi) = µx, and the expected values of all error terms are zero.

It is usually helpful to check the Parameter Count Rule (Rule 1 on page 32) before do-
ing detailed calculations. For this model, the parameter vector is θ = (ν, α1, α2, β1, β2, µx, φ, ω, ψ1, ψ2).
Writing the vector of observable data for case i as Di = (Wi, Yi,1, Yi,2)′, we see that
µ = E(Di) has three elements and Σ = V (Di) has 3(3 + 1)/2 = 6 unique elements. Thus
identifiability of the entire parameter vector is ruled out in most of the parameter space.

18The instrumental variable method appears for the first time in the appendix of a book published in
1928 by Phillip Wright, the father of Sewell Wright, the biologist whose work on path analysis led to
modern structural equation modeling as well as much of Econometrics. The story is told in a 2003 paper
by Stock and Trebbi [8].
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However, it turns out that useful functions of the parameter vector are identifiable, and
this includes β1, the parameter of primary interest.

Based on our experience with the double measurement model, we pessimistic about
identifying expected values and intercepts. So consider first the covariance matrix. El-
ements of Σ = V (Di) may be obtained by elementary one-variable calculations, like
V ar(Wi) = V ar(ν +Xi + ei) = V ar(Xi) + V ar(ei) = φ+ ω, and (dropping the subscript
i to reduce notational clutter)

Cov(W,Y1) = E(
c

W
c

Y 1) = E(
c

X +e)(β1

c

X +ε1) = E(β1

c

X2 +
c

X ε1 + β1e
c

X +eε1)

= β1E(
c

X2) + E(
c

X ε1) + β1E(e
c

X) + E(eε1)

= β1V ar(X) + E(
c

X)E(ε1) + β1E(e)E(
c

X) + E(e)E(ε1)

= β1φ

In this way we obtain

Σ =

 σ11 σ12 σ13

σ22 σ23

σ33

 =

 φ+ ω β1φ β2φ
β2

1φ+ ψ1 β1β2φ
β2

2φ+ ψ2

 ,

which is a nice compact way to look at the six covariance structure equations in six
unknown parameters. The fact that there are the same number of equations and unknowns
does not guarantee the existence of a unique solution; it merely tells us that a unique
solution is possible in most of the parameter space. In fact, identifiability depends on
where the true parameter is located.

Since σ12 = 0 if and only if β1 = 0, the parameter β1 is identifiable whenever it equals
zero. But then both σ12 = 0 and σ23 = 0, reducing the six equations in six unknowns to
four equations in five unknowns, meaning the other parameters in the covariance matrix
can’t all be recovered.

But what if β1 does not equal zero? At those points in the parameter space where β2

is non-zero, β1 = σ23
σ13

. This means that adding the instrumental variable Y2 to the model
bought us what we need, which is the possibility of correct estimation and inference
about β1. Note that stipulating β2 6= 0 is not a lot to ask, because it just means that the
instrumental variable is related to the response variable.

If both β1 6= 0 and β2 6= 0, all six parameters in the covariance matrix can be recovered
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by simple substitutions as follows:

β1 =
σ23

σ13

β2 =
σ23

σ12

φ =
σ12σ13

σ23

ω = σ11 −
σ12σ13

σ23

ψ1 = σ22 −
σ12σ23

σ13

ψ2 = σ33 −
σ13σ23

σ12

This is a success, but actually the job is not done yet. Four additional parameters appear
only in the expected value of the data vector; they are the expected value and intercepts:
ν, µx, α1, and α2. We have

µ1 = ν + µx (35)

µ2 = α1 + β1µx

µ3 = α2 + β2µx

Even treating β1 and β2 as known because they can be identified from the covariance
matrix, this system of three linear equations in four unknowns does not have a unique
solution.

As in the double measurement case, this lack of identifiability is really not too serious,
because our primary interest is in β1. So we re-parameterize, absorbing the expected value
and intercepts into µ exactly as defined in the mean structure equations (35). The new
parameters µ1, µ2 and µ3 may not be too interesting in their own right, but they can be
safely estimated by the vector of sample means and then disregarded.

To clarify, the original parameter was

θ = (ν, µx, α1, α2, β1, β2, φ, ω, ψ1, ψ2).

Now it’s
θ = (µ1, µ2, µ3, β1, β2, φ, ω, ψ1, ψ2).

The dimension of the parameter space is now one less, and we haven’t lost anything that
is either accessible or important. This is all the more true because the model pretends
that the response variables are measured without error. So the equations for Yi,1 and Yi,2
should be viewed as re-parameterizations like the one in Expression (20) on page 23, and
the intercepts α1 and α2 are already the original intercepts plus un-knowable measurement
bias terms.

To an important degree, this is the story of structural equation models in general.
The models usually used in practice are not what the scientist or statistician originally
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had in mind. Instead, they are the result of judicious re-parameterizations, in which the
original parameter vector is collapsed into a vector of functions that is identifiable, and
at the same time allows valid inference about the original parameters that are of primary
interest.

Correlation between explanatory variables and error terms Recalling Section 0.4
on omitted variables in regression, it is remarkable that while the primary explanatory
variable Xi,1 must not be correlated with the error term εi,1, the instrumental variable
Xi,2 is allowed to be correlated with the error term εi,2, perhaps reflecting the operation
of omitted explanatory variables that affect Yi,2 and have non-zero covariance with Xi,2.
Suppose Cov(Xi, εi,2) = κ, which might be non-zero. Then the covariance matrix of Di

becomes  σ11 σ12 σ13

σ22 σ23

σ33

 =

 φ+ ω β1φ β2φ+ κ
β2

1φ+ ψ1 β1β2φ+ β1κ
β2

2φ+ ψ2 + 2β2κ

 .

Assuming as before that Y2 is a useful instrumental variable so that β2 6= 0,

σ23

σ13

=
β1(β2φ+ κ)

β2φ+ κ
= β1. (36)

In fact, if κ 6= 0, we don’t even need β2 6= 0. That is, the instrumental variable need
not even be influenced by the explanatory variable. It need only be influenced by some
unknown varable that is correlated with the explanatory variable.

Testing H0 : β1 = 0 Since primary interest is in the relationship between X and Y1,
this is the null hypothesis we are most likely to try testing, and the most likely technique
is a likelihood ratio test or a Wald Z-test. Now the parameter β1 is identifiable, so a
valid test is possible. But when β1 = 0 the whole parameter vector is not identifiable,
and the technical conditions of the likelihood ratio test are not satisfied. It becomes quite
interesting; when κ = 0, the likelihood ratio statistic actually has 2 df even though H0

appears to impose only one restriction on the parameter19. We can deal with this kind
of complication if we really need to, but everything is much easier with more than one
instrumental variable.

More than one instrumental variable Suppose that the data set contains another
two variables that depend on the latent explanatory variable Xi. Our main interest is still
in the response variable Yi,1; the other two are instrumental variables. Now the model is,

19Notice that H0 : β1 = 0 imposes two restrictions on the covariance matrix. These correspond to the
two degrees of freedom of the correct test.
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independently for i = 1, . . . , n,

Wi = ν +Xi + ei (37)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

Yi,3 = α3 + β3Xi + εi,3,

where ei, ei, εi,1, εi,2 and εi,3 are all independent, V ar(Xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) =
ψ2, V ar(εi,3) = ψ3, V ar(ei) = ω, E(Xi) = µx and the expected values of all error terms
are zero.

Writing the vector of observable data for case i as Di = (Wi, Yi,1, Yi,2, Yi,3)′,

µ = E


Wi

Yi,1
Yi,2
Yi,3

 =


ν + µx
α1 + β1µx
α2 + β2µx
α3 + β3µx


and

Σ =


φ+ ω β1φ β2φ β3φ

β2
1φ+ ψ1 β1β2φ β1β3φ

β2
2φ+ ψ2 β2β3φ

β2
3φ+ ψ3

 . (38)

To establish identifiability of the parameters that appear in the covariance matrix, the
task is to solve the following ten equations in eight unknowns:

σ11 = φ+ ω (39)

σ12 = β1φ

σ13 = β2φ

σ14 = β3φ

σ22 = β2
1φ+ ψ1

σ23 = β1β2φ

σ24 = β1β3φ

σ33 = β2
2φ+ ψ2

σ34 = β2β3φ

σ44 = β2
3φ+ ψ3

for φ, ω, β1, β2, β3, ψ1, ψ2, and ψ3. Assuming the instrumental variables are well-chosen,
so that both β2 and β3 are both non-zero,

σ13σ14

σ34

=
β2β3φ

2

β2β3φ
= φ. (40)

Then, simple substitutions allow us to solve for the rest of the parameters, yielding the
complete solution
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φ =
σ13σ14

σ34

(41)

ω = σ11 −
σ13σ14

σ34

β1 =
σ12σ34

σ13σ14

β2 =
σ34

σ14

β3 =
σ34

σ13

ψ1 = σ22 −
σ2

12σ34

σ13σ14

ψ2 = σ33 −
σ13σ34

σ14

ψ3 = σ44 −
σ14σ34

σ13

This proves identifiability. The solution is thorough but somewhat tedious, even for this
simple example. The student may wonder how much work really needs to be shown.
I would suggest showing the calculations leading to the covariance matrix (38), saying
“Denote the i, j element of Σ by σij,” skipping the system of equations (39) because they
are present in (38), and showing the solution for φ in (40), including the stipulation that
β2 and β3 are both non-zero. Then, instead of the explicit solution (41), write something
like this:

ω = σ11 − φ
β1 =

σ12

φ

β2 =
σ13

φ

β3 =
σ14

φ

ψ1 = σ22 − β2
1φ

ψ2 = σ33 − β2
2φ

ψ3 = σ44 − β2
3φ

Notice how once we have solved for a model parameter, we use it to solve for other
parameters without explicitly substituting in terms of σij. The objective is to prove that
a unique solution exists by showing how to get it. A full statement of the solution is not
necessary unless you need it for some other purpose.

Turning to the mean structure equations, five additional parameters appear only in
the expected value Di; they are ν, µx, α1, α2 and α3. Even treating β1, β2 and β3 as known



48 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

because they are identified from the covariance matrix, the resulting four linear equations
in five unknowns does not have a unique solution.

µ1 = ν + µx

µ2 = α1 + β1µx

µ3 = α2 + β2µx

µ4 = α3 + β3µx

As in the case of a single instrumental variable we re-parameterize, absorbing the expected
value and intercepts into µ. The new parameters µ1, . . . , µ4 may not be too interesting
in their own right, but they can be safely estimated by the vector of sample means and
then disregarded.

With two (or more) instrumental variables, the identifiability argument does not need
to be as fussy about the locations in the parameter space where different functions of the
parameter vector are identifiable. In particular, there is no loss of identifiability under the
natural null hypothesis that β1 = 0, and testing that null hypothesis presents no special
difficulties.

Constraints on the covariance matrix Like the double measurement model, the
model with one explanatory variable and two instrumental variables imposes equality
constraints on the covariance matrix of the observable data. In the solution given by
Expression (41), the critical parameter β1 is recovered by β1 = σ12σ34

σ13σ14
, but a look at the

covariance structure equations (39) shows that β1 = σ23
σ13

and β1 = σ24
σ14

are also correct.
These seemingly different ways of solving for the parameter must be the same. That is,

σ12σ34

σ13σ14

=
σ23

σ13

and
σ12σ34

σ13σ14

=
σ24

σ14

.

Simplifying a bit yields

σ12σ34 = σ14σ23 = σ13σ24. (42)

Since all three products equal β1β2β3φ
2, it is clear that the model implies the equality

constraints (42) even where the identifiability conditions β2 6= 0 and β3 6= 0 do not hold.
What is happening geometrically is that the covariance structure equations are map-

ping a parameter space20 of dimension eight into a moment space of dimension ten. The
image of the parameter space is an eight-dimensional surface in the moment space, con-
tained in the set defined by the relations (42). Ten minus eight equals two, the number
of over-identifying restrictions.

Here are two more comments. First, we will see that even models with non-identifiable
parameters can imply equality constraints. Second, models also frequently imply inequal-
ity constraints on the moments. For example, in (41), φ = σ13σ14

σ34
. Because φ is a variance,

we have the inequality restriction σ13σ14
σ34

> 0, something that is not automatically true

20Actually it’s a subset of the parameter space, containing just those parameters that appear in the
covariance matrix,
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of covariance matrices in general. Most structural equation models imply quite a few in-
equality restrictions, and locating them all and listing them in non-redundant form can be
challenging. But any fact that suggests a way of disconfirming a model can be a valuable
tool.

0.10.2 Multiple explanatory variables

Most real-life models have more than one explanatory variable. No special difficulties arise
for the method of instrumental variables. In fact, the presence of multiple explanatory
variables only provides more ways to identify the parameters and more over-identifying
restrictions.

Here is an example with just two explanatory variables and two instrumental variables.
Independently for i = 1, . . . , n,

Wi,1 = ν1 +Xi,1 + ei,1

Yi,1 = α1 + β1Xi,1 + εi,1

Yi,2 = α2 + β2Xi,1 + εi,2

Wi,2 = ν2 +Xi,2 + ei,2

Yi,3 = α3 + β3Xi,2 + εi,3

Yi,4 = α4 + β4Xi,2 + εi,4

where E(Xi,j) = µj, ei,j and εi,j are independent of one another and of Xi,j, V ar(ei,j) = ωj,
V ar(εi,j) = ψj, and

V

(
Xi,1

Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

As usual, intercepts and expected values can’t be recovered individually. Eight parameters
are intercepts and expected values of latent variables that appear in the expressions for
only six expected values of the observable variables. So we re-parameterize, absorbing
them into µ1, . . . , µ6. Then we estimate µ with the vector of 6 sample means and set it
aside, forever.

Denoting the data vectors by Di = (Wi,1, Yi,1, Yi,2,Wi,2, Yi,3, Yi,4)′, the covariance ma-
trix Σ = V (Di) is

[σij] =


φ11 + ω1 β1φ11 β2φ11 φ12 β3φ12 β4φ12

β2
1φ11 + ψ1 β1β2φ11 β1φ12 β1β3φ12 β1β4φ12

β2
2φ11 + ψ2 β2φ12 β2β3φ12 β2β4φ12

φ22 + ω2 β3φ22 β4φ22

β2
3φ22 + ψ3 β3β4φ22

β2
4φ22 + ψ4
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Disregarding the expected values, the parameter21 is

θ = (β1, β2, β3, β4, φ11, φ12, φ22, ω1, ω2, ψ1, ψ2, ψ3, ψ4).

Since θ has 13 elements and Σ has 6(6+1)
2

= 21 variances and non-redundant covariances,
this problem easily passes the test of the parameter count rule. Provided the parameter
vector is identifiable, the model will impose 21 − 13 = 8 over-identifying restrictions on
Σ.

First notice that if φ12 6= 0, all the regression coefficients are immediately identifiable.
Since the instrumental variables Y2 and Y4 are presumably well-chosen, it may be assumed
that β2 6= 0 and β4 6= 0. In that case, the entire parameter vector is identifiable — for
example identifying φ11 from σ12 and then ω1 from σ11 . . . .

Since it is very common for explanatory variables to be related to one another in non-
experimental studies, assumptions like φ12 6= 0 are very reasonable, and in any case are
testable as part of an exploratory data analysis. So, extension of this design to data sets
with more than two explanatory variables is straightforward, and identifiability follows
without detailed calculations.

Be aware, though, that the instrumental variable models presented here are actually
re-parameterizations of models with measurement error in the response variables. One
must carefully consider the methods of data collection to rule out correlation between
measurement error in the explanatory variables and measurement error in the response
variables. Such correlations would appear as non-zero covariances between eij and εij
terms in the models, and it will be seen in homework how this can sink the ship on a
technical level.

Just to be clear, when data are collected by a common method in a common setting,
errors of measurement will naturally be correlated with one another. For example, in a
study investigating the connection between diet and athletic accomplishment in children,
suppose the data all came from questionnaires filled out by parents. It would be very
natural for some parents to exaggerate the healthfulness of the food they serve and also
to exaggerate their children’s athletic achievements. On the other extreme, some parents
would immediately figure out the purpose of the study, and tell the interviewers what they
want to hear. “My kids eat junk (I can’t control them) and they are terrible in sports.”
Both these tendencies would produce a positive covariance between the measurement
errors in the explanatory and response variables. And in the absence of other information,
it would be impossible to tell whether a positive relationship between observable diet and
athletic performance came from this, or from an actual relationship between the latent
variables.

21Since the distributions of the random variables in the model are unspecified, one could say that they
are also unknown parameters. In this case, the quantity θ is really a function of the full parameter vector,
even after re-parameterization.


	Regression with measurement error
	Regression: Conditional or Unconditional?
	The Centering Rule
	Unconditional regression without measurement error
	Omitted Variables
	Measurement Error
	A simple additive model for measurement error

	Ignoring measurement error
	Measurement error in the response variable
	Measurement error in the explanatory variable
	Two Explanatory Variables
	A large scale simulation study

	Modeling measurement error
	A first try at including measurement error

	Parameter Identifiability
	Double measurement
	A scalar example
	The Double Measurement Design in Matrix Form
	Intercepts
	Estimation and testing

	Instrumental variables
	One explanatory variable
	Multiple explanatory variables



